Hands-On Pattern Recognition
Challenges in Machine Learning, Volume 1

Hands-On Pattern Recognition
Challenges in Machine Learning, Volume 1

Isabelle Guyon, Gavin Cawley,
Gideon Dror, and Amir Saffari, editors

Nicola Talbot, production editor

Microtome Publishing
Brookline, Massachusetts
www.mtome.com

Hands-On Pattern Recognition
Challenges in Machine Learning, Volume 1

Isabelle Guyon, Gavin Cawley,
Gideon Dror, and Amir Saffari, editors

Nicola Talbot, production editor

Collection copyright (©) 2011 Microtome Publishing, Brookline, Massachusetts, USA.
Copyright of individual articles remains with their respective authors.

ISBN-13: 978-0-9719777-1-6

Series Foreword

During recent years, a team of motivated researchers led by Isabelle Guyon has done an ad-
mirable job conceiving and organizing performance evaluations in machine learning and in-
ference, in the form of competitions or challenges. This book opens the series Challenges
in Machine Learning. It contains papers by the top ranking challenge participants, providing
instructive analyses of the results. It also includes tutorials and theoretical papers on topics
addressed by the challenges.

Designing good challenges is far from trivial. The team benefitted from Isabelle’s experi-
ence as a member of technical staff at Bell Laboratories, where she was part of a group that
held world records in pattern recognition tasks, while at the same time employing theoreticians
proving theorems about statistical learning. This group, which I fondly remember from the
time I spent there as a student, always put great emphasis on benchmarking, but at the same
time it avoided the trap of searching only the vicinity of local optima by tweaking existing
methods — quite the contrary; in the 1990s, the group came up with Support Vector Machines,
a development to which Isabelle made significant contributions.

While these methods are now part of our standard toolkit, Isabelle has moved on to design
benchmarks for tasks that are harder to evaluate. This is not only a great service to the com-
munity, but it will also enable scientific progress on problems that are arguably more difficult
than classical pattern recognition. In particular, the benchmarks include the fascinating prob-
lem of causal inference. Finding causal directions from observations is not only a profound
issue for the philosophy of science, but it can also develop into an important area for practical
inference applications. According to Hans Reichenbach, all statistical associations arise from
causal mechanisms. However, machine learning has so far focused on the statistical ‘surface’
of things. Penetrating this surface would help us detect regularities that are more robust to is-
sues that make our life difficult today, including nonstationarity and covariate shifts. It may
also move us closer to the long term goal of building intelligent systems that learn about the
structure of the world in an autonomous way.

Bernhard Scholkopf
Max Planck Institute, Tiibingen, Germany

Foreword

Machine learning is about building machines that learn. Building machines is engineering. The
idea is to create an artefact. The hope is that these artefacts are useful (typically to others). The
machines have to solve some end-user problem. The present book grapples with a number of
key issues central to this task — how to represent the data, how to select suitable models, and
how to evaluate performance.

Engineers design many types of machine — flying machines, communication machines etc.
The question of how to evaluate performance arises in many areas. The question of representing
data also arises (although it means something different). If one compares the state-of-the-art in
performance measurement and prediction in mature engineering disciplines, Machine Learning
looks primitive in comparison. Communications engineers [4] can design systems and predict
their performance in messy real world situations very well. The same is true in aeronautics [2].
Why is Machine Learning lagging behind? And what can be done about it?

One thing that more mature engineering disciplines seem to have in common is a wide va-
riety of “ways of knowing” or acceptable research practices. It is well accepted in aeronautical
engineering that it is useful to have design rules of thumb [2]. In fact many scholars have ar-
gued that the traditional view of engineering as applied science is back-the-front [5]. There
are a range of different categorisations of “useful knowledge” different to the tired “pure ver-
sus applied” (see for example Mokyr’s [3] distinction between propositional and prescriptive
knowledge). How do philosophical reflections on the nature of engineering knowledge affect
the development of machine learning, and how is it relevant to the present book? Simply, dif-
ferent ways of knowing require different means of inquiry. The benchmark competitions sum-
marised in this book are a different way of knowing. They are analogous to the principled (but
not scientifically derived) empirical studies in many branches of engineering that complement
more well-honed scientific knowledge.

But this is a starting point — a beginning rather than an end. There are in fact many pro-
found scientific questions to be answered regarding performance evaluation. For example, a
satisfactory theory of cross-validation still eludes the community. And the plethora of different
performance measures need to brought into better order. Self-bounding learning algorithms [6]
(that not only estimate an object of interest but also estimate how well it is estimated) deserve
further study. There are many more questions to be answered.

Much machine learning research is driven by the interests of the researcher. It is often
technique-oriented rather than problem driven. End users often neither understand nor care
about the distinctions between variants of different learning algorithms. A problem-oriented
perspective is rare (an exception is [1]). However, end-users do care about performance, how to
represent their data and how to choose models. These topics are the focus of this book, which
marks a great first step in building a richer understanding of the engineering of machines that
learn.

Robert C. Williamson
Canberra, Australia.

iii

[1] Vic Barnett, Comparative Statistical Inference, (3rd Edition) John Wiley and Sons, Chich-
ester 1999.

[2] Walter G. Vincenti, What Engineers Know and How They Know It: Analytical Studies
from Aeronautical History, The Johns Hopkins University Press, Baltimore 1990.

[3] Joel Mokyr, The Gifts of Athena: Historical Origins of the Knowledge Economy, Prince-
ton University Press, Princeton, 2002.

[4] John G. Proakis and Masoud Salehi, Communication Systems Engineering, Pearson Ed-
ucation, 2003.

[5]1 Marc J. de Vries, “The Nature of Technological Knowledge: Extending Empirically In-
formed Studies into What Engineers Know”, Techné, 6:3, 1-21, 2003.

[6] Yoav Freund, “Self bounding learning algorithms”, COLT *98: Proceedings of the eleventh
annual conference on Computational learning theory, ACM Press, 247-258, 1998.

Preface

Recently organized competitions have been instrumental in pushing the state-of-the-art in
machine learning, establishing benchmarks to fairly evaluate methods, and identifying
techniques, which really work.

This book harvests three years of effort of hundreds of researchers who have participated to
three competitions we organized around five datasets from various application domains. Three
aspects were explored:

* Data representation.
* Model selection.

* Performance prediction.

With the proper data representation, learning becomes almost trivial. For the defenders of fully
automated data processing, the search for better data representations is just part of learning.
At the other end of the spectrum, domain specialists engineer data representations, which are
tailored to particular applications. The results of the “Agnostic Learning vs. Prior Knowledge”
challenge are discussed in the book, including longer versions of the best papers from the [JCNN
2007 workshop on “Data Representation Discovery” where the best competitors presented their
results.

Given a family of models with adjustable parameters, Machine Learning provides us with
means of “learning from examples” and obtaining a good predictive model. The problem be-
comes more arduous when the family of models possesses so-called hyper-parameters or when
it consists of heterogenous entities (e.g. linear models, neural networks, classification and re-
gression trees, kernel methods, etc.) Both practical and theoretical considerations may yield to
split the problem into multiple levels of inference. Typically, at the lower level, the parame-
ters of individual models are optimized and at the second level the best model is selected, e.g.
via cross-validation. This problem is often referred to as model selection. The results of the
“Model Selection Game” are included in this book as well as the best papers of the NIPS 2006
“Multi-level Inference” workshop.

In most real world situations, it is not sufficient to provide a good predictor, it is important to
assess accurately how well this predictor will perform on new unseen data. Before deploying a
model in the field, one must know whether it will meet the specifications or whether one should
invest more time and resources to collect additional data and/or develop more sophisticated
models. The performance prediction challenge asked participants to provide prediction results
on new unseen test data AND to predict how good these predictions were going to be on a test set
for which they did not know the labels ahead of time. Therefore, participants had to design both
a good predictive model and a good performance estimator. The results of the “Performance
Prediction Challenge” and the best papers of the “WCCI 2006 workshop of model selection”
will be included in the book.

A selection of the special topic of JMLR on model selection, including longer contributions
of the best challenge participants, are also reprinted in the book.

Isabelle Guyon, Gavin Cawley, Gideon Dror, Amir Saffari, Editors. January 2011.

Table of Contents

Series Foreword

Foreword iii
Preface v
PartI Introduction 1

Challenges in Data Representation, Model Selection, and Performance Prediction 3
I. Guyon, A. Saffari, G. Dror & G. Cawley

Model Selection: Beyond the Bayesian/Frequentist Divide 23
I. Guyon, A. Saffari, G. Dror & G. Cawley; JMLR 11(Jan):61-87, 2010.

On Over-fitting in Model Selection and Subsequent Selection Bias in Performance
Evaluation 49
G.C. Cawley & N.L.C. Talbot; JMLR 11(Jul):2079-2107, 2010.

Part I Data representation 77

Hybrid Learning Using Mixture Models and Artificial Neural Networks 81
M. Saeed

Data Grid Models for Preparation and Modeling in Supervised Learning 99
M. Boullé

Virtual High-Throughput Screening with Two-Dimensional Kernels 131
C.-A. Azencott & P. Baldi
Part III Robust Parameter Estimation 147

Unified Framework for SVM Model Selection 151
M.M. Adankon & M. Cheriet

Liknon feature selection: Behind the scenes 169

E. Pranckeviciene & R. Somorjai

vii

Model Selection in Kernel Based Regression using the Influence Function 195
M. Debruyne, M. Hubert & J.A.K. Suykens; JMLR 9(Oct):2377-2400, 2008.
Part IV Ensemble Methods 219

An Improved Random Forests Approach with Application to the Performance Prediction

Challenge Datasets 223
C. Dahinden

Feature Selection with Ensembles, Artificial Variables, and Redundancy Elimination 231
E. Tuv, A. Borisov, G. Runger & K. Torkkola; IMLR 10(Jul):1341-1366, 2009.

Classification with Random Sets, Boosting and Distance-based Clustering 257
V. Nikulin
Part V. Multi-level Inference 285

Preventing Over-Fitting during Model Selection via Bayesian Regularisation of the
Hyper-Parameters 289
G.C. Cawley & N.L.C. Talbot; JIMLR 8(Apr):841-861, 2007.

Farticle Swarm Model Selection 309
H.J. Escalante, M. Montes & L.E. Sucar; JMLR 10(Feb):405-440, 2009.

Bilevel Cross-validation-based Model Selection 345
G. Kunapuli, J.-S. Pang & K.P. Bennett
Appendix A Dataset Description 371

Datasets for the Agnostic Learning vs. Prior Knowledge Competition 373
I. Guyon
Appendix B Fact Sheets 397
B1 Performance Prediction Challenge 399
B1.1 LogitBoost with trees 399
B1.2 Weighted LS-SVM + Leave-One-Out Cross-Validation + Repeated Hold-Out 400
B1.3 Bayesian Neural Networks for the Performance Prediction Challenge 402
B1.4 Random Forests 405
B1.5 Kernel Classifier 406

TABLE OF CONTENTS ix

B1.6 Random Linear Matching Pursuit 408
B1.7 Regularized and Averaged Selective Naive Bayes Classifier 409

B1.8 Artificial Contrasts with Ensembles and Regularized Least Squares Classifiers 411

B1.9 SVM-LOO 412
B1.10 Model Selection in an Ensemble Framework 413
B1.11 Advanced Analytical Methods, INTEL 414

B1.12 Learning with Mean-Variance Filtering, SVM and Gradient-based Optimization 415

B1.13 Large margin linear classifiers with bias adjustment for skewed two-class distribu-
tions. 416

B1.14 A Study of Supervised Learning with Multivariate Analysis on Unbalanced Datasets 417

B1.15 Cross-indexing 419
B2 AL vs PK Challenge 421
B2.1 LogitBoost with trees 421
B2.2 Feature selection with redundancy elimination + gradient boosted trees. 422
B2.3 Cross-indexing 424
B2.4 Classification with Random Sets, Boosting and Distance-based Clustering 426
B2.5 PSMS for Neural Networks 429
B2.6 Hybrid approach for learning 432
B2.7 Linear Programming SVM (Liknon) 433
B2.8 Agnostic Learning with Ensembles of Classifiers 436
B2.9 Modified multi-class SVM formulation; Efficient LOO computation 436
B2.10 Report on Preliminary Experiments with Data Grid Models in the Agnostic Learn-

ing vs. Prior Knowledge Challenge 438
B2.11 Dimensionality Reduction Techniques 440
B2.12 DoubleBoost 441
B2.13 Boosting with SVM 442

B2.14 High-Throughput Screening with Two-Dimensional Kernels 443

Appendix C CLOP: The challenge learning object package 447

Quick Start Guide for CLOP 449
A.R.S.A. Alamdari & 1. Guyon

Part 1

Introduction

Chapter 1

Challenges in Data Representation, Model Selection, and
Performance Prediction

Isabelle Guyon ISABELLE @ CLOPINET.COM
ClopiNet, Berkeley, CA 94708, USA

Amir Saffari AMIR @ YMER.ORG
Graz University of Technology, Austria

Gideon Dror GIDEON @MTA.AC.IL
Academic College of Tel-Aviv-Yaffo, Israel

Gavin Cawley GCC@CMP.UEA.AC.UK
University of East Anglia, UK

Abstract

We organized a series of challenge for the conferences IJCNN/WCCI 2006, NIPS 2006 and
IJCNN 2007 to explore various aspects of machine learning, ranging from the choice of data
representation to the selection of the best model. The class of problems addressed are classifica-
tion problems encountered in pattern recognition (classification of images, speech recognition),
medical diagnosis, marketing (customer categorization), text categorization (filtering of spam).
All three challenges used the same five datasets, formatted in two data representations: raw data
and preprocessed data in a feature-based representation. Post-challenge submissions can still
be made at: http://www.agnostic.inf.ethz.ch/. Several chapters in this volume
are contributed by top ranking challenge participants who describe their methods in details.
Keywords: Supervised learning; Classification; Competition; Performance prediction; Model
selection; Agnostic Learning; Prior Knowledge; Domain Knowledge; Boosting; Ensemble
methods; Kernel methods; Support Vector Machines; SVM; LSSVM; Data Grid models.

1.1. Introduction

Challenges have proved to be a great stimulus for research in machine learning, pattern recog-
nition, and robotics. Robotics contests seem to be particularly popular, with hundreds of events
every year, the most visible ones probably being the DARPA Grand Challenges of autonomous
ground vehicle navigation and RoboCup, featuring several challenges for robots including play-
ing soccer or rescuing people. In data mining and machine learning, several conferences
have regularly organized challenges over the past 10 years, including the well established Text
Recognition Conference (e.g., TREC) and the Knowledge Discovery in Databases cup (KDD
cup). More specialized pattern recognition and bioinformatics conference have also held their
own contests, e.g. CASP for protein structure prediction, DREAM for reverse engineering bi-
ological networks, ICDAR for document analysis, and the PASCAL Visual Object Challenge
(VOC) for object recognition. The European network of excellence PASCAL2 has actively
sponsored a number of challenges around hot themes in machine learning, which have punc-
tuated workshop at NIPS and other conferences. These contests are oriented towards scientific
research and the main reward for the winners is to disseminate the product of their research and
obtain recognition. In that respect, they play a different role than challenges like the Netflix

© 1. Guyon, A. Saffari, G. Dror & G. Cawley.

http://www.agnostic.inf.ethz.ch/

GUYON SAFFARI DROR CAWLEY

prize, which offer large monetary rewards for solving a task of value to the Industry (movie
referral in than particular case), but are narrower scope. Attracting hundreds of participants and
the attention of a broad audience of specialists as well as sometimes the general public, these
events have been important in several respects: (1) pushing the state-of-the art, (2) identify-
ing techniques which really work, (3) attracting new researchers, (4) raising the standards of
research, (5) giving the opportunity to non-established researchers to make themselves rapidly
known.

In 2003, we organized a challenge on the theme of feature selection (Guyon et al., 2005)
whose results were discussed at NIPS 2003. A book was published collecting tutorial pa-
pers and the best papers from the challenge participants (Guyon et al., 2006a). We have
continued organizing challenges regularly every year, exploring various aspects of machine
learning: model selection, causal discovery, and active learning (see http://clopinet.
com/challenges). The present paper summarizes the results of three challenges: The
IJCNN/WCCI 2006 “performance prediction challenge” (Guyon et al., 2006b), the NIPS 2006
“model selection game”, and the IJCNN 2007 “agnostic learning vs. prior knowledge chal-
lenge” (Guyon et al., 2007, 2008).

1.2. Motivations for this series of challenges

Predictive modeling for classification and regression is a central problem addressed in statis-
tics, data mining and machine learning. Examples include pattern recognition (handwriting
recognition, speech recognition, object classification, text classification), medical diagnosis and
prognosis, spam filtering, etc. In such problems, the goal is to predict an outcome (a category or
a continuous variable), given patterns represented as vectors of features, graphs, texts, etc. The
standard approach to tackle such problems is to construct a predictive model from examples of
pairs pattern/outcome. After training, the model should be capable of making predictions of
outcome give new examples, not used for training (generalization).

Machine learning researchers have been devoting much effort in the past few decades to
inventing and improving learning algorithms. In proportion,less effort has been dedicated to
problems of data representation, model selection, and performance prediction. This paper
that summarizes the results of challenges we organized around these topics. The questions
addressed are the following:

* Data representation: The difficulty of learning from examples can be alleviated with
a proper data representation. However, finding such representations rely on expert do-
main knowledge. Conversely, adding more training data may yield better performance
without requiring such knowledge. How should human resources be rather exploited:
in collecting more data or in incorporating domain knowledge in the design of the data
representation?

* Model selection: There are many learning machine architectures and algorithms to choose
from. Given a certain amount of available training data, what strategy should be adopted
to deliver the best predictive model, including choosing the model family and the model
architecture, and tuning all hyper-parameters and parameters?

* Performance prediction: It is one thing to deliver the best model, but it is a different
thing to know how well it will perform on new, previously unseen, data. The former prob-
lem is that of model selection. The latter is that of performance prediction. A good esti-
mator of performance prediction is obviously a good model selection criterion. However,
there may exist simpler model selection criteria allowing only to rank models according

http://clopinet.com/challenges
http://clopinet.com/challenges

1. CHALLENGES AND DATASETS

to predictive power without predicting their performance. The problem of performance
prediction is to make best possible use of the training data to both train the model and
predict its prediction accuracy on future test data.

1.3. Datasets

In all challenges we used the same five datasets, however, the data were formatted differently
and scrambled to prevent the participants to use results of previous challenges as a head start and
give an even chance to new competitors. The tasks are five two-class classification problems
spanning a variety of domains (marketing, handwriting recognition (HWR), drug discovery,
text classification, and ecology) and a variety of difficulties, with sufficiently many examples
to obtain statistically significant results. The input variables are continuous or binary, sparse
or dense. Some raw data representations are not feature based. In some problems, the class
proportions are very imbalanced. A detailed report on the data preparation is available (Guyon,
2005). The main data characteristics are summarized in Table 1.1. Non-feature based represen-
tations are supplied for HIVA (molecular structure) and NOVA (emails) and were used in the
“data representation” competition.

Table 1.1: Datasets of the three challenges

Dataset | Domain Number of examples Percent Number of features
(train/valid/test) pos. class | Raw data | Preproc.
ADA Marketing 41471415/ 41471 28.4 14 48
GINA HWR 3153/315/31532 49.2 784 970
HIVA Drug discovery | 3845 /384 /38449 35 Molecules | 1617
NOVA | Text classif. 1754 /175 /17537 28.5 Text 16969
SYLVA | Ecology 13086 /1309 / 130857 | 6.2 108 216

1.4. Design of the challenges
1.4.1. General evaluation procedure

The design of the challenges was informed by experience gained from another challenge we
organized previously on feature selection (Guyon et al., 2005). In particular, we used a system
of on-line submission, which provided the competitors with immediate feed-back on a small
subset of the data called the validation set. The organizers provided initial submissions to
bootstrap the challenge. A toolkit including some of the methods performing best in previous
challenges was also provided (the so-called Challenge Learning Object Package CLOP (Saffari
and Guyon, 2006), see Appendix). At the end of a development period, the validation set labels
were revealed. The final ranking was performed on a large separate test set. The test set labels
will remain hidden to permit meaningful comparison with post-challenge submissions.
Performance was measured in balanced error rate (BER), which is the average of the error
rate on the positive class and the error rate on the negative class. As is known, for i.i.d. errors
corresponding to Bernouilli trials with a probability of error p, the standard deviation of the
error rate E computed on a test set of size m is y/p(1 —p)/m. This result can be adapted
to the balanced error rate. Let us call m, the number of examples of the positive class, m_
the number of examples of the negative class, p, the probability of error on examples of the
positive class, p_ the probability of error on examples of the negative class, and £ and E_ the

GUYON SAFFARI DROR CAWLEY

corresponding empirical estimates. Both processes generating errors on the positive or negative
class are Bernouilli processes. By definition, the balanced error rate is BER = (1/2)(E; +E_),
and its variance is var(BER) = (1/4)(var(E) + var(E_)). The standard deviation of the BER
using m4 and m_ examples is therefore

1\/p+(1 —P+) +p7(1 —pr-)

my m_

(1.1

2

For sufficiently large test sets, we may substitute p by E; and p_ by E_ to compute ©.

To rank the participants we adopted the following scheme: The entries were first ranked for
each individual dataset. Then a global ranking was obtained based on the average rank over
all five datasets. Different ranking scores incorporating the BER were used in the different
challenges.

1.4.2. Performance prediction challenge

We ran first the competition on performance prediction, which was easiest technically to orga-
nize. In that competition, in addition to providing predicted labels on test data, the participants
had to also provide an estimate of their performance on the test set. For the performance
prediction challenge, the ranking score balanced the classification accuracy and performance
prediction accuracy. Denoting as BER the balanced error rate actually computed from predic-
tions made on test examples, and BERg,. the challenger’s own performance prediction, we
defined our ranking score as:

S = BER+ 8gpg(1 — ¢~ %Er/%) | (1.2)

where Oppr = |BERgueSS — BER| measures in absolute value the difference between the com-
puted BER and the predicted BER. The multiplicative factor (1 — e~%£#/®) accounts for our
uncertainly of the exact BER, since we can only estimate it on a finite test set of size m. If the
BER error bar o is small compared to the error of the challenger dpgg, then this factor is just
one. The ranking score becomes simply BER + Spgg. But if o is large relative to the error made
by the challenger, we have S ~ BER.

The challenge started September 30", 2005 and ended March 1, 2006 (duration: 21
weeks). Therefore, the competitors had several months to build classifiers with provided (la-
beled) training data. We estimated that 145 entrants participated. We received 4228 “de-
velopment entries” (entries not counting towards the final ranking). A total of 28 partici-
pants competed for the final ranking by providing valid challenge entries (results on train-
ing, validation, and test sets for all five tasks). We received 117 submissions qualifying for
the final ranking (a maximum of 5 entries per participant was allowed). The participation
doubled in number of participants and entry volume compared to the feature selection chal-
lenge. The results of the challenge were discussed at the ICNN/WCCI 2006 conference. The
website of the performance prediction challenge including details on the results is available
at: http://www.modelselect.inf.ethz.ch/. The submissions of the website are
closed because the same datasets were used in the follow-up ALvsPK challenge, whose website
remains open.

1.4.3. ALvsPK challenge on data representation

The agnostic learning vs. prior knowledge challenge (AlvsPK) had two parallel tracks: AL
and PK. For the “agnostic learning” (AL) track we supplied data preprocessed to provide a

http://www.modelselect.inf.ethz.ch/

1. CHALLENGES AND DATASETS

simple feature-based representation, suitable for use with any off-the-shelf machine learning
or data mining package. The pre-processing used was identical to that used in the previous
challenge on performance prediction, but with a new split of the data. The participants had no
knowledge of the identity of the features in the agnostic track. The raw data representations
were supplied in the “prior knowledge” (PK) track. They were not necessarily in the form of
data tables. For instance, in the drug discovery problem the raw data consists of a representation
of the three dimensional structure of the drug molecules; in the text processing problem, the raw
data are messages posted to USENET newsgroups. The participants had full knowledge of the
meaning of the representation of the data in the PK track. Therefore, PK competitors had the
opportunity to use domain knowledge to build better predictors and beat last year’s AL results or
make new “agnostic” entries. Note that the training/test splits used are the same in both tracks,
but the example ordering is different in each data subset to hinder matching patterns in the two
representations and/or submitting results with the representation prescribed for the other track.

The Balanced Error Rate (BER) was used for scoring the participants and otherwise the
modalities of evaluation were similar as those of the previous challenge on performance pre-
diction. The challenge started on October 1%, 2006 and ended on August 1%, 2007 (duration:
10 months). Two milestone rankings of the participants were made using the test set, without
revealing either the test labels or the test performance: on December 1%, for the “model selec-
tion game”, and on March 1%, to allow us to publish intermediate results (Guyon et al., 2007).
To be eligible for the final ranking, submissions had to include results on all the tasks of the
challenge in either track, on the test data. However, recognizing that domain knowledge is task
specific, prizes were given for each task individually in the “prior knowledge” track. For each
group, only the last five entries in either track counted towards the final ranking. The results of
the ALvsPK challenge were discussed at the IICNN 2007 conference. Details can be found on
the website or the challenge http://www.agnostic.inf.ethz.ch/.

1.4.4. Model selection game

In previous challenges, we noted that different teams using similar classification methods (even
sometimes the same software package) obtained very different results. We conjectured that this
variance may be due to differences in model selection strategies. To stimulate research in model
selection and verify our conjecture, we organized a model selection game, within the ALvsPK
challenge. Using the data of the AL track, the competitors were asked to return results with
the constraint of using only models from the toolkit that the organizers provided: the Challenge
Learning Object Package CLOP (Saffari and Guyon, 2006), see Appendix). The package was
available for downloading from the web site of the challenge, and the latest version is available
from http://clopinet.com/CLOP, see Appendix for a brief description. That toolkit
includes classical methods and some of the algorithms that worked best in the previously orga-
nized challenges. Hence comparisons between model selection methods were facilitated. The
results of the model selection game were discussed ant the NIPS 2006 conference. Details can
be found on the website or the challenge http://www.agnostic.inf.ethz.ch/.

1.5. Results

1.5.1. General observations

In Figure 1.1, we show the distribution of performance on the test set of the entries who qualified
for ranking in the ALvsPK challenge. Graphs similar to those of the AL track were obtained in
the challenge on performance prediction, which uses the same datasets. We see that the datasets
vary in difficulty and that there are noticeable differences between the two tracks.

http://www.agnostic.inf.ethz.ch/
http://clopinet.com/CLOP
http://www.agnostic.inf.ethz.ch/

GUYON SAFFARI DROR CAWLEY

30 ‘
20t Il 1
Tol ADA i
0 I I I m = I I I I I
0 005 01 015 02 025 03 035 04 045 05
30 T T T T T T T T T
20¢ 1
10f .
0 0 m ol m ! ! ! ! ! ! !
0 0.05 0.1 015 02 025 03 035 04 045 05
30 T T T T T T T T T
201 b
10k HIVA
0 I I I I I
0 0.05 0.1 015 02 025 03 035 04 045 05
30 T T T T T T T T T
201 b
10t NOVA i
0 H I I I I I I I I
0 005 01 015 02 025 03 035 04 045 05
30 T T T T T T T T T
20 b
pps *I SYLVA 1
0 m I I I I I I I I I
0 005 01 015 02 025 03 035 04 045 05
Test BER
(@)
100 ‘ ‘
501 ADA i
0 I I |_mml I o I — I
0 0.05 0.1 015 02 025 03 035 04 045 05
100 \ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
"Ll ’
0 [T PP - WY . .-.H I I I I I
0 0.05 0.1 015 02 025 03 035 04 045 05
100 \ \ \ ‘ ‘ ‘ ‘ ‘ ‘
501 HIVA I R
0 I I I I L mi L it
0 0.05 0.1 015 02 025 03 035 04 045 05
100 \ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
501 I I NOVA -
0 ™ I I I I I
0 0.05 0.1 015 02 025 03 035 04 045 05
100 T T T T T T T T T
50 I I SYLVA i
0 I I I I I I I I
0 0.05 0.1 015 02 025 03 035 04 045 05
Test BER
(b)

Figure 1.1: Distribution of test set Balanced Error Rate (BER). (a) Prior knowledge (PK) track.
(b) Agnostic learning (AL) track. The thin vertical line indicates the best ranked
entry (only the 5 last of each participant are ranked).

1. CHALLENGES AND DATASETS

HIVA (drug discovery) seems to be the most difficult dataset: the average BER and the
spread are high. ADA (marketing) is the second hardest. The distribution is very skewed and
has a heavy tail, indicating that a small group of methods “solved” the problem, which was not
obvious to others. NOVA (text classification) and GINA (digit recognition) come next. Both
datasets have classes containing multiple clusters. Hence, the problems are highly non-linear.
This may property of the data explain the very long distribution tails. Finally, SYLVA (ecology)
is the easiest dataset, due to the large amount of training data.

We surveyed the participants to get more details about the methods employed. The survey
reveals that the preprocessing methods used in the challenge on performance prediction and in
the AL track of the ALvsPK challenge were very elementary. Tree classifiers most often use no
preprocessing at all. The most common preprocessing is feature standardization (subtract the
mean and divide by the standard deviation for each feature). A few entries used PCA or ICA
to extract features. Most entries used no feature selection. Some entries resampled the training
data to balance the two classes. There does not seem to be a correlation between the type of
preprocessing used and how well people did in the challenge.

As classification methods, a variety of algorithms were used in top ranking entries, including
ensembles of decision trees, kernel methods/SVMs, Bayesian Neural Networks, ensembles of
linear methods, and Naive Bayes. It is interesting to note that single or ensembles thereof did
generally better than mixed models.

1.5.2. Results of the Performance Prediction Challenge

The winner by average rank for the performance prediction challenge is Roman Lutz (Lutz,
2006). The best average score was obtained by Gavin Cawley and Nicola Talbot (Cawley and
Talbot, 2007), who obtained also the best guessed BER. Radford Neal obtained the best AUC
(data not shown). The full result tables are found on the web-site of the challenge (http:
//www.modelselect.inf.ethz.ch/).

The top ranking entries have made errors on their performance prediction of the same order
of magnitude as the error bar of the performance computed on test examples. This is an impor-
tant achievement considering that the training set is ten times smaller than the test set and the
validation set 100 times smaller.

We examined how the various methods did with respect to optimizing the test BER and the
Oper. In Figure 1.2 each point represents one of the 117 final entries, for each dataset. The best
ranking entry according to the challenge score is indicated by an arrow.

The symbols code for the methods used:

* X: Mixed or unknown method.

 TREE: Ensembles of trees (like Random Forests, RF).

¢ NN/BNN: Neural networks or Bayesian neural nets.

* NB: Naive Bayes.

* LD/SVM/KLS/GP: Methods linear in their parameters, including kernel methods and
linear discriminant (LD), Support Vector Machines (SVM), Kernel Least-Squares (KLS)
and LS-SVM, Gaussian Processes (GP).

Figure 1.2 reveals that Naive Bayes did very well on two datasets (ADA and SYLVA) but
poorly on others. Similarly, kernel methods did very well on most datasets (they rank first for
HIVA, GINA, and NOVA), but they did poorly on ADA. This failure on ADA make them rank
only fifth in the overall ranking. They are the most frequently used type of method, but their
performance shows a lot of variance. On the contrary, ensembles of decision trees are not so
popular, but they perform consistently well on all datasets in this challenge, even though they

http://www.modelselect.inf.ethz.ch/
http://www.modelselect.inf.ethz.ch/

GUYON SAFFARI DROR CAWLEY

are never the top entry for any of the datasets. The challenge winner used an ensemble of
decision trees. Similarly, Bayesian neural networks did well on all datasets, even though they

were not best for any. They end up ranking third in the overall scoring.

Delta BER

10° x Other
+ TREE
O NN/BNN
& NB .
LD/SVM/KLS/GP .
-1 . ‘.
10 * X+ L el
X ° .®.><. e
~ . : X) ‘ « ><:. <>
xS ‘x<> +
I % X . .
3 @k%x & w0
2 . R O O
10°F x . &
- - <X
L b % , X)
o Talkoe. HIVA
X Ix T .® %
© ik kit x
3| X
10 — > :t
-\
NOVA
SYLVA }
10_4 1 1 1 1 1 1 J
0.05 0.1 0.15 0.2 0.25 0.3 0.35
BER

Figure 1.2: Methods employed. We show a scatter plot of the methods employed in the
IJCNNO6 challenge, coarsely grouped into five categories. The arrows indicate
the winners of the performance prediction challenge. The lines indicate the Pareto
front (see text for details).

This analysis also tells us something about the datasets: SYLVA has a large number of train-
ing examples, so all methods essentially perform well, even the simple naive Bayes. We know
by design that GINA and NOVA are very non-linear. The top ranking participants used highly
non-linear methods and naive Bayes failed. HIVA seems to also be in this category, not too
surprisingly: chemical molecules with very different structures can be active or inactive drugs.
ADA has a particularity that makes kernel methods fail and which should be further investigated.
We conjecture that is could be because the variables are mixed categorical/binary/continuous.

10

1. CHALLENGES AND DATASETS

Even though it is interesting to see how well methods performed as a function of the clas-
sification techniques, the most interesting thing is to analyze the methods of prediction of the
BER and the methods of model selection, since this was the theme of the challenge.

We can roughly categorize the methods used as follows:

* Nested cross-validation loops. The entry who obtained the best average guess error
(Cawley and Talbot, 2007), with average guess error: 0.0034, used a rather sophisticated
cross-validation scheme. The hyperparameters were adjusted with a “virtual leave-one-
out” cross-validation (VLOO). For regularized least-square kernel classifiers (LS-SVMs,
kernel ridge regression, RLSC, Gaussian processes), it is possible to compute the leave-
one-out error without training several classifiers (each time leaving one example out).
Only one training with the entire training set and some inexpensive additional calcula-
tions are required. Gavin Cawley explored various loss-functions for the VLOO method
using LS-SVMs for classification. He selected the best loss function with an outer loop
of cross-validation (drawing 100 random 90%training-10%validation splits; we call this
100CV). After selecting his model, he re-estimated performance by 100CV using fresh
data splits. The entrant who obtained the second best average guess error (Reunanen,
2007a), average guess error: 0.0048) performed a similar type of cross-validation called
“cross-indexing”, which uses nested cross-validation loops. The BER guess was obtained
by the cross-validation performance in the outer loop. Nested cross-validation loops can
be expensive computationally, however, in the case of the use of VLOO, the computa-
tional increase is minimal. We note however that VLOO is not available for all methods.
Approximate formulas are available for SVMs (as used by Olivier Chapelle, average
guess error: 0.0137) and neural networks.

¢ Plain cross-validation. Many participants used plain cross-validation, with a preference
for 10-fold cross-validation. They chose their hyperparameters on the basis of the small-
est cross-validated BER. The same cross-validated BER (CV BER) was used to guess the
test BER, hoping that the bias introduced by using only 90% of the training data would
be compensated by the bias introduced by selecting the model having smallest CV BER.
This strategy seems to have been reasonable since the challenge winner (Lutz, 2006), av-
erage guess error: 0.0059) used it. He won because of his good BER performance. The
second best entrant (Cawley and Talbot, 2007) had better BER guesses (average guess
error: 0.0034). A few entrants took care of balancing the fraction of positive and nega-
tive examples in the data splits to reflect the proportions found in the entire training set —
stratified cross-validation (Dahinden, 2010, this volume).

¢ Other methods. A few entrants performed model selection or estimated the performance
on future data using training data, without reserving validation data or performing cross-
validation, which is possible for regularized and Bayesian methods not prone to overfit-
ting. This was used as a model selection strategy for the naive Bayes classifier (Boullé,
2007a). Radford Neal for his Bayesian Neural Network predicts the error rate using train-
ing data only, but this was not one of the best performing methods (average guess error:
0.0122). Other methods include the use of performance bounds for SVM model selection
like the Radius Margin bound (Olivier Chapelle). Bagging methods (including Random
Forests) use bootstrap resampling. The final model makes decisions according to a vote
of the models trained on the various bootstrap samples. The error rate of the model can be
estimated using the “out-of-bag” samples. This method was used by Nicolai Meinshausen
(average guess error: 0.0098). The least reliable method was to use the validation set of
the challenge to predict the test set performance. The best ranking participants did not
use this method.

11

GUYON SAFFARI DROR CAWLEY

1.5.3. Results of the Model Selection Game

Using models from the provided toolkit (CLOP, see Appendix), the best model selection game
participants (Escalante et al., 2009; Reunanen, 2007b) closely matched the performances of
the best entrants in the AL track using their own methods and considerably outperformed the
baseline performances provided by the organizers using CLOP models. This validates their
model selection techniques, which use efficient search algorithms and cross-validation to eval-
uate models.

All model selection methods rely on two basic elements: (1) a scoring function to evaluate
the models, and (2) a search algorithm to explore the space of all possible models. In the two
last challenges we organized (Guyon et al., 2005; Guyon et al., 2006b), the most successful
scoring functions were based on cross-validation; participants relying on the training set error
(eventually corrected by some complexity penalty terms) or on the validation set error overfitted
the training data. Conversely, cross-validation users could afford searching the model space
quite intensively without apparently incurring overfitting problems. Hence, the winners singled
themselves out by effectively searching model space. This may be achieved either by brute
force grid search using a computer cluster, or by some more refined search methods using a
variety of algorithmic advances or simple heuristics. We briefly describe a few.

The winner of the game, Juha Reunanen, proposed a new variant of cross-validation called
cross-indexing, which increases the accuracy of performance prediction in nested cross-validation
loops (Reunanen, 2007b). Closely matching the performances of the winner, Hugo Jair Es-
calante used a search technique biologically inspired called “particule swarm model selection”
(Escalante et al., 2009). In this method, each candidate model is represented as a particle in the
solution space; and by using a population of particles, as well as a fitness function, it emulate
the behavior of biological societies (swarm), which objective is to obtain common goals for the
entire population. Examples of this behavior on biological populations are bird flocking and fish
schooling. Also noteworthy is the method of Gavin Cawley (Cawley and Talbot, 2007a) who
won the “performance prediction challenge” and whose results have not been outperformed in
the game. He proposed the use of a Bayesian regularization at the second level of inference,
adding a regularization term to the model selection criterion corresponding to a prior over the
hyper-parameter values, where the additional regularization parameters are integrated out an-
alytically. Finally, new promising methods of multi-level optimization (Bennett et al., 2006;
Kunapuli et al., 2010, this volume) were proposed at the NIPS workshop where the results of
the game were discussed, but must be optimized before they can be applied to sizeable datasets
like the ones of the challenge.

The problem of selecting an optimum K in K-fold cross-validation has not been addressed.
K=10 seems to be the default value everyone uses.

1.5.4. Results of the ALvsPK challenge

In the Agnostic Learning vs. Prior Knowledge challenge (ALvsPK), the final ranking of sub-
missions was also based on the balanced error rate (BER) on the test set (the average of the
error rate for the positive class and the error rate for the negative class). The Area Under the
ROC Curve (AUC) was also computed, but not used for scoring. People scoring well with
the BER generally perform also well with the AUC, but the opposite is not necessarily true
since it is difficult to learn the correct bias when the two classes are unbalanced with respect
of number of examples. The top ranking participants did well with respect to both metrics,
but ranked in a slightly different order. To obtain the overall ranking we averaged the ranks
of participants in each track after normalizing by the number of entries. The number of sub-
missions was unlimited, but only the five last “complete” submissions for each entrant in either

12

1. CHALLENGES AND DATASETS

Table 1.2: PK better than AL comparison results

| ADA | GINA [HIVA [NOVA [SYLVA

Min PK BER 0.170 0.019 0.264 | 0.037 0.004
Min AL BER 0.166 0.033 0.271 0.046 0.006
Median PK BER 0.189 0.025 0.310 | 0.047 0.008
Median AL BER 0.195 0.066 0.306 | 0.081 0.015
Pval ranksum test 510831018 0.25 8106 10-18
Jorge Sueiras —
Juha Reunanen (Reunanen, 2007a) + +
Marc Boullé (Boullé, 2007b) + + — —
Roman Lutz (Lutz, 2006) +
Vladimir Nikulin (Nikulin, 2007) - + +
Vojtech Franc + +
CWW — —
Reference (gcc) (Cawley and Talbot, 2007b) + + —
Pvalue sign test 0.31 0.19 0.25 0.25 0.31

track were included in the final ranking. For the first few weeks of the challenge, the top of the
rankings were largely dominated by agnostic track (AL) submissions. However, the learning
curves for the agnostic learning and prior knowledge tracks eventually crossed for all datasets,
except for ADA. After approximately 150 days the PK performance asymptote was reached.
The asymptotic performances are reported at the top of Table 1.2. In contrast, in the ICNN-06
performance prediction challenge, using the same data as the AL track, the competitors attained
almost their best performance within about 60 days and kept improving only slightly afterward.

Figure 1.1, shows the distribution of the test BER for all entries. There were approximately
60% more submissions for the AL track than in the PK track. This indicates that the “prior
knowledge” track was harder to enter. However, the participants who did enter the PK track
performed significantly better on average than those who entered the AL track, on all
datasets except for HIVA. To quantify this observation we ran a Wilcoxon rank sum test on the
difference between the median values of the two tracks (Table 1.2). We also performed paired
comparisons for entrants who entered both tracks, using their last 5 submissions. In Table 1.2,
a “+” indicates that the entrant performed best in the PK track and a “—” indicates the opposite.
We see that the entrants who entered both tracks did not always succeed in obtaining better
results in the PK track. The p-values of the sign test do not reveal a significant dominance of
PK over AL or vice versa in that respect (all are between 0.25 and 0.5). However, for HIVA and
NOVA the participants who entered both tracks failed to get better results in the PK track. We
conclude that, while on average PK seems to win over AL, success is uneven and depends both
on the domain and on the individuals’ expertise.

Agnostic learning methods

The winner of the “agnostic learning” track is Roman Lutz, who also won the Performance
Prediction Challenge (IICNNO06) (Lutz, 2006), using boosting techniques. Gavin Cawley from
the organization team made a reference entry (not counting towards the competition) using
LSSVMs, which slightly outperforms that of Lutz. The improvements he made can partly be
attributed to the introduction of an ARD kernel, which automatically down-weighs the least
relevant features and to a Bayesian regularization at the second level of inference (Cawley and

13

GUYON SAFFARI DROR CAWLEY

Talbot, 2007b,a). The second best entrant is the Intel group, also using boosting methods (Tuv
et al., 2009). The next best ranking entrants include Juha Reunanen and Hugo Jair Escalante,
who have both been using CLOP models provided by the organizers and have proposed inno-
vative search strategies for model selection: Escalante is using a biologically inspired particle
swarm technique (Escalante et al., 2007, 2009) and Reunanen a cross-indexing method to make
cross-validation more computationally efficient (Reunanen, 2007a,b). Other top ranking partic-
ipants in the AL track include Vladimir Nikulin (Nikulin, 2007) and Jorg Wichard (Wichard,
2007) who both experimented with several ensemble methods, Erinija Pranckeviciene (Pranck-
eviciene et al., 2007; Pranckeviciene and Somorjai, 2010, this volume) who performed a study
of linear programming SVM methods, and Marc Boullé who introduced a new data grid method
(Boullé, 2007a, 2010, this volume). Mehreen Saeed (Saeed, 2010, this volume) achieved the
best result on NOVA with a hybrid approach using mixture models and neural networks. Eu-
gene Tuv In the following sections, we look into more details at the methods employed in the
“prior knowledge” track to outperform the results of the “agnostic track”.

Agnostic learning vs. prior knowledge: analysis per dataset
ADA: THE MARKETING APPLICATION

The task of ADA is to discover high revenue people from census data, presented in the form of
a two-class classification problem. The raw data from the census bureau is known as the Adult
database in the UCI machine-learning repository (Kohavi and Becker, 1994). The 14 original
attributes (features) represent age, workclass, education, marital status, occupation, native coun-
try, etc. and include continuous, binary and categorical features. The PK track had access to
the original features and their descriptions. The AL track had access to a preprocessed numeric
representation of the features, with a simple disjunctive coding of categorical variables, but the
identity of the features was not revealed. We expected that the participants of the AL vs. PK
challenge could gain in performance by optimizing the coding of the input features. Strategies
adopted by the participants included using a thermometer code for ordinal variables (Gavin
Cawley) and optimally grouping values for categorical variables (Marc Boull¢). Boullé also op-
timally discretized continuous variables, which make them suitable for a naive Bayes classifier
(Boullé, 2007a). However, the advantage of using prior knowledge for ADA was marginal. The
overall winner on ADA is in the agnostic track (Roman Lutz), and the entrants who entered both
tracks and performed better using prior knowledge do not have results statistically significantly
better. We conclude that optimally coding the variables may not be so crucial and that good
performance can be obtained with a simple coding and a state-of-the-art classifier.

GINA: THE HANDWRITING RECOGNITION APPLICATION

The task of GINA is handwritten digit recognition, the raw data is known as the MNIST dataset
(LeCun and Cortes, 1998). For the “agnostic learning” track we chose the problem of separat-
ing two-digit odd numbers from two-digit even numbers. Only the unit digit is informative for
this task, therefore at least 1/2 of the features are distracters. Additionally, the pixels that are
almost always blank were removed and the pixel order was randomized to hide the meaning
of the features. For the “prior knowledge” track, only the informative digit was provided in
the original pixel map representation. In the PK track the identities of the digits (0 to 9) were
provided for training, in addition to the binary target values (odd vs. even number). Since the
prior knowledge track data consists of pixel maps, we expected the participants in perform im-
age pre-processing steps such as noise filtering, smoothing, de-skewing, and feature extraction
(points, loops, corners) and/or use kernels or architectures exploiting geometric invariance by

14

1. CHALLENGES AND DATASETS

small translation, rotation, and other affine transformations, which have proved to work well on
this dataset (LeCun and Cortes, 1998). Yet, the participants in the PK track adopted very simple
strategies, not involving a lot of domain knowledge. Some just relied on the performance boost
obtained by the removal of the distracter features (Vladimir Nikulin, Marc Boullé, Juha Re-
unanen). Others exploited the knowledge of the individual class labels and created multi-class
of hierarchical classifiers (Vojtech Franc, Gavin Cawley). Only the reference entries of Gavin
Cawley (which obtained the best BER of 0.0192) included domain knowledge by using RBF
kernels with tunable receptive fields to smooth the pixel maps (Cawley and Talbot, 2007a). In
the future, it would be interesting to assess the methods of Simard et al (Simard et al., 2003)
on this data to see whether further improvements are obtained by exploiting geometrical invari-
ances. The agnostic track data was significantly harder to analyze because of the hidden class
heterogeneity and the presence of feature distracters. The best GINA final entry was therefore
on the PK track and all four ranked entrants who entered both tracks obtained better results in
the PK track. Further, the differences in performance are all statistically significant.

HIVA: THE DRUG DISCOVERY APPLICATION

The task of HIVA is to predict which compounds are active against the AIDS HIV infection.
The original data from the NCI (Collins, 1999) has 3 classes (active, moderately active, and
inactive). We brought it back to a two-class classification problem (active & moderately active
vs. inactive), but we provided the original labels for the “prior knowledge” track. The com-
pounds are represented by their 3d molecular structure for the “prior knowledge” track (in SD
format). For the “agnostic track” we represented the input data as a vector of 2000 sparse binary
variables. The variables represent properties of the molecule inferred from its structure by the
ChemTK software package (version 4.1.1, Sage Informatics LLC). The problem is therefore
to relate structure to activity (a QSAR — quantitative structure-activity relationship problem)
to screen new compounds before actually testing them (a HTS — high-throughput screening
problem). Note that in such applications the BER is not the best metric to assess performance
since the real goal is to identify correctly the compounds most likely to be effective (belonging
to the positive class). We resorted to using the BER to make comparisons easier across datasets.
The raw data was not supplied in a convenient feature representation, which made it impossi-
ble to enter the PK track using agnostic learning methods, using off-the-shelf machine learning
packages. The winner in HIVA (Chloé-Agathe Azencott of the Pierre Baldi Laboratory at UCI)
is a specialist in this kind of dataset, on which she is working towards her PhD (Azencott et al.,
2007; Azencott and Baldi, 2010, this volume). She devised her own set of low level features,
yielding a “molecular fingerprint” representation, which outperformed the ChemTK features
used on the agnostic track. Her winning entry has a test BER of 0.2693, which is significantly
better than the test BER of the best ranked AL entry of 0.2827 (standard error 0.0068). The
results on HIVA are quite interesting because most agnostic learning entrants did not even at-
tempt to enter the prior knowledge track and the entrants that did submit models for both tracks
failed to obtain better results in the PK track. One of them working in an institute of pharmacol-
ogy reported that too much domain knowledge is sometimes detrimental; experts in his institute
advised against using molecular fingerprints, which ended up as the winning technique.

NOVA: THE TEXT CLASSIFICATION APPLICATION

The data of NOVA come from the 20-Newsgroup dataset (Mitchell, 1999). Each text to classify
represents a message that was posted to one or several USENET newsgroups. The raw data
is provided in the form of text files for the “prior knowledge” track. The preprocessed data
for the “agnostic learning” track is a sparse binary representation using a bag-of-words with

15

GUYON SAFFARI DROR CAWLEY

a vocabulary of approximately 17000 words (the features are simply frequencies of words in
text). The original task is a 20-class classification problem but we grouped the classes into
two categories (politics and religion vs. others) to make it a two-class problem. The original
class labels were available for training in the PK track but not in the AL track. As the raw data
consist of texts of variable length it was not possible to enter the PK track for NOVA without
performing a significant pre-processing. All PK entrants in the NOVA track used a bag-of-
words representation, similar to the one provided in the agnostic track. Standard tricks were
used, including stemming. Gavin Cawley used the additional idea of correcting the emails with
an automated spell checker. No entrant who entered both tracks outperformed their AL entry
with their PK entry in their last ranked entries, including the winner! This is interesting because
the best PK entries made throughout the challenge significantly outperform the best AL entries
(BER difference of 0.0089 for an standard error of 0.0018), see also Figure 1.1. Hence in this
case, the PK entrants overfitted and were unable to select among their PK entries those,
which would perform best on test data. This is not so surprising because the validation set on
NOVA is quite small (175 examples). Even though the bag-of-words representation is known
to be state-of-the-art for this kind of applications, it would be interesting to compare it with
more sophisticated representations. To our knowledge, the best results on the 20 Newsgroup
data were obtained by the method of distributional clustering by Ron Bekkerman (Bekkerman
et al., 2003).

SYLVA: THE ECOLOGY APPLICATION

The task of SYLVA is to classify forest cover types. The forest cover type for 30 x 30 meter
cells was obtained from US Forest Service (USFS) Region 2 Resource Information System
(RIS) data (Blackard and Dean, 1998). We converted this into a two-class classification problem
(classifying Ponderosa pine vs. everything else). The input vector for the “agnostic learning”
track consists of 216 input variables. Each pattern is composed of 4 records: 2 true records
matching the target and 2 records picked at random. Thus 1/2 of the features are distracters.
The “prior knowledge” track data is identical to the “agnostic learning” track data, except that
the distracters are removed and the meaning of the features is revealed. For that track, the
identifiers in the original forest cover dataset are revealed for the training set. As the raw data
was already in a feature vector representation, this task was essentially testing the ability of
the participants in the AL track to perform well in the presence of distracter features. The PK
track winner (Roman Lutz) in his Doubleboost algorithm exploited the fact that each pattern
was made of two records of the same pattern to train a classifier with twice as many training
examples. Specifically, a new dataset was constructed by putting the second half of the data
(variables 55 to 108) below the first half (variables 1 to 54). The new dataset is of dimension 2n
times 54 (instead of n times 108). This new dataset is used for fitting the base learner (tree) of his
boosting algorithm. The output of the base learner is averaged over the two records belonging to
the same pattern. This strategy can be related to the neural network architectures using “shared
weights”, whereby at training time, the weights trained on parts of the pattern having similar
properties are constrained to be identical (LeCun and Cortes, 1998). This reduced the number
of free parameters of the classifier.

1.6. Conclusions

This paper presented the results of three competitions organized around the same datasets. The
challenge series was very successful in attracting a large number of participants who delivered
many interesting ways of approaching performance predictions.

16

1. CHALLENGES AND DATASETS

We observed that rather unsophisticated methods (e.g. simple 10-fold cross validation) did
well to predict performance. Nested cross-validation loops are advisable to gain extra predic-
tion accuracy. They come at little extra computational expense, if the inner loop uses virtual
leave-one-out. Successful model selection techniques include cross-validation and regulariza-
tion methods. Ensemble and Bayesian methods provide an efficient alternative to model se-
lection by constructing committees of classifiers. A number of sophisticated methods with
appealing theoretical motivations were proposed for the model selection special session, but the
authors did not compete in the challenge. We believe there is still a gap to be filled between
theory and practice in this game of performance prediction and model selection.

The Agnostic Learning vs. Prior Knowledge challenge (ALvsPK) compared the “agnostic
learning” (AL) approach putting all the effort on the classifier and the “prior knowledge” (PK)
approach capitalizing on human domain knowledge. For the first few months of the challenge,
the participants of the AL track led over the PK track, showing that the development of good
AL classifiers is considerably faster. As of March 1% 2007, PK was leading over AL on four out
of five datasets. We extended the challenge five more months, but few significant improvements
were made during that time period. On datasets not requiring real expert domain knowledge
(ADA, GINA, SYLVA), the participants entering both track obtained better results in the PK
track, using a special-purpose coding of the inputs and/or the outputs, exploiting the knowledge
of which features were uninformative, and using “shared weights” for redundant features. On
the datasets requiring most real expert domain knowledge (HIVA and NOVA), several entrants
failed to capitalize on prior knowledge. For both HIVA and NOVA, the winning data represen-
tation consisted of a high-dimensional vector of low level features (“molecular fingerprints” and
“bag-of-words”). From the analysis of this challenge, we conclude that agnostic learning meth-
ods are very powerful. They quickly yield (in 40 to 60 days) a level of performance close to the
best achievable performance. General-purpose techniques for exploiting prior knowledge in the
encoding of inputs or outputs or the design of the learning machine architecture (e.g. via shared
weights) may provide an additional performance boost, but exploiting real domain knowledge is
both difficult and time consuming. This fact seems to be a recurrent theme in machine learning
publications and further confirmation is provided by the results of our challenge.

We incorporated the best identified methods in our challenge toolkit, CLOP http://
clopinet.com/CLOP. The challenge web site remains open for post-challenge submis-
sions at http://www.agnostic.inf.ethz.ch/, where supplementary analyzes and
complete result tables are also made available.

Acknowledgments

We are very thankful to the institutions that originally provided the data. The organization of
this challenge was a team effort to which many have participated. We are particularly grateful
to Olivier Guyon (MisterP.net) our webmaster. Prof. Joachim Buhmann (ETH Zurich) who pro-
vided computer resources and all the advisors, beta-testers and sponsors are gratefully acknowl-
edged (see http://www.agnostic.inf.ethz.ch/credits.php for a full list). The
Challenge Learning Object Package (CLOP) is based on code to which many people have con-
tributed Weston et al. (2005); Saffari and Guyon (2006). This project has been supported by
the Pascal network of excellence funded by the European Commission and the National Sci-
ence Foundation under Grants NO. ECCS-0424142 and NO. ECCS-0736687. Any opinions,
findings, and conclusions or recommendations expressed in this material are those of the au-
thors and do not necessarily reflect the views of the National Science Foundation. Amir Saffari
acknowledges the support of the Austrian FFG project Outlier (820923) under the FIT-IT pro-
gram.

17

http://clopinet.com/CLOP
http://clopinet.com/CLOP
http://www.agnostic.inf.ethz.ch/
http://www.agnostic.inf.ethz.ch/credits.php

GUYON SAFFARI DROR CAWLEY

References

C.-A. Azencott and P. Baldi. Virtual high-throughput screening with two-dimensional kernels.
In I. Guyon, et al., editor, Hands on Pattern Recognition. Microtome, 2010, this volume.

C. A. Azencott, A. Ksikes, S. J. Swamidass, J. H. Chen, L. Ralaivola, and P. Baldi. One- to
four-dimensional kernels for virtual screening and the prediction of physical, chemical, and
biological properties. J. Chem. Inf. Model., 2007. Available at http://pubs3.acs.
org/acs/Jjournals/doilookup?in_doi=10.1021/ci600397p.

R. Bekkerman, R. El-Yaniv, N. Tishby, and Y. Winter. Distributional word clusters vs
words for text categorization. J. Machine Learning Research, 3, 2003. Available at cite-
seer.ist.psu.edu/article/bekkerman(02distributional.html. Code available at http: //www.
cs.technion.ac.il/~ronb/.

K. Bennett, J. Hu, X. Ji, G. Kunapuli, and J.-S. Pang. Model selection via
bilevel optimization. In Proc. IJCNNO6, pages 3588-3505, Vancouver, Canada, July
2006. INNS/IEEE. Available at http://clopinet.com/isabelle/Projects/
modelselect/Papers/Bennett_paper_IJCNNO06.pdf.

J. A. Blackard and D. J. Dean. Forest cover type, 1998. Available at http://kdd.ics.
uci.edu/databases/covertype/covertype.html.

M. Boullé. Compression-based averaging of Selective Naive Bayes classifiers. In I. Guyon
and A. Saffari, editors, JMLR, Special topic on model selection, volume 8, pages 1659—
1685, Jul 2007a. URL http://www. jmlr.org/papers/volume8/boullel7a/
boulleO7a.pdf.

M. Boullé. Report on preliminary experiments with data grid models in the agnostic learning vs.
prior knowledge challenge. In Proc. IJCNNO7, Orlando, Florida, Aug 2007b. INNS/IEEE.

M. Boullé. Data grid models for preparation and modeling in supervised learning. In
I. Guyon, et al., editor, Hands on Pattern Recognition. Microtome, 2010, this volume.

G. Cawley and N. Talbot. Preventing over-fitting during model selection via Bayesian regular-
isation of the hyper-parameters. In I. Guyon and A. Saffari, editors, JMLR, Special topic on
model selection, volume 8, pages 841-861, Apr 2007a. URL http://www. jmlr.org/
papers/volume8/cawley07a/cawley07a.pdf.

G. C. Cawley and N. L. C. Talbot. Agnostic learning versus prior knowledge in the design of
kernel machines. In Proc. IJCNNO7, Orlando, Florida, Aug 2007b. INNS/IEEE.

G. C. Cawley and N. L. C. Talbot. Preventing over-fitting during model selection using Bayesian
regularisation. In I. Guyon and A. Saffari, editors, JMLR, Special topic on model selec-
tion, volume 8, pages 841-861, April 2007. URL http://jmlr.csail.mit.edu/
papers/volume8/cawley07a/cawley07a.pdf.

J. M. Collins, Associate Director. The DTP AIDS antiviral screen program, 1999. Available at
http://dtp.nci.nih.gov/docs/aids/aids_data.html.

C. Dahinden. An improved Random Forests approach with application to the performance
prediction challenge datasets. In I. Guyon, et al., editor, Hands on Pattern Recognition.
Microtome, 2010, this volume.

18

http://pubs3.acs.org/acs/journals/doilookup?in_doi=10.1021/ci600397p
http://pubs3.acs.org/acs/journals/doilookup?in_doi=10.1021/ci600397p
http://www.cs.technion.ac.il/~ronb/
http://www.cs.technion.ac.il/~ronb/
http://clopinet.com/isabelle/Projects/modelselect/Papers/Bennett_paper_IJCNN06.pdf
http://clopinet.com/isabelle/Projects/modelselect/Papers/Bennett_paper_IJCNN06.pdf
http://kdd.ics.uci.edu/databases/covertype/covertype.html
http://kdd.ics.uci.edu/databases/covertype/covertype.html
http://www.jmlr.org/papers/volume8/boulle07a/boulle07a.pdf
http://www.jmlr.org/papers/volume8/boulle07a/boulle07a.pdf
http://www.jmlr.org/papers/volume8/cawley07a/cawley07a.pdf
http://www.jmlr.org/papers/volume8/cawley07a/cawley07a.pdf
http://jmlr.csail.mit.edu/papers/volume8/cawley07a/cawley07a.pdf
http://jmlr.csail.mit.edu/papers/volume8/cawley07a/cawley07a.pdf
http://dtp.nci.nih.gov/docs/aids/aids_data.html

1. CHALLENGES AND DATASETS

H. J. Escalante, M. Montes, and L. E. Sucar. PSMS for neural networks: Results on the IJCNN
2007 agnostic vs. prior knowledge challenge. In Proc. IJCNNO7, Orlando, Florida, Aug 2007.
INNS/IEEE.

H. J. Escalante, M. Montes, and L. E. Sucar. Particle swarm model selection. In I. Guyon and
A. Saffari, editors, JMLR, Special topic on model selection, volume 10, pages 405440,
Feb 2009. URL http://www.jmlr.org/papers/volumelO/escalante09a/
escalante(09a.pdf.

I. Guyon. Datasets for the agnostic learning vs. prior knowledge competition. Technical re-
port, Clopinet, 2005. Available at http://clopinet.com/isabelle/Projects/
agnostic/Dataset.pdf.

I. Guyon, S. Gunn, A. Ben-Hur, and G. Dror. Result analysis of the nips 2003 fea-
ture selection challenge. In Lawrence K. Saul, Yair Weiss, and Léon Bottou, edi-
tors, Advances in Neural Information Processing Systems 17, pages 545-552. MIT Press,
Cambridge, MA, 2005. Available at http://books.nips.cc/papers/files/
nipsl17/NIPS2004_0194.pdf.

I. Guyon, S. Gunn, M. Nikravesh, and L. Zadeh, Editors. Feature Extraction, Foundations and
Applications. Studies in Fuzziness and Soft Computing. Physica-Verlag, Springer, 2006a.

I. Guyon, A. Saffari, G. Dror, and J. Buhmann. Performance prediction challenge. In
IEEE/INNS conference IJCNN 2006, Vancouver, July 16-21 2006b.

I. Guyon, A. Saffari, G. Dror, and G. Cawley. Agnostic vs. prior knowledge challenge. In Proc.
IJCNNO7, Orlando, Florida, Aug 2007. INNS/IEEE.

I. Guyon, A. Saffari, G. Dror, and G. Cawley. Analysis of the [JCNN 2007 agnostic learning
vs. prior knowledge challenge. Neural Networks, 21(2-3):544-550, 2008.

R. Kohavi and B. Becker. The Adult database, 1994. Available at ftp://ftp.ics.uci.
edu/pub/machine-learning-databases/adult/.

G. Kunapuli, J.-S. Pang, and K. Bennett. Bilevel cross-validation-based model selection. In
I. Guyon, et al., editor, Hands on Pattern Recognition. Microtome, 2010, this volume.

Y. LeCun and C. Cortes. The MNIST database of handwritten digits, 1998. Available at http:
//yann.lecun.com/exdb/mnist/.

R. W. Lutz. Logitboost with trees applied to the WCCI 2006 performance prediction challenge
datasets. In Proc. IJCNNOG6, pages 29662969, Vancouver, Canada, July 2006. INNS/IEEE.

T. Mitchell. The 20 Newsgroup dataset, 1999. Available at http://kdd.ics.uci.edu/
databases/20newsgroups/20newsgroups.html.

V. Nikulin. Non-voting classification with random sets and boosting. In Proc. I/CNNO7 Data
Representation Discovery workshop, Orlando, Florida, Aug 2007.

E. Pranckeviciene and R. Somorjai. Liknon feature selection: Behind the scenes. In
L. Guyon, et al., editor, Hands on Pattern Recognition. Microtome, 2010, this volume.

E. Pranckeviciene, R. Somorjai, and M. N. Tran. Feature/model selection by the linear pro-
gramming SVM combined with state-of-art classifiers: What can we learn about the data. In
Proc. IJCNNO7, Orlando, Florida, Aug 2007. INNS/IEEE.

19

http://www.jmlr.org/papers/volume10/escalante09a/escalante09a.pdf
http://www.jmlr.org/papers/volume10/escalante09a/escalante09a.pdf
http://clopinet.com/isabelle/Projects/agnostic/Dataset.pdf
http://clopinet.com/isabelle/Projects/agnostic/Dataset.pdf
http://books.nips.cc/papers/files/nips17/NIPS2004_0194.pdf
http://books.nips.cc/papers/files/nips17/NIPS2004_0194.pdf
ftp://ftp.ics.uci.edu/pub/machine-learning-databases/adult/
ftp://ftp.ics.uci.edu/pub/machine-learning-databases/adult/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://kdd.ics.uci.edu/databases/20newsgroups/20newsgroups.html
http://kdd.ics.uci.edu/databases/20newsgroups/20newsgroups.html

GUYON SAFFARI DROR CAWLEY

J. Reunanen. Model selection and assessment using cross-indexing. In Proc. [JCNNO7, Or-
lando, Florida, Aug 2007a. INNS/IEEE.

J. Reunanen. Resubstitution error is useful for guiding feature selection. Unpublished techre-
port, 2007b.

M. Saeed. Hybrid learning using mixture models and artificial neural networks. In
I. Guyon, et al., editor, Hands on Pattern Recognition. Microtome, 2010, this volume.

A. Saffari and I. Guyon. Quick start guide for CLOP. Technical report, Graz University of Tech-
nology and Clopinet, May 2006. Available at http://ymer.org/research/files/
clop/QuickStartVl.0.pdf.

P. Simard, D. Steinkraus, and J. Platt. Best practice for convolutional neural networks applied to
visual document analysis. In International Conference on Document Analysis and Recogn-
tion (ICDAR), pages 958-962, Los Alamitos, 2003. IEEE Computer Society.

E. Tuv, A. Borisov, G. Runger, and K. Torkkola. Feature selection with ensembles, artificial
variables, and redundancy elimination. In I. Guyon and A. Saffari, editors, JMLR, Special
topic on model selection, volume 10, pages 1341-1366, Jul 2009. URL http://www.
jmlr.org/papers/volumelO/tuv09a/tuv09a.pdf.

J. Weston, A. Elisseeff, G. Bakir, and F. Sinz. The Spider machine learning toolbox. 2005.
Available at http://www.kyb.tuebingen.mpg.de/bs/people/spider/.

J. Wichard. Agnostic learning with ensembles of classifiers. In Proc. IJCNNO7, Orlando,
Florida, Aug 2007. INNS/IEEE.

Appendix: The Challenge Learning Object Package (CLOP)

The CLOP package can be downloaded from the web-site http://clopinet.com/CLOP.
The Spider package on top of which CLOP is built, uses Matlab® objects (The MathWorks,
http://www.mathworks.com/). Two simple abstractions are used:

* data: Data objects include two members X and Y, X being the input matrix (patterns in
lines and features in columns), Y being the target matrix (i.e. one column of %1 for binary
classification problems).

* algorithms: Algorithm objects representing learning machines (e.g. neural networks,
kernel methods, decision trees) or preprocessors (for feature construction, data normal-
ization or feature selection). They are constructed from a set of hyper-parameters and
have at least two methods: train and test. The train method adjusts the parameters of the
model. The test method processes data using a trained model.

For example, you can construct a data object D:
> D = data(X, Y);

The resulting object has 2 members: D.X and D.Y. Models are derived from the class
algorithm. They are constructed using a set of hyperparameters provided as a cell array of
strings, for instance:

> hyperparam = {’hl=vall’, ’'h2=val2’};
> model0 = algorithm(hyperparam);

20

http://ymer.org/research/files/clop/QuickStartV1.0.pdf
http://ymer.org/research/files/clop/QuickStartV1.0.pdf
http://www.jmlr.org/papers/volume10/tuv09a/tuv09a.pdf
http://www.jmlr.org/papers/volume10/tuv09a/tuv09a.pdf
http://www.kyb.tuebingen.mpg.de/bs/people/spider/
http://clopinet.com/CLOP
http://www.mathworks.com/

1. CHALLENGES AND DATASETS

In this way, hyperparameters can be provided in any order or omitted. Omitted hyperparam-
eters take default values.

To find out about the default values and allowed hyperparameter range, one can use the
“default” method:

> default (algorithm)
The constructed model mode10 can then be trained and tested:

> [Dout, modell] = train(modelO, Dtrain);
> Dout = test (modell, Dtest);

modell is a model object identical to model0, except that its parameters (some data
members) have been updated by training. Matlab uses the convention that the object of a method
is passed as first argument as a means to identify which overloaded method to call. Hence, the
“correct” train method for the class of model0 will be called. Since Matlab passes all
arguments by value, mode 10 remains unchanged. By calling the trained and untrained model
with the same name, the new model can overwrite the old one. Repeatedly calling the method
“train" on the same model may have different effects depending on the model.

To save the model is very simple since Matlab objects know how to save themselves:

> save (/' filename’, ’'modelname’);

This feature is very convenient to make results reproducible, particularly in the context of a
challenge.

The Spider (with some CLOP extensions) provides ways of building more complex “com-
pound” models from the basic algorithms with two abstractions:

* chain: A chain is a learning object (having a train and test method) constructed from an
array of learning objects. Each array member takes the output of the previous member
and feeds its outputs to the next member.

* ensemble: An ensemble is also a learning object constructed from an array of learning
objects. The trained learning machine performs a weighted sum of the predictions of the
array members.

A typical model chains modules for preprocessing, feature selection, classification, and
postprocessing.

Until December 1% 2006, the challenge participants had the opportunity to participate in a
model selection game using CLOP. For the purpose of the game, a valid model was defined as
a combination of learning objects from a predefined list (type whoisclop at the MATLAB
prompt to get a the full list of allowed CLOP learning objects; to check that a particular object
is a valid CLOP object, type isclop (object)).

A typical model may include some of the following modules: preprocessing, feature selec-
tion, classification, and postprocessing. Table 3 shows a list of the modules provided.

21

GUYON SAFFARI DROR CAWLEY

Table 1.3: CLOP modules provided for the model selection game.

Object name Description

Preprocessing

standardize Subtract feature mean and divide by stdev.
normalize Divide patterns by their Euclidean norm.
shift_n_scale | Offset and scale all values.
pc_extract Construct features from principal components.
subsample Take a subsample of training patterns.
Feature selection

s2n Signal-to-noise ratio filter method.
relief Relief filter method.

gs Gram-Schmidt orthogonalization forward selection.
rffs Random Forest feature selection.

svcrfe SVC-based recursive feature elimination.
Classifier

kridge Kernel ridge regression

naive naive Bayes classifier

gentleboost Regularized boosting

neural Two layer neural network

rf Random Forest (ensemble of trees)

svc Support vector classifier

Postprocessing

bias \ Post-fitting of the bias value.

22

Journal of Machine Learning Research 11(Jan):61-87, 2010 Submitted 11/09; Published 1/10

Chapter 2

Model Selection: Beyond the Bayesian/Frequentist Divide

Isabelle Guyon GUYON @ CLOPINET.COM
ClopiNet

955 Creston Road

Berkeley, CA 94708, USA

Amir Saffari SAFFARI@ICG.TUGRAZ.AT
Institute for Computer Graphics and Vision

Graz University of Technology

Inffeldgasse 16

A-8010 Graz, Austria

Gideon Dror GIDEON @MTA.AC.IL
The Academic College of Tel-Aviv-Yaffo

2 Rabeinu Yerucham St., Jaffa

Tel-Aviv 61083, Israel

Gavin Cawley GCC@CMP.UEA.AC.UK
School of Computing Sciences

University of East Anglia

Norwich, NR4 7TJ, U.K.

Editor: Lawrence Saul

Abstract

The principle of parsimony also known as “Ockham’s razor” has inspired many theories of
model selection. Yet such theories, all making arguments in favor of parsimony, are based on
very different premises and have developed distinct methodologies to derive algorithms. We
have organized challenges and edited a special issue of JMLR and several conference proceed-
ings around the theme of model selection. In this editorial, we revisit the problem of avoiding
overfitting in light of the latest results. We note the remarkable convergence of theories as dif-
ferent as Bayesian theory, Minimum Description Length, bias/variance tradeoff, Structural Risk
Minimization, and regularization, in some approaches. We also present new and interesting ex-
amples of the complementarity of theories leading to hybrid algorithms, neither frequentist, nor
Bayesian, or perhaps both frequentist and Bayesian!

Keywords: model selection, ensemble methods, multilevel inference, multilevel optimization,
performance prediction, bias-variance tradeoff, Bayesian priors, structural risk minimization,
guaranteed risk minimization, over-fitting, regularization, minimum description length

2.1. Introduction

The problem of learning is often decomposed into the tasks of fitting parameters to some train-
ing data, and then selecting the best model using heuristic or principled methods, collectively
referred to as model selection methods. Model selection methods range from simple yet pow-
erful cross-validation based methods to the optimization of cost functions penalized for model
complexity, derived from performance bounds or Bayesian priors.

© 2010 I. Guyon, A. Saffari, G. Dror & G. Cawley.

GUYON SAFFARI DROR CAWLEY

This paper is not intended as a general review of the state-of-the-art in model selection
nor a tutorial; instead it is a synthesis of the collection of papers that we have assembled. It
also provides a unifying perspective on Bayesian and frequentist methodologies used in various
model selection methods. We highlight a new trend in research on model selection that blends
these approaches.

The reader is expected to have some basic knowledge of familiar learning machines (linear
models, neural networks, tree classifiers and kernel methods) and elementary notions of learn-
ing theory (bias/variance tradeoff, model capacity or complexity, performance bounds). Novice
readers are directed to the companion paper (Guyon, 2009), which reviews basic learning ma-
chines, common model selection techniques, and provides elements of learning theory.

When we started organizing workshops and competitions around the problem of model se-
lection (of which this collection of papers is the product), both theoreticians and practitioners
welcomed us with some scepticism; model selection being often viewed as somewhat “old hat”.
Some think that the problem is solved, others that it is not a problem at all! For Bayesian theo-
reticians, the problem of model selection is circumvented by averaging all models over the pos-
terior distribution. For risk minimization theoreticians (called “frequentists” by the Bayesians)
the problem is solved by minimizing performance bounds. For practitioners, the problem is
solved using cross-validation. However, looking more closely, most theoretically grounded
methods of solving or circumventing model selection have at least one hyper-parameter left
somewhere, which ends up being optimized by cross-validation. Cross-validation seems to be
the universally accepted ultimate remedy. But it has its dark sides: (a) there is no consensus
on how to choose the fraction of examples reserved training and for validation; (b) the overall
learning problem may be prone to over-fitting the cross-validation error (Cawley and Talbot,
2009). Therefore, from our point of view, the problem of optimally dividing the learning prob-
lem into multiple levels of inference and optimally allocating training data to these various
levels remains unsolved, motivating our efforts. From the novel contributions we have gath-
ered, we are pleased to see that researchers are going beyond the usual Bayesian/frequentist
divide to provide new creative solutions to those problems: we see the emergence of multi-level
optimization methods, which are both Bayesian and frequentist. How can that be? Read on!

After explaining in Section 2.2 our notational conventions, we briefly review a range of
different Bayesian and frequentist approaches to model selection in Section 2.3, which we then
unify in Section 2.4 under the framework of multi-level optimization. Section 2.5 then presents
the advances made by the authors of papers that we have edited. In Section 2.6, we open a
discussion on advanced topics and open problems. To facilitate reading, a glossary is appended;
throughout the paper, words found in the glossary are indicated in boldface.

2.2. Notations and Conventions

In its broadest sense, model selection designates an ensemble of techniques used to select a
model, that best explains some data or phenomena, or best predicts future data, observations or
the consequences of actions. This broad definition encompasses both scientific and statistical
modeling. In this paper, we address only the problem of statistical modeling and are mostly
concerned with supervised learning from independently and identically distributed (i.i.d.)
data. Extensions to unsupervised learning and non i.i.d. cases will be discussed in Section 2.6.

The goal of supervised learning is to predict a target variable y € ¢/, which may be con-
tinuous (regression) or categorical or binary (classification). The predictions are made us-
ing observations from a domain 2", often a vectorial space of dimension n, the number of
features. The data pairs {@,y} are independently and identically distributed according to an
unknown (but fixed) distribution P(x,y) . A number m of pairs drawn from that distribution

24

2. MODEL SELECTION: BEYOND THE BAYESIAN/FREQUENTIST DIVIDE

are given, forming the training data D = {(x¢,),k = 1,...m}. We will denote by X = [x;],
k=1,...m,i =1,...n, the matrix of dimensions (m,n) whose rows are the training patterns and
whose columns are the features. Finally, we denote by y the column vector of dimensions (m, 1)
containing the target values yy.

There are several formulations of the supervised learning problem:

¢ Function approximation (induction) methods seek a function f (called model or learn-
ing machine) belonging to a model class .#, which minimizes a specified risk func-
tional (or maximizes a certain utility). The goal is to minimize an expected risk R[f] =
[Z(f(x),y) dP(x,y), also called generalization error, where £ (f(x),y) is a loss func-
tion (often a negative log likelihood) measuring the discrepancy between f(x) and y.
Since P(,y) is unknown, only estimates of R[f] can be computed, which we call evalua-
tion functions or estimators. Function approximation methods differ in the choice of eval-
uation function and optimization algorithm and include risk minimization, PAC leaning,
maximum likelihood optimization, and MAP learning.

* Bayesian and ensemble methods make predictions according to model averages that
are convex combinations of models f € .%, that is, which belong to the convex closure
of the model class .#*. Such methods differ in the type of model averaging performed.
Bayesian learning methods approximate Ey¢(y[z) = [c 7 f(2) dP(f), an expectation
taken over a class of models .%#, using an unknown probability distribution P(f) over the
models. Starting from a “prior”, our knowledge of this distribution is refined into a “pos-
terior” when we see some data. Bagging ensemble methods approximate Ep(f(x,D)),
where f(x,D) is a function from the model class .7, trained with m examples and Ep(-)
is the mathematical expectation over all training sets of size m. The key point in these
methods is to generate a diverse set of functions, each providing a different perspective
over the problem at hand, the ensemble thus forming a consensus view.

* Transduction methods make direct predictions of y given « and X, bypassing the mod-
eling step. We do not address such methods in this paper.

The desired properties of the chosen predictor include: good generalization performance,
fast training/prediction, and ease of interpretation of the predictions. Even though all of these
aspects are important in practice, we will essentially focus on the first aspect: obtaining the
best possible generalization performance. Some of the other aspects of model selection will be
discussed in Section 2.6.

The parametrization of f differentiates the problem of model selection from the general
machine learning problem. Instead of parameterizing f with one set of parameters, the model
selection framework distinguishes between parameters and hyper-parameters. We adopt the
simplified notation f(x; e, 0) for a model of parameters « and hyper-parameters 6. It should be
understood that different models may be parameterized differently. Hence by f(x;a8) we re-
ally mean f(x;(0),0) or fo(x;). For instance, for a linear model f(z,w) = w’z, o = w;
for a kernel method f(x,a) = Y, 04K (x,x;), @ = [0f]. The hyper-parameters may include
indicators of presence or absence of features, choice of preprocessing methods,, choice of algo-
rithm or model sub-class (e.g., linear models, neural networks, kernel methods, etc.), algorithm
or model sub-class parameters (e.g., number of layers and units per layer in a neural network,
maximum degree of a polynomial, bandwidth of a kernel), choice of post-processing, etc. We
also refer to the parameters of the prior P(f) in Bayesian/MAP learning and the parameters of
the regularizer Q[f] in risk minimization as hyper-parameters even if the resulting predictor
is not an explicit function of those parameters, because they are used in the process of learning.

25

GUYON SAFFARI DROR CAWLEY

In what follows, we relate the problem of model selection to that of hyper-parameter selection,
taken in is broadest sense and encompassing all the cases mentioned above.

We refer to the adjustment of the model parameters « as the first level of inference. When
data are split in several subsets for the purpose of training and evaluating models, we call m,
the number of training examples used to adjust cv. If the hyper-parameters 6 are adjusted from
a subset of data of size m,,, we call the examples used to adjust them at this second level
of inference the “validation sample”. Finally we call m,, the number of test examples used
to evaluate the final model. The corresponding empirical estimates of the expected risk R[f],
denoted Ry+[f], Rvalf], and R [f], will be called respectively training error, validation error,
and test error.

2.3. The Many Faces of Model Selection

In this section, we track model selection from various angles to finally reduce it to the unified
view of multilevel inference.

2.3.1. Is Model Selection ‘“Really’’ a Problem?

Itis legitimate to first question whether the distinction between parameters and hyper-parameters
is relevant. Splitting the learning problem into two levels of inference may be convenient for
conducting experiments. For example, combinations of preprocessing, feature selection, and
post-processing are easily performed by fixing € and training o with off-the-shelf programs.
But, the distinction between parameters and hyper-parameters is more fundamental. For in-
stance, in the model class of kernel methods f(x) = Y, oK (x,x; 0), why couldn’t we treat
both ¢ and @ as regular parameters?

One common argument is that, for fixed values of @, the problem of learning o can be
formulated as a convex optimization problem, with a single unique solution, for which powerful
mathematical programming packages are available, while the overall optimization of @ and
6 in non-convex. Another compelling argument is that, splitting the learning problem into
several levels might also benefit to the performance of the learning machine by “alleviating” (but
not eliminating) the problem of over-fitting. Consider for example the Gaussian redial basis
function kernel K (z,z; 8) = exp(— ||z — x¢||>/62). The function f(x) = Y | 4K (x, z;0)
is a universal approximator if 6 is let to vary and if the sum runs over the training examples. If
both o and 6 are optimized simultaneously, solutions with a small value of 82 might be picked,
having zero training error but possibly very poor generalization performance. The model class
Z to which f belongs has infinite capacity C(.%). In contrast, for a fixed value of the hyper-
parameter 6°, the model f(x) = Y}' | ouK(x,x;0°) is linear in its parameters oy and has
a finite capacity, bounded by m. In addition, the capacity of f(x) = Y/, afK(x,x(;0) of
parameter 6 for fixed values o and xj is very low (to see that, note that very few examples
can be learned without error by just varying the kernel width, given fixed vectors x; and fixed
parameters o). Hence, using multiple levels of inference may reduce over-fitting, while still
searching for solutions in a model class of universal approximators.

This last idea has been taken one step further in the method of structural risk minimization
(Vapnik, 1979), by introducing new hyper-parameters in learning problems, which initially did
not have any. Consider for instance the class of linear models f(x) = Y}, wix;. It is possible
to introduce hyper-parameters by imposing a structure in parameter space. A classical example
is the structure ||w||?> < A, where ||w|| denotes the Euclidean norm and A is a positive hyper-
parameter. For increasing values of A the space of parameters is organized in nested subsets.
Vapnik (1998) proves for Support Vector Machines (SVM) and Bartlett (1997) for neural net-

26

2. MODEL SELECTION: BEYOND THE BAYESIAN/FREQUENTIST DIVIDE

works that tighter performance bounds are obtained by increasing A. The newly introduced pa-
rameter allows us to monitor the bias/variance tradeoff. Using a Lagrange multiplier, the prob-
lem may be replaced by that of minimizing a regularized risk functional R,.; = Ry, + ||w)||?,
Y > 0, where the training loss function is the so-called “hinge loss” (see e.g., Hastie et al.,
2000). The same regularizer ||w]||? is used in ridge regression (Hoerl, 1962), “weight decay”
neural networks (Werbos, 1988), regularized radial-basis function networks (Poggio and Girosi,
1990), Gaussian processes (MacKay, 1992), together with the square loss function. Instead of
the Euclidean norm or 2-norm, the 1-norm regularizer |w||; =Y |w;| is used in LASSO (Tib-
shirani, 1994) and 1-norm versions of SVMs (see e.g., Zhu et al., 2003), logistic regression
(Friedman et al., 2009), and Boosting (Rosset et al., 2004). Weston et al. (2003) have proposed
a 0-norm regularizer ||w||o = ¥;1(w;), where 1(x) = 1, if x # 0 and O otherwise.

Interestingly, each method stems from a different theoretical justification (some are Bayesian,
some are frequentist and some a a little bit of both like PAC-Bayesian bounds, see, for exam-
ple, Seeger, 2003, for a review), showing a beautiful example of theory convergence (Guyon,
2009). Either way, for a fixed value of the hyper-parameter A or y the complexity of the learning
problem is lower than that of the original problem. We can optimize A or ¥ at a second level of
inference, for instance by cross-validation.

2.3.2. Bayesian Model Selection

In the Bayesian framework, there is no model selection per se, since learning does not involve
searching for an optimum function, but averaging over a posterior distribution. For example, if
the model class .# consists of models f(x; c, @), the Bayesian assumption is that the parameters
o and hyper-parameters 6 of the model used to generate the data are drawn from a prior P(c, 8).
After observing some data D the predictions should be made according to:

Eqo(y|lz,D) = //f(a:;a,e) P(a,0|D) do d6

Hence there is no selection of a single model, but a summation over models in the model class
F, weighed by P(cx,0|D). The problem is to integrate over P(cx,0|D).! A two-level decom-
position can be made by factorizing P(cx,6|D) as P(,0|D) = P(«|0,D)P(6|D):

Eao(y|z,D) = / (/ f(2;,0)P(6,D) da) P(6|D) d6 . @1

Bayesian model selection decomposes the prior P(cx,) into parameter prior P(cx|6) and
a “hyper-prior” P(8). In MAP learning, the type-II likelihood (also called the “evidence™)
P(D|0) =Y, P(D|c,0)P(x|0) is maximized with respect to the hyper-parameters 6 (therefore
assuming a flat prior for 8), while the “regular” parameters « are obtained by maximizing the
posterior a* = argmax,, P(«|@,D) = argmax,, P(D|c,0)P(|6).

2.3.3. Frequentist Model Selection

While Bayesians view probabilities as being realized in the idea of “prior” and “posterior”
knowledge of distributions, frequentists define probability in terms of frequencies of occurrence
of events. In this section, the “frequentist” approach is equated with risk minimization.

1. The calculation of the integral in closed form may be impossible to carry out; in this case, variational approxima-
tions are made or numerical simulations are performed, sampling from P(c,0|D), and replacing the integral by
the summation over a finite number of models.

2. In some Bayesian formulations of multi-layer Perceptrons, the evidence framework maximizes over 6 but
marginalises over the weights, rather than maximizing, so in this case the MAP can apply to the parameters or
the hyper-parameters or both.

27

GUYON SAFFARI DROR CAWLEY

There are obvious ties between the problem of model selection and that of performance
prediction. Performance prediction is the problem of estimating the expected risk or general-
ization error R[f]. Model selection is the problem of adjusting the capacity or complexity of
the models to the available amount of training data to avoid either under-fitting or over-fitting.
Solving the performance prediction problem would also solve the model selection problem, but
model selection is an easier problem. If we find an ordering index r[f] such that for all pairs of
functions r[f1] < r[f2] = R[f1] < R[f2], then the index allows us to correctly carry out model
selection. Theoretical performance bounds providing a guaranteed risk have been proposed as
ranking indices (Vapnik, 1998). Arguably, the tightness of the bound is of secondary impor-
tance in obtaining a good ranking index. Bounds of the form r[f] = R;.[f] + €(C/m,,), where C
characterizes the capacity or complexity of the model class, penalizes complex models, but the
penalty vanishes as m;, — co. Some learning algorithms, for example, SVMs (Boser et al., 1992)
or boosting (Freund and Schapire, 1996), optimize a guaranteed risk rather than the empirical
risk R[], and therefore provide some guarantee of good generalization. Algorithms derived
in this way have an embedded model selection mechanism. Other closely related penalty-based
methods include Bayesian MAP learning and regularization.

Many models (and particularly compound models including feature selection, preprocess-
ing, learning machine, and post-processing) are not associated with known performance bounds.
Common practice among frequentists is to split available training data into m;, training exam-
ples to adjust parameters and m,,, validation examples to adjust hyper-parameters. In an effort
to reduce variance, the validation error R,,[f] may be averaged over many data splits, leading
to a cross-validation (CV) estimator Rcy [f]. The most widely used CV method is K-fold cross-
validation. Tt consists in partitioning training data into K ~ (my, + m,,)/my,, disjoint subsets
of roughly equal sizes (up to rounding errors), each corresponding to one validation set (the
complement being used as training set). In stratified cross-validation, the class proportions of
the full data sets are respected in all subsets. The variance of the results may be reduced by
performing Q times K-fold cross-validation and averaging the results of the Q runs. Another
popular method consists in holding out a single example at a time for validation purposes. The
resulting cross-validation error is referred to as “leave-one-out” error Rppo[f]. Some prelimi-
nary study design is necessary to determine the sufficient amount of test data to obtain a good
estimate of the generalization error (Langford, 2005), the sufficient amount of training data to
attain desired generalization performances, and an adequate split of the training data between
training and validation set. See Guyon (2009) for a discussion of these issues.

2.4. Multi-level Inference: A Unifying View of Model Selection

What is common among the various views of model selection is the idea of multiple levels of
inference, each level corresponding to one set of parameters or hyper-parameters. Consider
a two-level case for a model class f(x;,0) parameterized by one set of parameters o and
one set of hyper-parameters 8. From the frequentist (risk minimization) point of view, instead
of jointly optimizing a risk functional with respect to all parameters @ and 8, one creates a
hierarchy of optimization problems:>

= argminRy[f*, D], suchthat f* = argminR,[f,D] (2.2)
o o

where R; and R, are first and second level risk functionals.

3. It would be more correct if the argmin was assigned to parameters not functions, since the search domain is over
parameters, and write 8" = argming Rz [f*,D] , such that o* = argming, R;[f, D], f* = f(2, a™), but we adopt
a shorthand to emphasize the similarities between the frequentist and Bayesian approaches.

28

2. MODEL SELECTION: BEYOND THE BAYESIAN/FREQUENTIST DIVIDE

From the Bayesian point of view, the goal is to estimate the integral of Equation (2.1). There
are striking similarities between the two approaches. To make the similarity more obvious, we
can rewrite Equation (2.1) to make it look more like Equation (2.2), using the notation f** for
Ea.B(y|m’D):

= /f* e ® 40 | suchthat f*= /f e R de (2.3)

where R = —InP(«|0,D) and R, = —1InP(6|D). Note that in Bayesian multi-level inference
/¥ and f** do not belong to .% but to .#*, the closure of .% under convex combinations.

More generally, we define a multi-level inference problem as a learning problem organized
into a hierarchy of learning problems. Formally, consider a machine learning toolkit which in-
cludes a choice of learning machines <7 [%, R], where % is a model space of functions f(x;8),
of parameters 6 and R is an evaluation function (e.g., a risk functional or a negative log pos-
terior). We think of /[, R] not as a procedure, but as an “object”, in the sense of object
oriented programming, equipped with a method “train”, which processes data according to a
training algorithm:*

= train(«/[%4,R,),D); 2.4

This framework embodies the second level of inference of both Equations (2.2) and (2.3).
The solution f** belongs to Z*, the convex closure of #. To implement the first level of
inference, we will consider that Z is itself a learning machine and not just a model space. Its
model space .% includes functions f(x; 0,) of variable parameters o (0 is fixed), which are
adjusted by the “train” method of % :

[=train(B[.F,R],D); (2.5)

The solution f* belongs to .%*, the convex closure of setF. The method “train” of .o
should call the method “train” of 4 as a subroutine, because of the nested nature of the learning
problems of Equations (2.2) and (2.3). Notice that it is possible that different subsets of the data
D are used at the different levels of inference.

We easily see two obvious extensions:

(1) Multi-level inference: Equations (2.4) and (2.5) are formally equivalent, so this formalism
can be extended to more than two levels of inference.

(ii) Ensemble methods: The method “train” returns either a single model or a linear combi-
nation of models, so the formalism can include all ensemble methods.

We propose in the next section a new classification of multi-level inference methods, orthog-
onal to the classical Bayesian versus frequentist divide, referring to the way in which data are
processed rather than the means by which they are processed.

2.5. Advances in Multi-level Inference

We dedicate this section to reviewing the methods proposed in the collection of papers that
we have edited. We categorize multi-level inference modules, each implementing one level
of inference, into filter, wrapper, and embedded methods, borrowing from the conventional
classification of feature selection methods (Kohavi and John, 1997; Blum and Langley, 1997;
Guyon et al., 2006a). Filters are methods for narrowing down the model space, without training

4. We adopt a Matlab-style notation: the first argument is the object of which the function is a method; the function
“train” is overloaded, there is one for each algorithm. The notations are inspired and adapted from the conventions
of the Spider package and the CLOP packages (Saffari and Guyon, 2006).

29

GUYON SAFFARI DROR CAWLEY

the learning machine. Such methods include preprocessing, feature construction, kernel design,
architecture design, choice of prior or regularizers, choice of a noise model, and filter methods
for feature selection. They constitute the highest level of inference®. Wrapper methods consider
the learning machine as a black-box capable of learning from examples and making predictions
once trained. They operate with a search algorithm in hyper-parameter space (for example grid
search or stochastic search) and an evaluation function assessing the trained learning machine
performances (for example the cross-validation error or the Bayesian evidence). They are the
middle-ware of multi-level inference. Embedded methods are similar to wrappers, but they
exploit the knowledge of the learning machine algorithm to make the search more efficient and
eventually jointly optimize parameters and hyper-parameters, using multi-level optimization
algorithms. They are usually used at the lowest level of inference.

2.5.1. Filters

Filter methods include a broad class of techniques aiming to reduce the model space .% prior
to training the learning machine. Such techniques may use “prior knowledge” or “domain
knowledge”, data from prior studies or from R&R (repeatability and reproducibility) studies,
and even the training data themselves. But they do not produce the final model used to make
predictions. Several examples of filter methods are found in the collection of papers we have
edited:

Preprocessing and feature construction. An important part of machine learning is to find a
good data representation, but choosing an appropriate data representation is very domain
dependent. In benchmark experiments, it has often been found that generating a large
number of low-level features yields better result than hand-crafting a few features incor-
porating a lot of expert knowledge (Guyon et al., 2007). The feature set can then be
pruned by feature selection. In the challenges we have organized (Clopinet, 2004-2009)
the data were generally already preprocessed to facilitate the work of the participants.
However, additional normalizations, space dimensionality reduction and discretization
were often performed by the participants. Of all space dimensionality reduction meth-
ods Principal Component Analysis (PCA) remains the most widely used. Several top-
ranking participants to challenges we organized used PCA, including Neal and Zhang
(2006), winners of the NIPS 2003 feature selection challenge, and Lutz (2006), winner
of the WCCI 2006 performance prediction challenge. Clustering is also a popular pre-
processing method of dimensionality reduction, championed by Saeed (2009) who used
a Bernoulli mixture model as an input to an artificial neural network. In his paper on data
grid models Boullé (2009) proposes a new method of data discretization. It can be used
directly as part of a learning machine based on data grids (stepwise constant predictors)
or as a preprocessing to other learning machines, such as the Naive Bayes classifier. Of
particular interest in this paper is the use of data dependent priors.

Designing kernels and model architectures. Special purpose neural network architectures im-
plementing the idea of “weight sharing” such as Time Delay Neural Networks (Waibel,
1988) or two-dimensional convolutional networks (LeCun et al., 1989) have proved to be
very effective in speech and image processing. More recently a wide variety of special
purpose kernels have been proposed to incorporate domain knowledge in kernel learning
algorithms. Examples include kernels invariant under various transforms (Simard et al.,
1993; Pozdnoukhov and Bengio, 2006), string matching kernels (Watkins, 2000), and

5. Preprocessing is often thought of as a “low-level” operation. However, with respect to model selection, the selec-
tion of preprocessing happens generally in the “outer loop” of selection, hence it is at the highest level.

30

2. MODEL SELECTION: BEYOND THE BAYESIAN/FREQUENTIST DIVIDE

other sequence and tree kernels (Vishwanathan and Smola, 2003). Along these lines, in
our collection of papers, Chloé Agathe Azencott and Pierre Baldi have proposed two-
dimensional kernels for high-thoughput screening (Azencott and Baldi, 2009). Design
effort has also be put into general purpose kernels. For instance, in the paper of Adankon
and Cheriet (2009) , the SVM regularization hyper-parameter C (box-constraint) is incor-
porated in the kernel function. This facilitates the task of multi-level inference algorithms.

Defining regularizers or priors. Designing priors P(f) or regularizers Q[f] or structuring
parameter space into parameters and several levels of hyper-parameters can also be thought
of as a filter method. Most priors commonly used do not embed domain knowledge, they
just enforce Ockham’s razor by favoring simple (smooth) functions or eliminating irrele-
vant features. Priors are also often chosen out of convenience to facilitate the closed-form
calculation of Bayesian integrals (for instance the use of so-called “conjugate priors”, see
e.g., Neal and Zhang, 2006). The 2-norm regularizer Q[f] = || f||%, for kernel ridge re-
gression, Support Vector Machines (SVM) and Least-Square Support Vector Machines
(LSSVM) have been applied with success by many top-ranking participants of the chal-
lenges we organized. Gavin Cawley was co-winner of the WCCI 2006 performance pre-
diction challenge using LSSVMs (Cawley, 2006). Another very successful regularizer
is the Automatic Relevance Determination (ARD) prior. This regularizer was used in
the winning entry of Radford Neal in the NIPS 2003 feature selection challenge (Neal
and Zhang, 2006). Gavin Cawley also made top ranking reference entries in the [JCNN
2007 ALvsPK challenge (Cawley and Talbot, 2007b) using a similar ARD prior. For
linear models, the 1-norm regularizer ||w|| is also popular (see e.g., Pranckeviciene and
Somorjai, 2009), but this has not been quite as successful in challenges as the 2-norm
regularizer or the ARD prior.

Noise modeling. While the prior (or the regularizer) embeds our prior or domain knowledge
of the model class, the likelihood (or the loss function) embeds our prior knowledge of
the noise model on the predicted variable y. In regression, the square loss corresponds
to Gaussian noise model, but other choices are possible. For instance, recently, Gavin
Cawley and Nicola Talbot implemented Poisson regression for kernel machines (Cawley
et al., 2007). For classification, the many loss functions proposed do not necessarily
correspond to a noise model, they are often just bounding the 0/1 loss and are used for
computational convenience. In the Bayesian framework, an sigmoidal function is often
used (like the logistic or probit functions) to map the output of a discriminant function
f (@) to probabilities pr. Assuming target values y; € {0,1}, the likelihood ITypy* (1 —
pr) ! 7% corresponds to the cross-entropy cost function ¥ vx In px + (1 —yi) In(1—pg). A
clever piece-wise S-shaped function, flat on the asymptotes, was used in Chu et al. (2006)
to implement sparsity for a Bayesian SVM algorithm. Noise modeling is not limited to
noise models for the target y, it also concerns modeling noise on the input variables
x. Many authors have incorporated noise models on x as part of the kernel design, for
example, by enforcing invariance (Simard et al., 1993; Pozdnoukhov and Bengio, 2006).
A simple but effective means of using a noise model is to generate additional training data
by distorting given training examples. Additional “unsupervised” data is often useful to
fit a noise model on the input variables . Repeatability and reproducibility (R&R) studies
may also provide data to fit a noise model.

Feature selection filters. Feature selection, as a filter method, allows us to reduce the dimen-
sionality of the feature space, to ease the computations performed by learning machines.
This is often a necessary step for computationally expensive algorithms such as neural

31

GUYON SAFFARI DROR CAWLEY

networks. Radford Neal for instance, used filters based on univariate statistical tests to
prune the feature space before applying his Bayesian neural network algorithm (Neal and
Zhang, 2006). Univariate filters were also widely used in the KDD cup 2009, which
involved classification tasks on a very large database, to cut down computations (Guyon
et al., 2009b). Feature selection filters are not limited to univariate filters. Markov blanket
methods, for instance, provide powerful feature selection filters (Aliferis et al., 2003). A
review of filters for feature selection can be found in Guyon et al. (2006a, Chapter 3).

2.5.2. Wrappers

Wrapper methods consider learning machines as black boxes capable of internally adjusting
their parameters «¢ given some data D and some hyper-parameter values 6. No knowledge
either of the architecture, of the learning machines, or of their learning algorithm should be re-
quired to use a wrapper. Wrappers are applicable to selecting a classifier from amongst a finite
set of learning machines (6 is then a discrete index), or an infinite set (for continuous values of
6). Wrappers can also be used to build ensembles of learning machines, including Bayesian en-
sembles. Wrappers use a search algorithm or a sampling algorithm to explore hyper-parameter
space and an evaluation function (arisk functional Rp[f(8)], a posterior probability P(f(8)|D),
or any model selection index r[f(0)]) to assess the performance of the sample of trained learn-
ing machines , and, either select one single best machine or create an ensemble of machine
voting to make predictions.

Search and sampling algorithms. Because the learning machines in the wrapper setting are
“black boxes”, we cannot sample directly from the posterior distribution P(f(0)|D) (or
according to exp—Rp[f(0)] or exp—r[f(0)]). We can only compute the evaluation func-
tion for given values of 8 for which we run the learning algorithm of f(8), which inter-
nally adjusts its parameters c. A search strategy defines which hyper-parameter values
will be considered and in which order (in case a halting criterion ends the search prema-
turely). Gavin Cawley, in his challenge winning entries, used the Nelder-Mead simplex
algorithm (Cawley and Talbot, 2007a). Monte-Carlo Markov Chain MCMC meth-
ods are used in Bayesian modeling to sample the posterior probability and have given
good results in challenges (Neal and Zhang, 2006). The resulting ensemble is a sim-
ple average of the sampled functions F(xz) = (1/s) Y}, f(x|6). Wrappers for feature
selection use all sort of techniques, but sequential forward selection or backward elimina-
tion methods are most popular (Guyon et al., 2006a, Chapter 4). Other stochastic search
methods include biologically inspired methods such as genetic algorithms and particle
swarm optimization. Good results have been obtained with this last method in challenges
(H. J. Escalante, 2009), showing that extensive search does not necessarily yield over-fit
solutions, if some regularization mechanism is used. The authors of that paper rely for
that purpose on weight decay and early stopping. Frequentist ensemble methods, includ-
ing Random Forests (Breiman, 2001) and Logitboost (Friedman et al., 2000) also gave
good results in challenges (Lutz, 2006; Tuv et al., 2009; Dahinden, 2009).

Evaluation functions. For Bayesian approaches, the standard evaluation function is the “evi-
dence”, that is the marginal likelihood (also called type-II likelihood) (Neal and Zhang,
2006), or, in other words, the likelihood at the second level of inference. For frequentist
approaches, the most frequently used evaluation function is the cross-validation estimator.
Specifically, K-fold cross-validation is most often used (H. J. Escalante, 2009; Dahinden,
2009; Lutz, 2006; Reunanen, 2007). The values K = 10 or K = 5 are typically used by
practitioners regardless of the difficulty of the problem (error rate, number of examples,

32

2. MODEL SELECTION: BEYOND THE BAYESIAN/FREQUENTIST DIVIDE

number of variables). Computational considerations motivate this choice, but the authors
report a relative insensitivity of the result in that range of values of K. The leave-one-out
(LOO) estimator is also used, but due to its high variance, it should rather be avoided,
except for computational reasons (see in Section 2.5.3 cases in which the LOO error is
inexpensive to compute). These estimators may be poor predictors of the actual learn-
ing machine performances, but they are decent model selection indices, provided that the
same data splits are used to compute the evaluation function for all models. For bag-
ging methods (like Random Forests, Breiman, 2001), the bootstrap estimator is a natural
choice: the “out-of-bag" samples, which are those samples not used for training, are
used to predict performance. Using empirical estimators at the second level on inference
poses the problem of possibly over-fitting them. Some authors advocate using evalua-
tion functions based on prediction risk bounds: Koo and Kil (2008) and Claeskens et al.
(2008) derive in this way information criteria for regression models (respectively called
“modulus of continuity information criterion” or MCIC and “kernel regression informa-
tion criterion” or KRIC) and Claeskens et al. (2008) and Pranckeviciene and Somorjai
(2009) propose information criteria for classification problems (respectively called “sup-
port vector machine information criterion” SVMIC and “transvariation intensity”). The
effectiveness of these new criteria is compared empirically in the papers to the classi-
cal “Akaike information criterion” or AIC (Akaike, 1973) and the “Bayesian information
criterion” or BIC (Schwarz, 1978).

2.5.3. Embedded Methods

Embedded methods are similar to wrappers. They need an evaluation function and a search
strategy to explore hyper-parameter space. But, unlike wrapper methods, they exploit specific
features of the learning machine architecture and/or learning algorithm to perform multi-level
inference. It is easy to appreciate that knowledge of the nature and structure of a learning
machine can allow us to search hyper-parameter space in a more efficient way. For instance,
the function f(x;a,0) may be differentiable with respect to hyper-parameters 6 and it may be
possible to use gradient descent to optimize an evaluation function r[f]. Embedded methods
have been attracting substantial attention within the machine learning community in the past
few years because of the mathematical elegance of some of the new proposed methods.

Bayesian embedded methods. In the Bayesian framework, the embedded search, sampling or
summation over parameters and hyper-parameters is handled in an elegant and consis-
tent way by defining priors both for parameters and hyper-parameters, and computing
the posterior, perhaps in two steps, as indicated in Equation (2.3). Of course, it is more
easily said than done and the art is to find methods to carry out this integration, particu-
larly when it is analytically intractable. Variational methods are often used to tackle that
problem. Variational methods convert a complex problem into a simpler problem, but the
simplification introduces additional “variational” parameters, which must then be opti-
mized, hence introducing another level of inference. Typically, the posterior is bounded
from above by a family of functions parameterized by given variational parameters. Opti-
mizing the variational parameters yields the best approximation of the posterior (see e.g.,
Seeger, 2008). Bayesian pragmatists optimize the evidence (also called type-II likelihood
or marginal likelihood) at the second level of inference, but non-purists sometimes have
a last recourse to cross-validation. The contributions of Boullé (2007, 2009) stand out
in that respect because they propose model selection methods for classification and re-
gression, which have no last recourse to cross-validation, yet performed well in recent
benchmarks (Guyon et al., 2008a, 2009b). Such methods have been recently extended to

33

GUYON SAFFARI DROR CAWLEY

the less studied problem of rank regression (Hue and Boullé, 2007). The methods used
are Bayesian in spirit, but make use of original data-dependent priors.

Regularized functionals. In the frequentist framework, the choice of a prior is replaced by the
choice of a regularized functional. Those are two-part evaluation functions including the
empirical risk (or the negative log-likelihood) and a regularizer (or a prior). For kernel
methods, a 2-norm regularizer is often used, yielding the classical penalized functional
Ryegf] = Rempf]+ V|| f||% Pranckeviciene and Somorjai (2009) explore the possibilities
offered by a 1-norm regularizer. Such approaches provide an embedded method of fea-
ture selection, since the constraints thus imposed on the weight vector drive some weights
to exactly zero. We emphasized in the introduction that, in some cases, decomposing the
inference problem into multiple levels allows us to conveniently regain the convexity of
the optimization problem involved in learning. Ye et al. (2008) propose a multiple ker-
nel learning (MKL) method, in which the optimal kernel matrix is obtained as a linear
combination of pre-specified kernel matrices, which can be brought back to a convex pro-
gram. Few approaches are fully embedded and a wrapper is often used at the last level
of inference. For instance, in kernel methods, the kernel parameters may be optimized
by gradient descent on the regularized functional, but then the regularization parameter is
selected by cross-validation. One approach is to use a bound on the generalization error
at the second level of inference. For instance, Guermeur (2007) proposes such a bound
for the multi-class SVM, which can be used to choose the values of the “soft margin
parameter” C and the kernel parameters. Cross-validation may be preferred by practi-
tioners because it has performed consistently well in benchmarks (Guyon et al., 2006b).
This motivated Kunapuli et al. (2009) to integrate the search for optimal parameters and
hyper-parameters into a multi-level optimization program, using a regularized functional
at the lower level, and cross-validation at the upper level. Another way of integrating a
second level of inference performed by cross-validation and the optimization of a regu-
larized functional at the first level of inference is to use a closed-form expression of the
leave-one-out error (or a bound) and optimize it by gradient descent or another classical
optimization algorithm. Such virtual leave-one-out estimators, requiring training a single
classifier on all the data (see e.g., Cawley and Talbot, 2007a; Debruyne et al., 2—8, in the
collection of papers we have assembled).

2.6. Advanced Topics and Open Problems

We have left aside many important aspects of model selection, which, space permitting, would
deserve a longer treatment. We briefly discuss them in this section.

2.6.1. Ensemble Methods

In Section 2.4, we have made an argument in favor of unifying model selection and ensemble
methods, stemming either from a Bayesian or frequentist perspective, in the common frame-
work of multi-level optimization. In Sections 2.5.1, 2.5.2 and 2.5.3, we have given examples
of model selection and ensemble methods following filter, wrapper or embedded strategies.
While this categorization has the advantage of erasing the dogmatic origins of algorithms, it
blurs some of the important differences between model selection and ensemble methods. En-
semble methods can be thought of as a way of circumventing model selection by voting among
models rather than choosing a single model. Recent challenges results have proved their effec-
tiveness (Guyon et al., 2009b). Arguably, model selection algorithms will remain important in

34

2. MODEL SELECTION: BEYOND THE BAYESIAN/FREQUENTIST DIVIDE

applications where model simplicity and data understanding prevail, but ever increasing com-
puter power has brought ensemble methods to the forefront of multi-level inference techniques.
For that reason, we would like to single out those papers of our collection that have proposed or
applied ensemble methods:

Lutz (2006) used boosted shallow decision trees for his winning entries in two consecu-
tive challenges. Boosted decision trees have often ended up among the top ranking methods in
other challenges (Guyon et al., 2006a, 2009b). The particular implementation of Lutz of the
Logitboost algorithm (Friedman et al., 2000) use a “shrinkage” regularization hyper-parameter,
which seems to be key to attain good performance, and is adjusted by cross-validation as well
as the total number of base learners. Dahinden (2009) successfully applied the Random For-
est (RF) algorithm (Breiman, 2001) in the performance prediction challenge (Guyon et al.,
2006b). She demonstrated that with minor adaptations (adjustment of the bias value for im-
proved handling of unbalanced classes), the RF algorithm can be applied without requiring user
intervention. RF continues to be a popular and successful method in challenges (Guyon et al.,
2009b). The top ranking models use very large ensembles of hundreds of trees. One of the
unique features of RF algorithms is that they subsample both the training examples and the fea-
tures to build base learners. Using random subsets of features seems to be a winning strategy,
which was applied by others to ensembles of trees using both boosting and bagging (Tuv et al.,
2009) and to other base learners (Nikulin, 2009). Boullé (2007) also adopts the idea of cre-
ating ensembles using base learners constructed with different subsets of features. Their base
learner is the naive Bayes classifier and, instead of using random subsets, they select subsets
with a forward-backward method, using a maximum A Posteriori (MAP) evaluation function
(hence not requiring cross-validation). The base learners are then combined with an weight-
ing scheme based on an information theoretic criterion, instead on weighting the models with
the posterior probability as in Bayesian model averaging. This basically boils down to using
the logarithm of the posterior probabilities instead of the posterior probabilities themselves for
weighting the models. The weights have an interpretation in terms of model compressibility.
The authors show that this strategy outperforms Bayesian model averaging on several bench-
mark data sets. This can be understood by the observation that when the posterior distribution is
sharply peaked around the posterior mode, averaging is almost the same as selecting the MAP
model. Robustness is introduced by performing a more balanced weighting of the base learn-
ers. In contrast with the methods we just mentioned, which choose identical base learners (trees
of naive Bayes), other successful challenge participants have built heterogeneous ensembles of
learning machines (including, for example, linear models, kernel methods, trees, naive Bayes,
and neural networks), using cross-validation to evaluate their candidates for inclusion in the
ensemble (Wichard, 2007; IBM team, 2009). While Wichard (2007) evaluates classifiers inde-
pendently, IBM team (2009) uses a forward selection method, adding a new candidate in the
ensemble based on the new performance of the ensemble.

2.6.2. PAC Bayes Approaches

Unifying Bayesian and frequentist model selection procedures under the umbrella of multi-level
inference may shed new light on correspondences between methods and have a practical impact
on the design of toolboxes incorporating model selection algorithms. But there are yet more
synergies to be exploited between the Bayesian and the frequentist framework. In this section,
we would like to capture the spirit of the PAC Bayes approach and outline possible fruitful
directions of research.

The PAC learning framework (Probably Approximately Correct), introduced by Valiant
(1984) and later recognized to closely resemble the approach of the Russian school popularized

35

GUYON SAFFARI DROR CAWLEY

in the US by Vapnik (1979), has become the beacon of frequentist learning theoretic approaches.
It quantifies the generalization performance (the Correct aspect) of a learning machine via per-
formance bounds (the Approximate aspect) holding in probability (the Probable aspect):

Prob|(RIf) = Renpf]) < £(8)| = (1 -),

In this equation, the confidence interval €(8) (Approximate aspect) bounds, with probability
(1 —8) (Probable aspect),the difference between the expected risk or generalization error R[f]
and the empirical risk® Rep, p|f] (Correct aspect). Recently, many bounds have been proposed to
quantify the generalization performance of algorithms (see e.g., Langford, 2005, for a review).
The idea of deriving new algorithms, which optimize a bound €(68) (guaranteed risk optimiza-
tion) has been popularized by the success of SVMs (Boser et al., 1992) and boosting (Freund
and Schapire, 1996).

The PAC framework is rooted in the frequentist philosophy of defining probability in terms
of frequencies of occurrence of events and bounding differences between mathematical expecta-
tions and frequencies of events, which vanish with increasingly large sample sizes (law of large
numbers). Yet, since the pioneering work of Haussler et al. (1994), many authors have pro-
posed so-called PAC-Bayes bounds. Such bounds assess the performance of existing Bayesian
algorithms (see e.g., Seeger, 2003), or are used to derive new Bayesian algorithms optimizing a
guaranteed risk functional (see Germain et al. 2009 and references therein).

This is an important paradigm shift, which bridges the gap between the frequentist structural
risk minimization approach to model selection (Vapnik, 1998) and the Bayesian prior approach.
It erases the need for assuming that the model used to fit the data comes from a concept space
of functions that generated the data. Instead, priors may be used to provide a “structure” on a
chosen model space (called hypothesis space to distinguish it from the concept space), which
does not necessarily coincide with the concept space, of which we often know nothing. Re-
ciprocally, we can interpret structures imposed on a hypothesis space as our prior belief that
certain models are going to perform better than others (see, for instance, the examples at the
end of Section 2.3.1).

This opens the door to also regularizing the second level of inference by using performance
bounds on the cross-validation error, as was done for instance in Cawley and Talbot (2007a)
and Guyon (2009).

2.6.3. Open Problems

* Domain knowledge: From the earliest embodiments of Okcham’s razor using the num-
ber of free parameters to modern techniques of regularization and bi-level optimization,
model selection has come a long way. The problem of finding the right structure re-
mains, the rights prior or the right regularizer. Hence know-how and domain knowl-
edge are still required. But in a recent challenge we organized called “agnostic learning
vs. prior knowledge” (Guyon et al., 2008b) it appeared that the relatively small incremen-
tal improvements gained with prior knowledge came at the expense of important human
effort. In many domains, collecting more data is less costly than hiring a domain expert.
Hence there is pressure towards improving machine learning toolboxes and, in particular
equipping them with model selection tools. For the competitions we organized (Clop-
inet, 2004-2009), we made a toolbox available with state-of-the-art models (Saffari and
Guyon, 2006), which we progressively augmented with the best performing methods.

6. at the first level of inference, this would be the training error R;.[f]; at the second level of inference this may be
the validation error Ry [f]

36

2. MODEL SELECTION: BEYOND THE BAYESIAN/FREQUENTIST DIVIDE

The Particle Swarm Optimization (PSO) model selection method can find the best mod-
els in the toolbox and reproduce the results of the challenges (H. J. Escalante, 2009).
Much remains to be done to incorporate filter and wrapper model selection algorithms in
machine learning toolboxes.

Unsupervised learning: Multi-level optimization and model selection are also central
problems for unsupervised learning. When no target variable is available as “teaching
signal” one can still define regularized risk functionals and multi-level optimization prob-
lems (Smola et al., 2001). Hyper-parameters (e.g., “number of clusters”) can be adjusted
by optimizing a second level objective such as model stability (Ben-Hur et al., 2002),
which is an erzatz of cross-validation. The primary difficulty with model selection for
unsupervised learning is to validate the selected model. To this day, there is no consensus
on how to benchmark methods, hence it is very difficult to quantify progress in this field.
This is why we have so far shied away from evaluating unsupervised learning algorithms,
but this remains on our agenda.

Semi-supervised learning: Very little has been done for model selection in semi-supervised
learning problems, in which only some training instances come with target values. Semi-
supervised tasks can be challenging for traditional model selection methods, such as
cross-validation, because the number of labeled data is often very small. Schuurmans
and Southey (2001) used the unlabeled data to test the consistency of a model, by defin-
ing a metric over the hypothesis space. Similarly, Madani et al. (2005) introduced the
co-validation method, which uses the disagreement of various models on the predictions
over the unlabeled data as a model selection tool. In some cases there is no performance
gain by using the unlabeled data for training (Singh et al., 2008). Deciding whether all
or part of the unlabeled data should be used for training (data selection) may also be
considered a model selection problem.

Non i.i.d. data: The problem of non i.i.d. data raises a number of other questions because
if there are significant differences between the distribution of the training and the test
data, the cross-validation estimator may be worthless. For instance, in causal discovery
problems, training data come from a “natural” distribution while test data come from a
different “manipulated” distribution (resulting from some manipulations of the system
by an external agent, like clamping a given variable to given values). Several causal
graphs may be consistent with the “natural distribution” (not just with the training data,
with the true unknown distribution), but yield very different predictions of manipulated
data. Rather selecting a single model, it make more sense to select a model class. We
have started a program of data exchange and benchmarks to evaluate solutions to such
problems (Guyon et al., 2008a, 2009a).

Computational considerations: The selection of the model best suited to a given appli-
cation is a multi-dimensional problem in which prediction performance is only one of the
dimensions. Speed of model building and processing efficiency of deployed models are
also important considerations. Model selection algorithms (or ensemble methods) which
often require many models to be trained (e.g., wrapper methods with extensive search
strategies and using cross-validation to validate models) may be unable to build solutions
in a timely manner. At the expense of some acceptable loss in prediction performance,
methods using greedy search strategies (like forward selection methods) and single-pass
evaluation functions (requiring the training of only a single model to evaluate a given
hyper-parameter choice), may considerably cut the training time. Greedy search meth-
ods include forward selection and backward elimination methods. Single-pass evaluation

37

GUYON SAFFARI DROR CAWLEY

functions include penalized training error functionals (regularized functionals, MAP esti-
mates) and virtual-leave-one-out estimators. The latter allows users to compute the leave-
one-out-error at almost no additional computational expense than training a single predic-
tor on all the training data (see e.g., Guyon et al., 2006a, Chapter 2, for a review). Other
tricks-of-the-trade include following regularization paths to sample the hyper-parameter
space more effectively (Rosset and Zhu, 2006; Hastie et al., 2004). For some models,
the evaluation function is piecewise linear between a few discontinuous changes occur-
ring for a few finite hyper-parameter values. The whole path can be reconstructed from
only the values of the evaluation function at those given points. Finally, Reunanen (2007)
proposed clever ways of organizing nested cross-validation evaluations in multiple level
of inference model selection using cross-indexing. The author also explored the idea of
spending more time to refine the evaluation of the most promising models. Further work
needs to be put into model selection methods, which simultaneously address multiple
objectives, including optimizing prediction performance and computational cost.

2.7. Conclusion

In the past twenty years, much effort has been expended towards finding the best regularized
functionals. The many embodiments of Ockham’s razor in machine learning have converged
towards similar regularizers. Yet, the problem of model selection remains because we need to
optimize the regularization parameter(s) and often we need to select among various preprocess-
ings, learning machines, and post-processings. In the proceedings of three of the challenges we
organized around the problem of model selection, we have collected a large number of papers,
which testify to the vivid activity of the field. Several researchers do not hesitate to propose
heretic approaches transcending the usual “frequentist” or Bayesian dogma. We have seen
the idea of using the Bayesian machinery to design regularizers with “data-dependent priors”
emerge (Boullé, 2007, 2009), much like a few years ago data-dependent performance bounds
(Bartlett, 1997; Vapnik, 1998) and PAC-Bayes bounds (Haussler et al., 1994; Seeger, 2003)
revolutionized the “frequentist” camp, up to then very fond of uniform convergence bounds and
the VC-dimension (Vapnik and Chervonenkis, 1971). We have also seen the introduction of
regularization of cross-validation estimators using Bayesian priors (Cawley and Talbot, 2007a).
Ensemble methods may be thought of as a way of circumventing model selection. Rather, we
think of model selection and ensemble methods as two options to perform multi-level inference,
which can be formalized in a unified way.

Within this general framework, we have categorized approaches into filter, wrapper and
embedded methods. These methods complement each other and we hope that in a not too distant
future, they will be integrated into a consistent methodology: Filters first can prune model space;
Wrappers can perform an outer level model selection to select pre/post processings and feature
subsets; Embedded methods can perform an inner level hyper-parameter selection integrated
within a bi-level optimization program. We conclude that we are moving towards a unified
framework for model selection and there is a beneficial synergy between methods, both from a
theoretical and from a practical perspective.

Acknowledgments

This project was supported by the National Science Foundation under Grant NO. ECS-0424142.
Amir Saffari was supported by the Austrian Joint Research Project Cognitive Vision under
projects S9103-N04 and S9104-NO4. Any opinions, findings, and conclusions or recommenda-

38

2. MODEL SELECTION: BEYOND THE BAYESIAN/FREQUENTIST DIVIDE

tions expressed in this material are those of the authors and do not necessarily reflect the views
of the National Science Foundation.

Appendix A. Glossary

Automatic Relevance Determination (ARD) prior. The ARD prior was invented for neural
networks (MacKay, 1992): all network input variables and all neuron outputs (internal
features) are weighed by a scaling factor x;, before being independently weighted by
the network connections. A hyper-prior must be chosen to favor small values of the k;,
which makes the influence of irrelevant variables or features naturally fade away. For
kernel methods, ARD falls under the same framework as the ||f||%, regularizer, for a
special class of kernels using variable (feature) scaling factors. For instance, the ARD
prior is implemented by defining the Gaussian kernel (for positive hyper-parameters k;):

n
K(zxy,x)) = exp {— Z K','(xh‘j —xkh;)z}
=1

instead of the regular Gaussian kernel K (zj,, zx) = exp { —k||z; — @[|* }.

Base learner. In an ensemble method, the individual learning machines that are part of the
ensemble.

Bagging. Bagging stands for bootstrap aggregating. Bagging is a parallel ensemble method (all
base learners are built independently from training data subsets). Several data subsets of
size m are drawn independently with replacement from the training set of m examples. On
average each subset thus built contains approximately 2/3 of the training examples. The
ensemble predictions are made by averaging the predictions of the baser learners. The
ensemble approximates Ep(f(x,D)), where f(x,D) is a function from the model class
Z, trained with m examples and Ep(.) is the mathematical expectation over all training
sets of size m. The rationale comes from the bias/variance decomposition of the gener-
alization error. The “out-of-bag” samples (samples not used for learning for each data
subset drawn for training) may be used to create a bootstrap prediction of performance.

Bayesian learning. Under the Bayesian framework, it is assumed that the data were generated
from a double random process: (1) a model is first drawn according to a prior distribu-
tion in a concept space; (2) data are produced using the model. In the particular case of
supervised learning, as for maximum likelihood learning, a three-part data generative
model is assumed: P(x), f € %, and a zero-mean noise model. But, it is also assumed
that the function f was drawn according to a prior distribution P(f). This allows us to
compute the probability of an output y given an input z, P(y|x) = [, 5 P(y|, [)dP(f),
or its mathematical expectation E(y|z) = [/c 5 f(2)dP(f), averaging out the noise. Af-
ter training data D are observed, the prior P(f) is replaced by the posterior P(f|D). The
mathematical expectation of y given is estimated as: E(y|x,D) = [, 5 f(x)dP(f|D).
Hence, learning consists of calculating the posterior distribution P(f|D) and integrating
over it. The predictions are made according to E(y|x, D), a function not necessarily be-
longing to .# . In the case of classification, E (y|x, D) does not take values in % (although
thresholding the output just takes care of the problem). If we want a model in %, we can
use the Gibbs algorithm, which picks one sample in .% according to the posterior distri-
bution P(f|D), or use the MAP learning approach. In Bayesian learning, analytically

39

GUYON SAFFARI DROR CAWLEY

integrating over the posterior distribution is often impossible and the integral may be ap-
proximated by finite sum of models, weighted by positive coefficients (see variational
methods) or by sampling models from the posterior distribution (see Weighted major-
ity algorithm and Monte-Carlo Markov Chain or MCMC). The resulting estimators
of E(y|z,D) are convex combinations of functions in .% and, in that sense, Bayesian
learning is similar to ensemble methods.

Bias/variance decomposition. In the case of a least-square loss, the bias/variance decompo-
sition is given by Ep[(f(:D) — Elyle])?] = (Eplf(@:D)] — EGl@))? + Ep|(f(2:D) -
Ep[f(x;D)])?]. The second term (the “variance” of the estimator f(ax,D)) vanishes
if f(x;D) equals Ep[f(x;D). The motivates the idea of using an approximation of
Ep|f(x;D) as a predictor. In bagging the approximation is obtained by averaging over
functions trained from m examples drawn at random with replacement from the train-
ing set D (bootstrap method). The method works best if .% is not biased (i.e., contains
E(y|x)). Most models with low bias have a high variance and vice versa, hence the
well-known bias/variance tradeoff.

Concept space. A space of data generative models from which the data are drawn. Not to be
confused with model space or hypothesis space.

Empirical risk. An estimator of the expected risk that is the average of the loss over a finite
number of examples drawn according to P(,y): Remp = (1/m) L1t L (f(xk),yx)-

Ensemble methods. Methods of building predictors using multiple base learners, which vote
to make predictions. Predictions of y are made using a convex combination of functions
fi € F: F(x)=Y,p;fj(x), where p; are positive coefficients. The two most promi-
nent ensemble methods are bagging (Breiman, 1996) and boosting (Freund and Schapire,
1996). Bagging is a parallel ensemble method (all trees are built independently from
training data subsets), while boosting is a serial ensemble method (trees complementing
each other are progressively added to decrease the residual error). Random Forests (RF)
(Breiman, 2001) are a variant of bagging methods in which both features and examples
are subsampled. Boosting methods come in various flavors including Adaboost, Gentle-
boost, and Logitboost. The original algorithm builds successive models (called “weak
learners”) by resampling data in a way that emphasizes examples that have proved hard-
est to learn. Newer versions use a weighting scheme instead of resampling (Friedman,
2000).

Expected risk. The mathematical expectation of a risk functional over the unknown probability
distribution P(x,y): R[f] = [Z(f(x),y) dP(x,y). Also called generalization error.

Generalization error. See expected risk.

Greedy search strategy. A search strategy, which does not revisit partial decisions already
made, is called “greedy”. Examples include forward selection and backward elimination
in feature selection.

Guaranteed risk. A bound on the expected risk. See PAC learning and Structural Risk
Minimization (SRM).

Hypothesis space. A space of models, which are fit to data, not necessarily identical to the
concept space (which is often unknown).

40

2. MODEL SELECTION: BEYOND THE BAYESIAN/FREQUENTIST DIVIDE

Loss function. A function .Z(f(x),y), which measures the discrepancy between target values
y and model predictions f(x). Examples include the square loss (y — f(x))? for regres-
sion of the 0/1 loss 1[f(x) # y] for classification).

MAP learning. Maximum a posteriori (MAP) learning shares the same framework as Bayesian
learning, but it is further assumed that the posterior P(f|D) is concentrated and that
E(y|x,D) can be approximated by f*(z), with f* = argmax ; P(f|D) = argmax ; P(D|f)P(f) =
argmin; —InP(D|f) —InP(f). If we assume a uniform prior, we are brought back to
maximum likelihood learning. If both P(D|f) and P(f) are exponentially distributed
(P(ylz, f) =exp—L(f(x),y) and P(f) = exp—Q[f]), then MAP learning is equivalent
to the minimization of a regularized risk functional.

Maximum likelihood learning. Itis assumed that the data were generated by an input distribu-
tion P(x), a function f from a model space .% coinciding with the concept space, and a
zero-mean noise model. For regression, for instance, if Gaussian noise € ~ .4(0, 0'2)
is assumed, y is distributed according to P(y|x,f) = A4 (f(x),0%). In the simplest
case, P(x) and the noise model are not subject to training (the values of x are fixed
and the noise model is known). Learning then consists in searching for the function
S*, which maximizes the likelihood P(D|f), or equivalently (since P(x) is not subject
to training) f* = argmax, P(y|X, f) = argmin, —InP(y|X, f). With the i.i.d. assump-
tion, f* = argmax, I} P(yi|zy, f) = argmin, ;" —InP(y|x, f). For distributions
belonging to the exponential family P(y|x, f) = exp{—Z(f(x),y)}, the maximum like-
lihood method is equivalent to the method of minimizing the empirical risk. In the case
of Gaussian noise, this corresponds to the method of least squares.

Model space. A space of predictive models, which are fit to data. Synonym of hypothesis
space. For Bayesian models, also generally coincides with the concept space, but not for
frequentists.

Monte-Carlo Markov Chain (MCMC) method. To approximate Bayesian integrals one can
sample from the posterior distribution P(f|D) following a Monte-Carlo Markov chain
(MCMC), then make predictions according to E(y|lz,D) =¥, f;(«). In a MCMC, at
each step new candidate models f; € .# are considered, in a local neighborhood of the
model selected at the previous step. The new model is accepted if it provides a better fit
to the data according to the posterior distribution or, if not, a random decision is made
to accept it, following the Gibbs distribution (better models having a greater chance of
acceptance).

Opver-fitting avoidance. Model selection is traditionally associated with the so-called problem
of over-fitting avoidance. Over-fitting means fitting the training examples well (i.e.,
obtaining large model likelihood or low empirical risk values, computed from training
data), but generalizing poorly on new test examples. Over-fitting is usually blamed on
too large a large number of free parameters to be estimated, relative to the available num-
ber of training examples. The most basic model selection strategy is therefore to restrict
the number of free parameters according to “strict necessity”. This heuristic strategy is
usually traced back in history to the principle known as Ockham’s razor “Plurilitas non
est ponenda sin necessitate” (William of Ockham, 14™ century). In other words, of two
theories providing similarly good predictions, the simplest one should be preferred, that
is, shave off unnecessary parameters. Most modern model selection strategies claim some
affiliation with Ockham’s razor, but the number of free parameters is replaced by a mea-
sure of capacity or complexity of the model class, C[.Z#]. Intuitively, model classes with

41

GUYON SAFFARI DROR CAWLEY

large C[.%] may include the correct model, but it is hard to find. In this case, even models
with a low training error may have a large generalization error (high “variance”; over-
fitting problem). Conversely, model classes with small C[.%] may yield “biased” models,
that is, with both high training and generalization error (under-fitting). See bias/variance
decomposition..

PAC learning. The “probably approximately correct” (PAC) learning procedures, seek a func-

tion minimizing a guaranteed risk Rg..[f] = Remp[f] + €(C,8) such that with (high)
probability (1 — &), R[f] < Reua[f]. C is a measure of capacity or complexity.

Regularizers and regularization. The regularization method consists of replacing the mini-

mization of the empirical risk R,,,,[f] by that of Ryes[f] = Remp + Q[f]. A regularizer
Q[f] is a functional penalizing “complex” functions. If both R;.[f] and Q[f] are convex,
there is a unique minimum of R, f] with respect to f. In MAP learning, —InP(f) can
be thought of as a regularizer. One particularly successful regularizer is the 2-norm reg-
ularizer || f||%, for model functions f(x) = Y1", oK (x,xy) belonging to a Reproducing
Kernel Hilbert Space ¢ (kernel methods). In the particular case of the linear model
f(z) =w-z, we have || f||, = |w]||%>, a commonly used regularized found in many al-
gorithms including ridge regression (Hoerl, 1962) and SVMs (Boser et al., 1992). In the
general case, || f||%, = FK~'f = a’ Ko, where f = [f(x;)]l", is the vector of predic-
tions of the training examples, o = [og]}" |, and K = [K(xp, x¢), h=1,....mk=1,....m.
Due to the duality between RKHS and stochastic processes (Wahba, 1990), the functions
in the RKHS can also be explained as a family of random variables in a Gaussian process,
assuming a prior P(f) proportional to exp(—7||f||») = exp(—YfK~' f) and the kernel
matrix K is interpreted as a covariance matrix K (xj, x;) = cov[f(x), f(xx)]-

Risk minimization. Given a model space or hypothesis space .7 of functions y = f(x),

and a loss function Z(f(x),y), we want to find the function f* € .% that minimizes
the expected risk R[f] = [.Z(f(x),y) dP(x,y). Since P(x,y) is unknown, only es-
timations of R[f] can be computed. The simplest estimator is the average of the loss
over a finite number of examples drawn according to P(x,y) called the empirical risk:
Remp = (1/m) Y1 Z(f(xk),yx). The minimization of the empirical risk is the basis
of many machine learning approaches to selecting f*, but minimizing regularized risk
functionals is often preferred. See regularization. Also, related are the PAC learning
procedures and the method of Structural Risk Minimization (SRM).

Search strategy. There are optimal search strategies, which guarantee that the optimum of the

42

evaluation function will be found, including the exhaustive search method, for discrete
hyper-parameter spaces. The popular grid search method for continuous hyper-parameter
spaces performs an exhaustive search, up to a certain precision. A related stochastic
search method is uniform sampling. Uniformly sampling parameter space may be compu-
tationally expensive and inefficient. If we use a non-uniform distribution G(8) to sample
hyper-parameter space, which resembles P(f(0)|D), the search can be made more effi-
cient. This idea is exploited in rejection sampling and importance sampling: according
to these methods a Bayesian ensemble F(x) = Y, wy f(;0)) would use weight wy pro-
portional to P(f(0)|D)/G(0). Because of the computational burden of (near) optimum
strategies, other strategies are often employed, usually yielding only a local optimum.
These include sequential search strategies such as coordinate ascent or descent (mak-
ing small steps along coordinate axes) or pattern search (Momma and Bennett, 2002)
(making local steps according to a certain pattern), which, by accepting only moves that
improve the evaluation function, find the local optimum nearest to the starting point.

2. MODEL SELECTION: BEYOND THE BAYESIAN/FREQUENTIST DIVIDE

Some stochastic search methods accept moves not necessarily improving the value of the
evaluation function, like simulated annealing or Markov chain Monte Carlo (MCMC)
methods. Both methods accept all moves improving the evaluation function and some
moves that do not, for example, with probability exp —Ar/T, where T is a positive pa-
rameter (T = 1 for MCMC and progressively diminishes for simulated annealing). Such
stochastic methods search hyper-parameter space more intensively and do not become
stuck in the nearest local optimum of the evaluation function.

Semi-supervised learning. In semi-supervised learning, in addition to the labeled data, the
learning machine is given a (possibly large) set of unlabeled data. Such unlabeled data
may be used for training or model selection.

Structural Risk Minimization. The method of Structural Risk Minimization (SRM) provides
aeans of building regularized risk functionals (see Regularization), using the idea of
guaranteed risk minimization, but not requiring the calculation of the model class ca-
pacity or complexity, which is often unknown or hard to compute. In the risk minimiza-
tion framework, it is not assumed that the model space includes a function or “concept”,
which generated the data (see concept space and hypothesis space).

Supervised learning. Learning with teaching signal or target y.

Under-fitting. While over-fitting is the problem of learning the training data too well the ex-
pense of a large generalization error, under-fitting is the problem of having a too weak
model not even capable of learning the training data and also generalizing poorly.

Unsupervised learning. Learning in the absence of teaching signal or target y.

Weighted majority algorithm. To approximate Bayesian integrals one can draw samples f;
uniformly from the model space of functions % and make predictions according to

E(y|z,D) = ¥, P(fiID)f;().

References

M. Adankon and M. Cheriet. Unified framework for SVM model selection. In I. Guyon, et al.,
editor, Hands on Pattern Recognition. Microtome, 2009.

H. Akaike. Information theory and an extension of the maximum likelihood principle. In B.N.
Petrov and F. Csaki, editors, 2nd International Symposium on Information Theory, pages
267-281. Akademia Kiado, Budapest, 1973.

C. F. Aliferis, I. Tsamardinos, and A. Statnikov. HITON, a novel Markov blanket algorithm
for optimal variable selection. In 2003 American Medical Informatics Association (AMIA)
Annual Symposium, pages 21-25, 2003.

C.-A. Azencott and P. Baldi. Virtual high-throughput screening with two-dimensional kernels.
In I. Guyon, et al., editor, Hands on Pattern Recognition. Microtome, 2009.

P. L. Bartlett. For valid generalization the size of the weights is more important than the size
of the network. In M. C. Mozer, M. I. Jordan, and T. Petsche, editors, Advances in Neural
Information Processing Systems, volume 9, page 134, Cambridge, MA, 1997. MIT Press.

A. Ben-Hur, A. Elisseeff, and I. Guyon. A stability based method for discovering structure in
clustered data. In Pacific Symposium on Biocomputing, pages 6—17, 2002.

43

GUYON SAFFARI DROR CAWLEY

A. Blum and P. Langley. Selection of relevant features and examples in machine learning.
Artificial Intelligence, 97(1-2):245-271, December 1997.

B. Boser, I. Guyon, and V. Vapnik. A training algorithm for optimal margin classifiers. In
COLT, pages 144-152, 1992.

M. Boullé. Compression-based averaging of selective naive bayes classifiers. In I. Guyon
and A. Saffari, editors, JMLR, Special Topic on Model Selection, volume 8, pages 1659—
1685, Jul 2007. URL http://www. jmlr.org/papers/volume8/boullel7a/
boulleO7a.pdf.

M. Boullé. Data grid models for preparation and modeling in supervised learning. In
I. Guyon, et al., editor, Hands on Pattern Recognition. Microtome, 2009.

L. Breiman. Bagging predictors. Machine Learning, 24(2):123-140, 1996.
L. Breiman. Random forests. Machine Learning, 45(1):5-32, 2001.

G. Cawley. Leave-one-out cross-validation based model selection criteria for weighted Is-svms.
In IJCNN, pages 1661-1668, 2006.

G. Cawley and N. Talbot. Preventing over-fitting during model selection via Bayesian regulari-
sation of the hyper-parameters. In I. Guyon and A. Saffari, editors, JMLR, Special Topic on
Model Selection, volume 8, pages 841-861, Apr 2007a. URL http://www. jmlr.org/
papers/volume8/cawley07a/cawley07a.pdf.

G. Cawley and N. Talbot. Over-fitting in model selection and subsequent selection bias in
performance evaluation. JMLR, submitted, 2009.

G. C. Cawley and N. L. C. Talbot. Agnostic learning versus prior knowledge in the design of
kernel machines. In Proc. IJCNNO7, Orlando, Florida, Aug 2007b. INNS/IEEE.

G.C. Cawley, G.J. Janacek, and N.L.C. Talbot. Generalised kernel machines. In International
Joint Conference on Neural Networks, pages 1720-1725. IEEE, August 2007.

W. Chu, S. Keerthi, C. J. Ong, and Z. Ghahramani. Bayesian Support Vector Machines for
feature ranking and selection. In I. Guyon, et al., editor, Feature Extraction, Foundations and
Applications, 2006.

G. Claeskens, C. Croux, and J. Van Kerckhoven. An information criterion for variable selection
in Support Vector Machines. In I. Guyon and A. Saffari, editors, JMLR, Special Topic on
Model Selection, volume 9, pages 541-558, Mar 2008. URL http://www. jmlr.org/
papers/volume9/claeskens08a/claeskens08a.pdf.

Clopinet. Challenges in machine learning, 2004-2009. URL http://clopinet.com/
challenges.

C. Dahinden. An improved Random Forests approach with application to the performance
prediction challenge datasets. In I. Guyon, et al., editor, Hands on Pattern Recognition.
Microtome, 2009.

M. Debruyne, M. Hubert, and J. Suykens. Model selection in kernel based regression using the
influence function. In I. Guyon and A. Saffari, editors, JMLR, Special Topic on Model Selec-
tion, volume 9, pages 2377-2400, Oct 2-8. URL http://www. jmlr.org/papers/
volume9/debruynel8a/debruynel8a.pdf.

44

http://www.jmlr.org/papers/volume8/boulle07a/boulle07a.pdf
http://www.jmlr.org/papers/volume8/boulle07a/boulle07a.pdf
http://www.jmlr.org/papers/volume8/cawley07a/cawley07a.pdf
http://www.jmlr.org/papers/volume8/cawley07a/cawley07a.pdf
http://www.jmlr.org/papers/volume9/claeskens08a/claeskens08a.pdf
http://www.jmlr.org/papers/volume9/claeskens08a/claeskens08a.pdf
http://clopinet.com/challenges
http://clopinet.com/challenges
http://www.jmlr.org/papers/volume9/debruyne08a/debruyne08a.pdf
http://www.jmlr.org/papers/volume9/debruyne08a/debruyne08a.pdf

2. MODEL SELECTION: BEYOND THE BAYESIAN/FREQUENTIST DIVIDE

Y. Freund and R. E. Schapire. Experiments with a new boosting algorithm. In Proc. 13th
International Conference on Machine Learning, pages 148—146. Morgan Kaufmann, 1996.

J. Friedman. Greedy function approximation: A gradient boosting machine. Annals of Statistics,
29:1189-1232, 2000.

J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression, a statistical view of
boosting. Annals of Statistics, 28:337-374, 2000.

J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for generalized linear models
via coordinate descent. Journal of Statistical Software (to appear), 2009.

P. Germain, A. Lacasse, F. Laviolette, and M. Marchand. PAC-Bayesian learning of linear clas-
sifiers. In ICML ’09: Proceedings of the 26th Annual International Conference on Machine
Learning, pages 353-360, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-516-1.

Y. Guermeur. VC theory of large margin multi-category classifiers. In I. Guyon and
A. Saffari, editors, JMLR, Special Topic on Model Selection, volume 8, pages 2551-2594,
Nov 2007. URL http://www.Jmlr.org/papers/volume8/guermeur0ia/
guermeur07a.pdf.

I. Guyon. A practical guide to model selection. In J. Marie, editor, Machine Learning Summer
School. Springer, to appear, 2009.

I. Guyon, S. Gunn, M. Nikravesh, and L. Zadeh, Editors. Feature Extraction, Foundations
and Applications. Studies in Fuzziness and Soft Computing. With data, results and sample
code for the NIPS 2003 feature selection challenge. Physica-Verlag, Springer, 2006a. URL
http://clopinet.com/fextract—-book/.

I. Guyon, A. Saffari, G. Dror, and J. Buhmann. Performance prediction challenge. In
IEEE/INNS conference IJCNN 2006, Vancouver, Canada, July 16-21 2006b.

I. Guyon, A. Saffari, G. Dror, and G. Cawley. Agnostic learning vs. prior knowledge challenge.
In IEEE/INNS conference IJCNN 2007, Orlando, Florida, August 12-17 2007.

I. Guyon, C. Aliferis, G. Cooper, A. Elisseeff, J.-P. Pellet, P. Spirtes, and A. Statnikov. Design
and analysis of the causation and prediction challenge. In JMLR W&CP, volume 3, pages 1—
33, WCCI2008 workshop on causality, Hong Kong, June 3-4 2008a. URL http://jmlr.
csail.mit.edu/papers/topic/causality.html.

I. Guyon, A. Saffari, G. Dror, and G. Cawley. Analysis of the [JICNN 2007 agnostic learning
vs. prior knowledge challenge. In Neural Networks, volume 21, pages 544-550, Orlando,
Florida, March 2008b.

I. Guyon, D. Janzing, and B. Scholkopf. Causality: objectives and assessment. In NIPS 2008
workshop on causality, volume 7. JIMLR W&CP, in press, 2009a.

I. Guyon, V. Lemaire, M. Boullé, Gideon Dror, and David Vogel. Analysis of the KDD cup
2009: Fast scoring on a large orange customer database. In KDD cup 2009, in press, vol-
ume 8. IMLR W&CP, 2009b.

L. E. Sucar H. J. Escalante, M. Montes. Particle swarm model selection. In I. Guyon and
A. Saffari, editors, JMLR, Special Topic on Model Selection, volume 10, pages 405-440,
Feb 2009. URL http://www.jmlr.org/papers/volumelO/escalante09a/
escalante(09a.pdf.

45

http://www.jmlr.org/papers/volume8/guermeur07a/guermeur07a.pdf
http://www.jmlr.org/papers/volume8/guermeur07a/guermeur07a.pdf
http://clopinet.com/fextract-book/
http://jmlr.csail.mit.edu/papers/topic/causality.html
http://jmlr.csail.mit.edu/papers/topic/causality.html
http://www.jmlr.org/papers/volume10/escalante09a/escalante09a.pdf
http://www.jmlr.org/papers/volume10/escalante09a/escalante09a.pdf

GUYON SAFFARI DROR CAWLEY

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning, Data Mining,
Inference and Prediction. Springer Verlag, 2000.

T. Hastie, S. Rosset, R. Tibshirani, and J. Zhu. The entire regularization path for the support
vector machine. JMLR, 5:1391-1415, 2004. URL http://jmlr.csail.mit.edu/
papers/volume5/hastieO4a/hastiel4a.pdf.

D. Haussler, M. Kearns, and R. Schapire. Bounds on the sample complexity of Bayesian learn-
ing using information theory and the vc dimension. Machine Learning, 14(1):83-113, 1994.
ISSN 0885-6125.

A. E. Hoerl. Application of ridge analysis to regression problems. Chemical Engineering
Progress, 58:54-59, 1962.

C. Hue and M. Boullé. A new probabilistic approach in rank regression with optimal Bayesian
partitioning. In I. Guyon and A. Saffari, editors, JMLR, Special Topic on Model Selec-
tion, volume 8, pages 2727-2754, Dec 2007. URL http://www. jmlr.org/papers/
volume8/hue07a/huel7a.pdf.

IBM team. Winning the KDD cup orange challenge with ensemble selection. In KDD cup
2009, in press, volume 8. JMLR W&CP, 2009.

R. Kohavi and G. John. Wrappers for feature selection. Artificial Intelligence, 97(1-2):273-324,
December 1997.

I. Koo and R. M. Kil. Model selection for regression with continuous kernel functions using
the modulus of continuity. In I. Guyon and A. Saffari, editors, JMLR, Special Topic on
Model Selection, volume 9, pages 2607-2633, Nov 2008. URL http://www. jmlr.
org/papers/volume9/koo08b/koo08b.pdf.

G. Kunapuli, J.-S. Pang, and K. Bennett. Bilevel cross-validation-based model selection. In
1. Guyon, et al., editor, Hands on Pattern Recognition. Microtome, 2009.

J. Langford. Tutorial on practical prediction theory for classification. JMLR, 6:273-306, Mar
2005. URL http://jmlr.csail.mit.edu/papers/volume6/langford05a/
langfordO5a.pdf.

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. J. Jackel.
Backpropagation applied to handwritten zip code recognition. Neural Computation, 1:541 —
551, 1989.

R. W. Lutz. Logitboost with trees applied to the WCCI 2006 performance prediction challenge
datasets. In Proc. IJCNNO6, pages 29662969, Vancouver, Canada, July 2006. INNS/IEEE.

D. MacKay. A practical Bayesian framework for backpropagation networks. Neural Computa-
tion, 4:448-472, 1992.

O. Madani, D. M. Pennock, and G. W. Flake. Co-validation: Using model disagreement to
validate classification algorithms. In NIPS, 2005.

M. Momma and K. Bennett. A pattern search method for model selection of Support Vector
Regression. In In Proceedings of the SIAM International Conference on Data Mining. SIAM,
2002.

46

http://jmlr.csail.mit.edu/papers/volume5/hastie04a/hastie04a.pdf
http://jmlr.csail.mit.edu/papers/volume5/hastie04a/hastie04a.pdf
http://www.jmlr.org/papers/volume8/hue07a/hue07a.pdf
http://www.jmlr.org/papers/volume8/hue07a/hue07a.pdf
http://www.jmlr.org/papers/volume9/koo08b/koo08b.pdf
http://www.jmlr.org/papers/volume9/koo08b/koo08b.pdf
http://jmlr.csail.mit.edu/papers/volume6/langford05a/langford05a.pdf
http://jmlr.csail.mit.edu/papers/volume6/langford05a/langford05a.pdf

2. MODEL SELECTION: BEYOND THE BAYESIAN/FREQUENTIST DIVIDE

R. Neal and J. Zhang. High dimensional classification with Bayesian neural networks and
dirichlet diffusion trees. In I. Guyon, et al., editor, Feature Extraction, Foundations and
Applications, 2006.

V. Nikulin. Classification with random sets, boosting and distance-based clustering. In
I. Guyon, et al., editor, Hands on Pattern Recognition. Microtome, 2009.

T. Poggio and F. Girosi. Regularization algorithms for learning that are equivalent to multilayer
networks. Science, 247(4945):978-982, February 1990.

A. Pozdnoukhov and S. Bengio. Invariances in kernel methods: From samples to objects.
Pattern Recogn. Lett., 27(10):1087-1097, 2006. ISSN 0167-8655.

E. Pranckeviciene and R. Somorjai. Liknon feature selection: Behind the scenes. In
I. Guyon, et al., editor, Hands on Pattern Recognition. Microtome, 2009.

J. Reunanen. Model selection and assessment using cross-indexing. In Proc. IJCNNO7, Or-
lando, Florida, Aug 2007. INNS/IEEE.

S. Rosset and J. Zhu. Sparse, flexible and efficient modeling using L1 regularization. In
I. Guyon, et al., editor, Feature Extraction, Foundations and Applications, 2006.

S. Rosset, J. Zhu, and T. Hastie. Boosting as a regularized path to a maximum margin classifier.
Journal of Machine Learning Research, 5:941-973, 2004.

M. Saeed. Hybrid learning using mixture models and artificial neural networks. In
L. Guyon, et al., editor, Hands on Pattern Recognition. Microtome, 2009.

A. Saffari and I. Guyon. Quick start guide for CLOP. Technical report, Graz University of
Technology and Clopinet, May 2006. URL http://clopinet.com/CLOP/.

D. Schuurmans and F. Southey. Metric-based methods for adaptive model selection and regu-
larization. Machine Learning, Special Issue on New Methods for Model Selection and Model
Combination, 48:51-84, 2001.

G. Schwarz. Estimating the dimension of a model. The Annals of Statistics, 6(2):461-464,
1978.

M. Seeger. PAC-Bayesian generalisation error bounds for Gaussian process classification.
JMLR, 3:233-269,2003. URL http://jmlr.csail.mit.edu/papers/volume3/
seeger(02a/seeger02a.pdf.

M. Seeger. Bayesian inference and optimal design for the sparse linear model. JMLR, 9:759—
813, 2008. ISSN 1533-7928.

P. Simard, Y. LeCun, and J. Denker. Efficient pattern recognition using a new transformation
distance. In S. J. Hanson, J. D. Cowan, and C. L. Giles, editors, Advances in Neural Infor-
mation Processing Systems 5, pages 50-58, San Mateo, CA, 1993. Morgan Kaufmann.

A. Singh, R. Nowak, and X. Zhu. Unlabeled data: Now it helps, now it doesn’t. In NIPS, 2008.

A. Smola, S. Mika, B. Scholkopf, and R. Williamson. Regularized principal manifolds.
JMLR, 1:179-209, 2001. URL http://Jmlr.csail.mit.edu/papers/volumel/
smolalOla/smolalla.pdf.

47

http://clopinet.com/CLOP/
http://jmlr.csail.mit.edu/papers/volume3/seeger02a/seeger02a.pdf
http://jmlr.csail.mit.edu/papers/volume3/seeger02a/seeger02a.pdf
http://jmlr.csail.mit.edu/papers/volume1/smola01a/smola01a.pdf
http://jmlr.csail.mit.edu/papers/volume1/smola01a/smola01a.pdf

GUYON SAFFARI DROR CAWLEY

R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society, Series B, 58:267-288, 1994.

E. Tuv, A. Borisov, G. Runger, and K. Torkkola. Feature selection with ensembles, artificial
variables, and redundancy elimination. In I. Guyon and A. Saffari, editors, JMLR, Special
Topic on Model Selection, volume 10, pages 1341-1366, Jul 2009. URL http://www.
jmlr.org/papers/volumelO/tuv09a/tuv09a.pdf.

L. Valiant. A theory of the learnable. Communications of the ACM,, 27(11):1134-1142, 1984.

V. Vapnik. Estimation of Dependences Based on Empirical Data [in Russian]. Nauka, Moscow,
1979. (English translation: Springer Verlag, New York, 1982).

V. Vapnik. Statistical Learning Theory. John Wiley and Sons, N.Y., 1998.

V. Vapnik and A. Chervonenkis. On the uniform convergence of relative frequencies of events
to their probabilities. Theory Probab. Appl., 16:264—180, 1971.

S. Vishwanathan and A. Smola. Fast kernels for string and tree matching. In Advances in
Neural Information Processing Systems 15, pages 569-576. MIT Press, 2003. URL http:
//books.nips.cc/papers/files/nipsl5/AA11l.pdf.

G. Wahba. Spline Models for Observational Data, volume 59 of CBMS-NSF Regional Confer-
ence Series in Applied Mathematics. STAM, Philadelphia, 1990.

A. Waibel. Consonant recognition by modular construction of large phonemic time-delay neural
networks. In NIPS, pages 215-223, 1988.

C. Watkins. Dynamic alignment kernels. In A.J. Smola, P.L. Bartlett, B. Scholkopf, and
D. Schuurmans, editors, Advances in Large Margin Classifiers, pages 39-50, Cambridge,
MA, 2000. MIT Press. URL http://www.cs.rhul.ac.uk/home/chrisw/dynk.

ps.gz.

P. Werbos. Backpropagation: Past and future. In International Conference on Neural Networks,
pages 343-353. IEEE, IEEE press, 1988.

J. Weston, A. Elisseff, B. Schoelkopf, and M. Tipping. Use of the zero norm with linear models
and kernel methods. JMLR, 3:1439-1461, 2003.

J. Wichard. Agnostic learning with ensembles of classifiers. In Proc. IJCNNO7, Orlando,
Florida, Aug 2007. INNS/IEEE.

J. Ye, S. Ji, and J. Chen. Multi-class discriminant kernel learning via convex program-
ming. In I. Guyon and A. Saffari, editors, JMLR, Special Topic on Model Selection, vol-
ume 9, pages 719-758, Apr 2008. URL http://www. jmlr.org/papers/volume9/
yve08b/ye08b.pdf.

J. Zhu, S. Rosset, T. Hastie, and R. Tibshirani. 1-norm support vector machines. In NIPS, 2003.

48

http://www.jmlr.org/papers/volume10/tuv09a/tuv09a.pdf
http://www.jmlr.org/papers/volume10/tuv09a/tuv09a.pdf
http://books.nips.cc/papers/files/nips15/AA11.pdf
http://books.nips.cc/papers/files/nips15/AA11.pdf
http://www.cs.rhul.ac.uk/home/chrisw/dynk.ps.gz
http://www.cs.rhul.ac.uk/home/chrisw/dynk.ps.gz
http://www.jmlr.org/papers/volume9/ye08b/ye08b.pdf
http://www.jmlr.org/papers/volume9/ye08b/ye08b.pdf

Journal of Machine Learning Research 11(Jul):2079-2107, 2010 Submitted 10/09; Revised 3/10; Published 7/10

Chapter 3

On Over-fitting in Model Selection and Subsequent Selection
Bias in Performance Evaluation

Gavin C. Cawley GCC@CMP.UEA.AC.UK
Nicola L. C. Talbot NLCT@CMP.UEA.AC.UK
School of Computing Sciences

University of East Anglia

Norwich, United Kingdom NR4 7TJ

Editor: Isabelle Guyon

Abstract

Model selection strategies for machine learning algorithms typically involve the numerical op-
timisation of an appropriate model selection criterion, often based on an estimator of gener-
alisation performance, such as k-fold cross-validation. The error of such an estimator can be
broken down into bias and variance components. While unbiasedness is often cited as a ben-
eficial quality of a model selection criterion, we demonstrate that a low variance is at least as
important, as a non-negligible variance introduces the potential for over-fitting in model se-
lection as well as in training the model. While this observation is in hindsight perhaps rather
obvious, the degradation in performance due to over-fitting the model selection criterion can be
surprisingly large, an observation that appears to have received little attention in the machine
learning literature to date. In this paper, we show that the effects of this form of over-fitting
are often of comparable magnitude to differences in performance between learning algorithms,
and thus cannot be ignored in empirical evaluation. Furthermore, we show that some common
performance evaluation practices are susceptible to a form of selection bias as a result of this
form of over-fitting and hence are unreliable. We discuss methods to avoid over-fitting in model
selection and subsequent selection bias in performance evaluation, which we hope will be in-
corporated into best practice. While this study concentrates on cross-validation based model
selection, the findings are quite general and apply to any model selection practice involving
the optimisation of a model selection criterion evaluated over a finite sample of data, including
maximisation of the Bayesian evidence and optimisation of performance bounds.

Keywords: model selection, performance evaluation, bias-variance trade-off, selection bias,
over-fitting

3.1. Introduction

This paper is concerned with two closely related topics that form core components of best prac-
tice in both the real world application of machine learning methods and the development of
novel machine learning algorithms, namely model selection and performance evaluation. The
majority of machine learning algorithms are based on some form of multi-level inference, where
the model is defined by a set of model parameters and also a set of hyper-parameters (Guyon
et al., 2009), for example in kernel learning methods the parameters correspond to the coeffi-
cients of the kernel expansion and the hyper-parameters include the regularisation parameter,
the choice of kernel function and any associated kernel parameters. This division into param-
eters and hyper-parameters is typically performed for computational convenience; for instance

© 2010 G.C. Cawley & N.L.C. Talbot.

CAWLEY TALBOT

in the case of kernel machines, for fixed values of the hyper-parameters, the parameters are nor-
mally given by the solution of a convex optimisation problem for which efficient algorithms are
available. Thus it makes sense to take advantage of this structure and fit the model iteratively
using a pair of nested loops, with the hyper-parameters adjusted to optimise a model selec-
tion criterion in the outer loop (model selection) and the parameters set to optimise a training
criterion in the inner loop (model fitting/training). In our previous study (Cawley and Talbot,
2007), we noted that the variance of the model selection criterion admitted the possibility of
over-fitting during model selection as well as the more familiar form of over-fitting that occurs
during training and demonstrated that this could be ameliorated to some extent by regularisation
of the model selection criterion. The first part of this paper discusses the problem of over-fitting
in model selection in more detail, providing illustrative examples, and describes how to avoid
this form of over-fitting in order to gain the best attainable performance, desirable in practical
applications, and required for fair comparison of machine learning algorithms.

Unbiased and robust' performance evaluation is undoubtedly the cornerstone of machine
learning research; without a reliable indication of the relative performance of competing algo-
rithms, across a wide range of learning tasks, we cannot have the clear picture of the strengths
and weaknesses of current approaches required to set the direction for future research. This
topic is considered in the second part of the paper, specifically focusing on the undesirable opti-
mistic bias that can arise due to over-fitting in model selection. This phenomenon is essentially
analogous to the selection bias observed by Ambroise and McLachlan (2002) in microarray
classification, due to feature selection prior to performance evaluation, and shares a similar
solution. We show that some, apparently quite benign, performance evaluation protocols in
common use by the machine learning community are susceptible to this form of bias, and thus
potentially give spurious results. In order to avoid this bias, model selection must be treated as
an integral part of the model fitting process and performed afresh every time a model is fitted to
anew sample of data. Furthermore, as the differences in performance due to model selection are
shown to be often of comparable magnitude to the difference in performance between learning
algorithms, it seems no longer meaningful to evaluate the performance of machine learning al-
gorithms in isolation, and we should instead compare learning algorithm/model selection proce-
dure combinations. However, this means that robust unbiased performance evaluation is likely
to require more rigorous and computationally intensive protocols, such a nested cross-validation
or “double cross” (Stone, 1974).

None of the methods or algorithms discussed in this paper are new; the novel contribution
of this work is an empirical demonstration that over-fitting at the second level of inference (i.e.,
model selection) can have a very substantial deleterious effect on the generalisation performance
of state-of-the-art machine learning algorithms. Furthermore the demonstration that this can
lead to a misleading optimistic bias in performance evaluation using evaluation protocols in
common use in the machine learning community is also novel. The paper is intended to be of
some tutorial value in promoting best practice in model selection and performance evaluation,
however we also hope that the observation that over-fitting in model selection is a significant
problem will encourage much needed algorithmic and theoretical development in this area.

The remainder of the paper is structured as follows: Section 3.2 provides a brief overview
of the kernel ridge regression classifier used as the base classifier for the majority of the ex-
perimental work and Section 3.3 describes the data sets used. Section 3.4 demonstrates the
importance of the variance of the model selection criterion, as it can lead to over-fitting in

1. The term “robust” is used here to imply insensitivity to irrelevant experimental factors, such as the sampling and
partitioning of the data to form training, validation and test sets; this is normally achieved by computationally ex-
pensive resampling schemes, for example, cross-validation (Stone, 1974) and the bootstrap (Efron and Tibshirani,
1994).

50

3. OVERFITTING IN MODEL SELECTION AND SELECTION BIAS IN EVALUATION

model selection, resulting in poor generalisation performance. A number of methods to avoid
over-fitting in model selection are also discussed. Section 3.5 shows that over-fitting in model
selection can result in biased performance evaluation if model selection is not viewed as an
integral part of the modelling procedure. Two apparently benign and widely used performance
evaluation protocols are shown to be affected by this problem. Finally, the work is summarised
in Section 3.6.

3.2. Kernel Ridge Regression

In this section, we provide a brief overview of the Kernel Ridge Regression (KRR) classifier
(Saunders et al., 1998), also known as the Least-Squares Support Vector Machine (Suykens
et al., 2002), Regularised Least Squares (Rifkin and Lippert, 2007), Regularisation Network
(Poggio and Girosi, 1990) etc., used as the base classifier in most of the empirical demon-
strations in the sequel. Assume we are given labeled training data, 2 = {(:Jci,y,»)}le, where
x; € 2 C R? is a vector of input features describing the i example and y; € {—1,+1} is an
indicator variable such that y; = +1 if the i example is drawn from the positive class, €+, and
y; = —1if from the negative class, 4~ . Further let us assume there are £* positive examples and
¢~ = {— " negative examples. The Kernel Ridge Regression classifier aims to construct a lin-
ear model f(x) = w- ¢(x)+b in a fixed feature space, ¢ : 2~ — .Z, that is able to distinguish
between examples drawn from ¢~ and €, such that

me{%’+ if f(z) >0

%~ otherwise

However, rather than specifying the feature space, %, directly, it is induced by a kernel function,
K X x X — R, giving the inner product between the images of vectors in the feature space,
F, thatis, ¥ (x,2') = ¢p(x) - ¢(x’). A common kernel function, used throughout this study,
is the Gaussian radial basis function (RBF) kernel

%(az,w’):exp{—’r]||a:—ac/H2}, 3.1

where 7 is a kernel parameter controlling the sensitivity of the kernel function. However, the
interpretation of the kernel function as evaluating the inner product between points in an implied
feature space is valid for any kernel for which the kernel matrix K = [k;; = % (x;,x j)]fj | s
positive definite (Mercer, 1909), such that

a’Ka >0, Va#0.

The model parameters (w, b) are given by the minimum of a regularised (Tikhonov and Arsenin,
1977) least-squares loss function,

ng wl* + Zm w-¢(x;) —b)?, (3.2)

where A is a regularisation parameter controlling the bias-variance trade-off (Geman et al.,
1992). The accuracy of the kernel machine on test data is critically dependent on the choice of
good values for the hyper-parameters, in this case A and 1). The search for the optimal values
for such hyper-parameters is a process known as model selection. The representer theorem
(Kimeldorf and Wahba, 1971) states that the solution to this optimisation problem can be written
as an expansion of the form

4
w = Zocigb(m,-) = f(z Zaz (zi,x) +b.
i=1

51

CAWLEY TALBOT

The dual parameters of the kernel machine, ¢, are then given by the solution of a system of

linear equations,
K+AI 1 a| |y
Rl I e

where y = (y1,y2,...,y¢)7, which can be solved efficiently via Cholesky factorisation of K +
AT, with a computational complexity of ¢'(¢3) operations (Suykens et al., 2002). The simplicity
and efficiency of the kernel ridge regression classifier makes it an ideal candidate for relatively
small-scale empirical investigations of practical issues, such as model selection.

3.2.1. Efficient Leave-One-Out Cross-Validation

Cross-validation (e.g., Stone, 1974) provides a simple and effective method for both model
selection and performance evaluation, widely employed by the machine learning community.
Under k-fold cross-validation the data are randomly partitioned to form k disjoint subsets of
approximately equal size. In the i fold of the cross-validation procedure, the i subset is used
to estimate the generalisation performance of a model trained on the remaining k — 1 subsets.
The average of the generalisation performance observed over all k folds provides an estimate
(with a slightly pessimistic bias) of the generalisation performance of a model trained on the
entire sample. The most extreme form of cross-validation, in which each subset contains only
a single pattern is known as leave-one-out cross-validation (Lachenbruch and Mickey, 1968;
Luntz and Brailovsky, 1969). An attractive feature of kernel ridge regression is that it is possible
to perform leave-one-out cross-validation in closed form, with minimal cost as a by-product of
the training algorithm (Cawley and Talbot, 2003). Let C represent the matrix on the left hand
side of (3.3), then the residual error for the i training pattern in the i fold of the leave-one-out

process is given by,
A0 —y; _);(—i) _ %
;=YY =
l l Ci

where)75_]) is the output of the kernel ridge regression machine for the i observation in the ;i
fold of the leave-one-out procedure and C}; lis the i™ element of the principal diagonal of the
inverse of the matrix C'. Similar methods have been used in least-squares linear regression for
many years, (e.g., Stone, 1974; Weisberg, 1985). While the optimal model parameters of the
kernel machine are given by the solution of a simple system of linear equations, (3.3), some form
of model selection is required to determine good values for the hyper-parameters, @ = (A,1),
in order to maximise generalisation performance. The analytic leave-one-out cross-validation
procedure described here can easily be adapted to form the basis of an efficient model selection
strategy (cf. Chapelle et al., 2002; Cawley and Talbot, 2003; Bo et al., 2006). In order to obtain
a continuous model selection criterion, we adopt Allen’s Predicted REsidual Sum-of-Squares
(PRESS) statistic (Allen, 1974),

PRESS(6) = f [r,?"’r.
i=1

The PRESS criterion can be optimised efficiently using scaled conjugate gradient descent (Williams,
1991) or Nelder-Mead simplex (Nelder and Mead, 1965) procedures. For full details of the
training and model selection procedures for the kernel ridge regression classifier, see Cawley
(2006). A public domain MATLAB implementation of the kernel ridge regression classifier,
including automated model selection, is provided by the Generalised Kernel Machine (GKM)
(Cawley et al., 2007) toolbox.2

2. Toolbox can be found at http://theoval.cmp.uea.ac.uk/\simgcc/projects/gkm.

52

3. OVERFITTING IN MODEL SELECTION AND SELECTION BIAS IN EVALUATION

3.3. Data Sets used in Empirical Demonstrations

In this section, we describe the benchmark data sets used in this study to illustrate the problem of
over-fitting in model selection and to demonstrate the bias this can introduce into performance
evaluation.

3.3.1. A Synthetic Benchmark

A synthetic benchmark, based on that introduced by Ripley (1996), is used widely in the next
section to illustrate the nature of over-fitting in model selection. The data are drawn from four
spherical bivariate Gaussian distributions, with equal probability. All four Gaussians have a
common variance, 6> = 0.04. Patterns belonging to the positive classes are drawn from Gaus-
sians centred on [+0.4,+0.7] and [—0.3,+0.7]; the negative patterns are drawn from Gaussians
centred on [—0.7,4-0.3] and [+0.3,+0.3]. Figure 3.1 shows a realisation of the synthetic bench-
mark, consisting of 256 patterns, showing the Bayes-optimal decision boundary and contours
representing an a-posteriori probability of belonging to the positive class of 0.1 and 0.9. The
Bayes error for this benchmark is approximately 12.38%. This benchmark is useful firstly as
the Bayes optimal decision boundary is known, but also because it provides an inexhaustible
supply of data, allowing the numerical approximation of various expectations.

L ‘ ‘ ‘ ‘ 15

0 0
+
— = p(C'x)=0.9 e
—p(C*Ix)=05 —f(x)=0
p(C*Ix) = 0.1 f(x) =-1
05 : 05 :
15 -1 -0.5 0 05 1 15 -1 -0.5 0 05 1
X X
1 1
(@) (b)

Figure 3.1: Realisation of the Synthetic benchmark data set, with Bayes optimal decision
boundary (a) and kernel ridge regression classifier with an automatic relevance de-
termination (ARD) kernel where the hyper-parameters are tuned so as to minimise
the true test MSE (b).

3.3.2. A Suite of Benchmarks for Robust Performance Evaluation

In addition to illustrating the nature of over-fitting in model selection, we need to demonstrate
that it is a serious concern in practical applications and show that it can result in biased perfor-
mance evaluation if not taken into consideration. Table 3.1 gives the details of a suite of thirteen
benchmark data sets, introduced by Ritsch et al. (2001). Each benchmark is based on a data set
from the UCI machine learning repository, augmented by a set of 100 pre-defined partitions to
form multiple realisations of the training and test sets (20 in the case of the larger image and
splice datasets). The use of multiple benchmarks means that the evaluation is more robust as

53

CAWLEY TALBOT

the selection of data sets that provide a good match to the inductive bias of a particular classifier
becomes less likely. Likewise, the use of multiple partitions provides robustness against sensi-
tivity to the sampling of data to form training and test sets. Results on this suite of benchmarks
thus provides a reasonable indication of the magnitude of the effects of over-fitting in model
selection that we might expect to see in practice.

Table 3.1: Details of data sets used in empirical comparison.

Training | Testing Number of Input
Data Set Patterns | Patterns | Replications | Features
banana 400 4900 100 2
breast cancer 200 77 100 9
diabetis 468 300 100 8
flare solar 666 400 100 9
german 700 300 100 20
heart 170 100 100 13
image 1300 1010 20 18
ringnorm 400 7000 100 20
splice 1000 2175 20 60
thyroid 140 75 100 5
titanic 150 2051 100 3
twonorm 400 7000 100 20
waveform 400 4600 100 21

3.4. Over-fitting in Model Selection

We begin by demonstrating that it is possible to over-fit a model selection criterion based on a
finite sample of data, using the synthetic benchmark problem, where ground truth is available.
Here we use “over-fitting in model selection” to mean minimisation of the model selection crite-
rion beyond the point at which generalisation performance ceases to improve and subsequently
begins to decline. Figure 3.1(b) shows the output of a kernel ridge regression classifier for the
synthetic problem, with the Automatic Relevance Determination (ARD) variant of the Gaussian
radial basis function kernel,

d
H (x,x) ZCXP{—Z;ni(xi_x;)z}v

which has a separate scaling parameter, 7;, for each feature. A much larger training set of 4096
samples was used, and the hyper-parameters were tuned to minimise the true test mean squared
errors (MSE). The performance of this model, achieved an error rate of 12.50%, which suggests
that a model of this form is capable of approaching the Bayes error rate for this problem, at least
in principle, and so there is little concern of model mis-specification.

A further one thousand independent realisations of this benchmark were generated, each
consisting of 64 samples. A kernel ridge regression classifier, based on the ARD kernel, was
constructed for each realisation, with the hyper-parameters tuned so as to minimise a four-
fold cross-validation estimate of the mean squared error. The true generalisation performance
of each model was estimated numerically using the underlying generative model of the data

54

3. OVERFITTING IN MODEL SELECTION AND SELECTION BIAS IN EVALUATION

0.27

0.23 T T T ——

Y - - - X-Validation --- ?F—Vtalldatlon
es

\ Test ~
) 0261
0.225F 4 NN

0250 ~.
022
0.24F T---

MSE

w
7] t
2 0.215

0.23-

0.21F AN 4

N 0.22- 1

> ~
0.205¢ el 1 0.21 _/
02 0.2 . . . ,
0 20 40 60 80 100 0 20 40 60 80 100
iteration iteration
(a) (b)

Figure 3.2: Evolution of the expected four-fold cross-validation and true test mean squared er-
ror as a function of the number of iterations (optimisation steps in the minimisation
of the model selection criterion) of the model selection process, for a kernel ridge
regression classifier trained on the synthet ic benchmark data set (a) and (b) the
evolution of those statistics for a particular realisation of the data set.

set. Figure 3.2(a) shows the expected true test and cross-validation estimates of the mean
squared error averaged over all 1000 realisations of the benchmark. As would be expected,
the cross-validation estimate of the mean squared error, forming the model selection criterion,
is monotonically decreasing. However, the expected value of the true test MSE initially shows
a decrease, as the hyper-parameters are modified in a manner that provides genuine improve-
ments in generalisation, but after a relatively short time (approximately 30—40 iterations), the
test error begins to climb slowly once more as the hyper-parameters are tuned in ways that ex-
ploit the meaningless statistical peculiarities of the sample. This produces a close analog of the
classic plot used to illustrate the nature of over-fitting in training, for example, Figure 9.7 of the
book by Bishop (1995). Figure 3.2 (b) shows the same statistics for one particular realisation
of the data, demonstrating that the over-fitting can in some cases be quite substantial, clearly
in this case some form of early-stopping in the model selection process would have resulted in
improved generalisation. Having demonstrated that the classic signature of over-fitting during
training is also apparent in the evolution of cross-validation and test errors during model selec-
tion, we discuss in the next section the origin of this form of over-fitting in terms of the bias and
variance of the model selection criterion.

3.4.1. Bias and Variance in Model Selection

Model selection criteria are generally based on an estimator of generalisation performance eval-
uated over a finite sample of data, this includes resampling methods, such as split sample esti-
mators, cross-validation (Stone, 1974) and bootstrap methods (Efron and Tibshirani, 1994), but
also more loosely, the Bayesian evidence (MacKay, 1992; Rasmussen and Williams, 2006) and
theoretical performance bounds such as the radius-margin bound (Vapnik, 1998). The error of
an estimator can be decomposed into two components, bias and variance. Let G(0) represent
the true generalisation performance of a model with hyper-parameters 6, and g(0; 2) be an
estimate of generalisation performance evaluated over a finite sample, 2, of n patterns. The

55

CAWLEY TALBOT

expected squared error of the estimator can then be written in the form (Geman et al., 1992;
Duda et al., 2001),

E; {[8(6:2) ~G(O) | = [E5{8(6:2) ~ G(O)} + Eo { [8(6:2) — Er {3(6:7)}]}.

where Eg{-} represents an expectation evaluated over independent samples, 2, of size n. The
first term, the squared bias, represents the difference between the expected value of the estimator
and the unknown value of the true generalisation error. The second term, known as the variance,
reflects the variability of the estimator around its expected value due to the sampling of the data
2 on which it is evaluated. Clearly if the expected squared error is low, we may reasonably
expect g(-) to perform well as a model selection criterion. However, in practice, the expected
squared error may be significant, in which case, it is interesting to ask whether the bias or the
variance component is of greatest importance in reliably achieving optimal generalisation.

It is straightforward to demonstrate that leave-one-out cross-validation provides an almost
unbiased estimate of the true generalisation performance (Luntz and Brailovsky, 1969), and this
is often cited as being an advantageous property of the leave-one-out estimator in the setting of
model selection (e.g., Vapnik, 1998; Chapelle et al., 2002). However, for the purpose of model
selection, rather than performance evaluation, unbiasedness per se is relatively unimportant,
instead the primary requirement is merely for the minimum of the model selection criterion to
provide a reliable indication of the minimum of the true test error in hyper-parameter space. This
point is illustrated in Figure 3.3, which shows a hypothetical example of a model selection cri-
terion that is unbiased (by construction) (a) and another that is clearly biased (b). Unbiasedness
provides the assurance that the minimum of the expected value of the model selection criterion,
E4{g(0;2)} coincides with the minimum of the test error, G(8). However, in practice, we
have only a finite sample of data, &;, over which to evaluate the model selection criterion, and
so it is the minimum of g(0; %;) that is of interest. In Figure 3.3(a), it can be seen that while
the estimator is unbiased, it has a high variance, and so there is a large spread in the values of 8
at which the minimum occurs for different samples of data, and so g(0; ;) is likely to provide
a poor model selection criterion in practice. On the other hand, Figure 3.3(b) shows a criterion
with lower variance, and hence is the better model selection criterion, despite being biased, as
the minima of g'(0; 2;) for individual samples lie much closer to the minimum of the true test
error. This demonstrates that while unbiasedness is reassuring, as it means that the form of
the model selection criterion is correct on average, the variance of the criterion is also vitally
important as it is this that ensures that the minimum of the selection criterion evaluated on a
particular sample will provide good generalisation.

3.4.2. The Effects of Over-fitting in Model Selection

In this section, we investigate the effect of the variance of the model selection criterion using
a more realistic example, again based on the synthetic benchmark, where the underlying
generative model is known and so we are able to evaluate the true test error. It is demonstrated
that over-fitting in model selection can cause both under-fitting and over-fitting of the training
sample. A fixed training set of 256 patterns is generated, and used to train a kernel ridge
regression classifier, using the simple RBF kernel (3.1), with hyper-parameter settings defining
a fine grid spanning reasonable values of the regularisation and kernel parameters, A and 7
respectively. The smoothed error rate (Bo et al., 2006),

SER(0) = [1 —yitanh {yf(z:)}]

2n 5

1 n
=

56

3. OVERFITTING IN MODEL SELECTION AND SELECTION BIAS IN EVALUATION

0.8F

nd
=)
T
o
=

error rate
error rate

o
>
o
>

0.2r | test error 0.2r test error [
! - - -Epg(6:D) - - -Eg(6:D)
—g(6:D) —g®D)
GO 2 4 6 8 10 ° 6 8 10
0 0
(a) (b)

Figure 3.3: Hypothetical example of an unbiased (a) and a biased (b) model selection crite-
rion. Note that the biased model selection criterion () is likely to provide the
more effective model selection criterion as it has a lower variance, even though it
is significantly biased. For clarity, the true error rate and the expected value of the
model selection criteria are shown with vertical displacements of —0.6 and —0.4
respectively.

is used as the statistic of interest, in order to improve the clarity of the figures, where 7y is a
parameter controlling the amount of smoothing applied (y = 8 is used throughout, however the
precise value is not critical). Figure 3.4(a) shows the true test smoothed error rate as a function
of the hyper-parameters. As these are both scale parameters, a logarithmic representation is
used for both axes. The true test smoothed error rate is an approximately unimodal function of
the hyper-parameters, with a single distinct minimum, indicating the hyper-parameter settings
giving optimal generalisation.

In practical applications, however, the true test error is generally unknown, and so we must
rely on an estimator of some sort. The simplest estimator for use in model selection is the error
computed over an independent validation set, that is, the split-sample estimator. It seems en-
tirely reasonable to expect the split-sample estimator to be unbiased. Figure 3.4(b) shows a plot
of the mean smoothed error rate using the split-sample estimator, over 100 random validation
sets, each of which consists of 64 patterns. Note that the same fixed training set is used in each
case. This plot is very similar to the true smoothed error, shown in Figure 3.4(a), demonstrating
that the split sample estimator is indeed approximately unbiased.

While the split-sample estimator is unbiased, it may have a high variance, especially as in
this case the validation set is (intentionally) relatively small. Figure 3.5 shows plots of the split-
sample estimate of the smoothed error rate for six selected realisations of a validation set of 64
patterns. Clearly, the split-sample error estimate is no longer as smooth, or indeed unimodal.
More importantly, the hyper-parameter values selected by minimising the validation set error,
and therefore the true generalisation performance, depends on the particular sample of data used
to form the validation set. Figure 3.6 shows that the variance of the split-sample estimator can
result in models ranging from severely under-fit (a) to severely over-fit (f), with variations in
between these extremes.

57

CAWLEY TALBOT

Iogzx

Iogzx

Figure 3.4: Plot of the true test smoothed error rate (a) and mean smoothed error rate over 100

random validation sets of 64 samples (b), for a kernel ridge regression classifier as a

function of the hyper-parameters. In each case, the minimum is shown by a yellow
Cross, +.

"

Figure 3.5: Contour plot of the split-sample estimate of the smoothed error rate for a kernel

58

ridge regression machine as a function of the hyper-parameters, for six random
realisations of the validation set. The minimum is shown by a cross, +.

3. OVERFITTING IN MODEL SELECTION AND SELECTION BIAS IN EVALUATION

15 -1 -05 0 05 1 %5 -1 -05 0 05 1 35 -1 -05 0 05 1
4 4

(d) (e) ()

Figure 3.6: Kernel ridge regression models of the synthetic benchmark, using hyper-parameters
selected according to the smoothed error rate over six random realisations of the
validation set (shown in Figure 3.5). The variance of the model selection criterion
can result in models ranging from under-fit, (a) and (b), through well-fitting, (c)
and (d), to over-fit (e) and (f).

59

CAWLEY TALBOT

Figure 3.7(a) shows a scatter plot of the validation set and true error rates for kernel ridge re-
gression classifiers for the synthetic benchmark, with split-sample based model selection using
100 random realisations of the validation set. Clearly, the split-sample based model selection
procedure normally performs well. However, there is also significant variation in performance
with different samples forming the validation set. We can also see that the validation set error is
strongly biased, having been directly minimised during model selection, and (of course) should
not be used for performance estimation.

0.38 T T T T 0.38
+
0.36F Ty 1 0.36
+
0.34r R 0.341
0.32F 1 0.32
03 N 03
o + o
8 b 0.28
0.28
S e S
= + =
0.26 4 0.26
+
0.24 * 0.24
A + ++ 4
0.22 + R 0.22 L+ T
++ A + + Tt
- T . T
02 ER A AT A 1 02 it
048 048
0.05 0.1 0.15 0.2 0.25 0 0.05 0.1 0.15 0.2 0.25
validation SER validation SER
(a) ()

Figure 3.7: Scatter plots of the true test smoothed error rate as a function of the validation set
smoothed error rate for 100 randomly generated validation sets of (a) 64 and (b)
256 patterns.

Note that in this section we have deliberately employed a split-sample based model selec-
tion strategy with a relatively high variance, due to the limited size of the validation set. A
straightforward way to reduce the variance of the model selection criterion is simply to in-
crease the size of the validation sample over which it is evaluated. Figure 3.8 shows the optimal
hyper-parameter settings obtained using 100 realisations of validation sets of 64 (a) and 256 (b)
samples. It can be clearly seen that the use of a larger validation set has resulted in a tighter clus-
tering of hyper-parameter values around the true optimum, note also that the hyper-parameters
are concentrated along the bottom of a broad valley in hyper-parameter space, so even when
the selected values are different from the optimal value, they still lie in positions giving good
generalisation. This is further illustrated in Figure 3.7(b), where the true smoothed error rates
are much more tightly clustered, with fewer outliers, for the larger validation sets than obtained
using smaller validation sets, shown in Figure 3.7(a).

The variation in performance for different realisations of the benchmark suggests that eval-
uation of machine learning algorithms should always involve multiple partitions of the data
to form training/validation and test sets, as the sampling of data for a single partition of the
data might arbitrarily favour one classifier over another. This is illustrated in Figure 3.9, which
shows the test error rates for Gaussian Process and Kernel Logistic Regression classifiers (GPC
and KLR respectively), for 100 random realisations of the banana benchmark data set used
in Ritsch et al. (2001) (see Section 3.5.1 for details). On 64 realisations of the data GPC out-
performs KLR, but on 36 KLR out-performs GPC, even though the GPC is better on average
(although the difference is not statistically significant in this case). If the classifiers had been
evaluated on only one of the latter 36 realisations, it might incorrectly be concluded that the

60

3. OVERFITTING IN MODEL SELECTION AND SELECTION BIAS IN EVALUATION

Iogzx
Iogzx

-8 -6 -4 -2

0 2 4 6 8
log,n

(b)

Figure 3.8: Contour plot of the mean validation set smoothed error rate over 100 randomly
generated validation sets of (a) 64 and (b) 256 patterns. The minimum of the mean
validation set error is marked by a yellow cross, and the minimum for each realisa-
tion of the validation set marked by a red cross.

KLR classifier is superior to the GPC for that benchmark. However, it should also be noted that
a difference in performance between two algorithms is unlikely to be of practical significance,
even if it is statistically significant, if it is smaller than the variation in performance due to the
random sampling of the data, as it is probable that a greater improvement in performance would
be obtained by further data collection than by selection of the optimal classifier.

3.4.3. Is Over-fitting in Model Selection Really a Genuine Concern in Practice?

In the preceding part of this section we have demonstrated the deleterious effects of the vari-
ance of the model selection criterion using a synthetic benchmark data set, however this is not
sufficient to establish that over-fitting in model selection is actually a genuine concern in practi-
cal applications or in the development of machine learning algorithms. Table 3.2 shows results
obtained using kernel ridge regression (KRR) classifiers, with RBF and ARD kernel functions
over the thirteen benchmarks described in Section 3.3.2. In each case, model selection was
performed independently for each realisation of each benchmark by minimising the PRESS
statistic using the Nelder-Mead simplex method (Nelder and Mead, 1965). For the majority of
the benchmarks, a siginicantly lower test error is achieved (according to the Wilcoxon signed
ranks test) using the basic RBF kernel; the ARD kernel only achieves statistical superiority on
one of the thirteen (image). This is perhaps a surprising result as the models are nested, the
RBF kernel being a special case of the ARD kernel, so the optimal performance that can be
achieved with the ARD kernel is guaranteed to be at least equal to the performance achievable
using the RBF kernel. The reason for the poor performance of the ARD kernel in practice is
because there are many more kernel parameters to be tuned in model selection and so many
degrees of freedom available in optimising the model selection criterion. If the criterion used
has a non-negligible variance, this includes optimisations exploiting the statistical peculiarities
of the particular sample of data over which it is evaluated, and hence there will be more scope
for over-fitting. Table 3.2 also shows the mean value of the PRESS statistic, following model
selection, the fact that the majority of ARD models display a lower value for the PRESS statistic

61

CAWLEY TALBOT

0.12

0.1151 *

o

=

oy
:
+
+

0.105F A S

KLR error rate

N
0.1 4
.

0.095

0.09 Il Il Il Il Il
0.09 0.095 0.1 0.105 0.11 0.115 0.12

GPC error rate

Figure 3.9: Scatter plots of the test set error for Gaussian process and Kernel Logistic regres-
sion classifiers (GPC and KLR respectively) for 100 realisations of the banana
benchmark.

than the corresponding RBF model, while exhibiting a higher test error rate, is a strong indica-
tion of over-fitting the model selection criterion. This is a clear demonstration that over-fitting
in model selection can be a significant problem in practical applications, especially where there
are many hyper-parameters or where only a limited supply of data is available.

Table 3.3 shows the results of the same experiment performed using expectation-propagation
based Gaussian process classifiers (EP-GPC) (Rasmussen and Williams, 2006), where the hyper-
parameters are tuned independently for each realisation, for each benchmark individually by
maximising the Bayesian evidence. While the leave-one-out cross-validation based PRESS cri-
terion is known to exhibit a high variance, the variance of the evidence (which is also evaluated
over a finite sample of data) is discussed less often. We find again here that the RBF covariance
function often out-performs the more general ARD covariance function, and again the test error
rate is often negatively correlated with the evidence for the models. This indicates that over-
fitting the evidence is also a significant practical problem for the Gaussian process classifier.

3.4.4. Avoiding Over-fitting in Model Selection

It seems reasonable to suggest that over-fitting in model selection is possible whenever a model
selection criterion evaluated over a finite sample of data is directly optimised. Like over-fitting
in training, over-fitting in model selection is likely to be most severe when the sample of data
is small and the number of hyper-parameters to be tuned is relatively large. Likewise, assum-
ing additional data are unavailable, potential solutions to the problem of over-fitting the model
selection criterion are likely to be similar to the tried and tested solutions to the problem of over-
fitting the training criterion, namely regularisation (Cawley and Talbot, 2007), early stopping
(Qi et al., 2004) and model or hyper-parameter averaging (Cawley, 2006; Hall and Robinson,
2009). Alternatively, one might minimise the number of hyper-parameters, for instance by

62

3. OVERFITTING IN MODEL SELECTION AND SELECTION BIAS IN EVALUATION

Table 3.2: Error rates of kernel ridge regression (KRR) classifier over thirteen benchmark data

sets (Rétsch et al., 2001), using both standard radial basis function (RBF) and au-
tomatic relevance determination (ARD) kernels. Results shown in bold indicate an
error rate that is statistically superior to that obtained with the same classifier using
the other kernel function, or a PRESS statistic that is significantly lower.

Data Set Test Error Rate PRESS
RBF ARD RBF ARD
banana 10.610 +0.051 | 10.638 +0.052| 60.808 +0.636 | 60.957 + 0.624
breast cancer | 26.727 £ 0.466 | 28.766 4= 0.391 | 70.632 £ 0.328 | 66.789 + 0.385
diabetis 23.293 + 0.169 | 24.520 4= 0.215 | 146.143 £ 0.452 | 141.465 =+ 0.606
flare solar 34.140 £ 0.175 | 34.375 +£0.175|267.332 £ 0.480 | 263.858 + 0.550
german 23.540 + 0.214 | 25.847 4+ 0.267 | 228.256 4 0.666 | 221.743 + 0.822
heart 16.730 = 0.359 | 22.810 £0.411| 42.576 +£0.356 | 37.023 + 0.494
image 2.990 £+ 0.159 2.188 +0.134 | 74.056 + 1.685 | 44.488 + 1.222
ringnorm 1.613 + 0.015 2.750 £0.042 | 28.324 +£0.246| 27.680 + 0.231
splice 10.777 + 0.144 9.943 £ 0.520 | 186.814 £ 2.174 | 130.888 + 6.574
thyroid 4.747 + 0.235 4.693 £+ 0.202 9.099 + 0.152 6.816 + 0.164
titanic 22.483 £ 0.085| 22.562 +0.109| 48.332 £0.622| 47.801 £ 0.623
twonorm 2.846 + 0.021 4.292 £ 0.086 | 32.539 +0.279 | 35.620 £ 0.490
waveform 9.792 £ 0.045 | 11.836 £0.085| 61.658 +£0.596| 56.424 + 0.637

Table 3.3: Error rates of expectation propagation based Gaussian process classifiers (EP-GPC),

using both standard radial basis function (RBF) and automatic relevance determina-
tion (ARD) kernels. Results shown in bold indicate an error rate that is statistically
superior to that obtained with the same classifier using the other kernel function or
evidence that is significantly higher.

Data Set

Test Error Rate

RBF

|

ARD

-Log Evidence

RBF

ARD

banana
breast cancer
diabetis
flare solar
german
heart
image
ringnorm
splice
thyroid
titanic
twonorm
waveform

10.413 + 0.046
26.506 + 0.487
23.280 £ 0.182
34.200 £ 0.175
23.363 + 0.211
16.670 + 0.290
2.817 £ 0.121
4.406 + 0.064
11.609 + 0.180
4.373 £0.219
22.637 +0.134
3.060 £ 0.034
10.100 £ 0.047

10.459 +£ 0.049
27.948 £ 0.492
23.853 £0.193
33.578 £ 0.181
23.757 £ 0.217
19.770 &+ 0.365
2.188 £ 0.076
8.589 £+ 0.097
8.618 £ 0.924
4.227 £ 0.216
22.725 £0.133
4.025 £ 0.068
11.418 £ 0.091

116.894 £ 0.917
110.628 £ 0.366
230.211 £ 0.553
394.697 £ 0.546
359.181 £ 0.778
73.464 + 0.493
205.061 £ 1.687
121.260 + 0.499
365.208 + 3.137
25.461 £0.182
78.952 £ 0.670
45.901 £ 0.577
105.925 £ 0.954

116.459 + 0.923
107.181 + 0.388
222.305 £ 0.581
384.374 £+ 0.512
346.048 + 0.835

67.811 £ 0.571
123.896 + 1.184

91.356 £ 0.583

242.464 £ 16.98(

18.867 £ 0.170
78.373 £ 0.683
42.044 £ 0.610
91.239 + 0.962

63

CAWLEY TALBOT

treating kernel parameters as simply parameters and optimising them at the first level of infer-
ence and have a single regularisation hyper-parameter controlling the overall complexity of the
model. For very small data sets, where the problem of over-fitting in both learning and model
selection is greatest, the preferred approach would be to eliminate model selection altogether
and opt for a fully Bayesian approach, where the hyper-parameters are integrated out rather
than optimised (e.g., Williams and Barber, 1998). Another approach is simply to avoid model
selection altogether using an ensemble approach, for example the Random Forest (RF) method
(Breiman, 2001). However, while such methods often achieve state-of-the-art performance, it is
often easier to build expert knowledge into hierarchical models, for example through the design
of kernel or covariance functions, so unfortunately approaches such as the RF are not a panacea.

While the problem of over-fitting in model selection is of the same nature as that of over-
fitting at the first level of inference, the lack of mathematical tractability appears to have limited
the theoretical analysis of model selection via optimisation of a model selection criterion. For
example, regarding leave-one-out cross-validation, Kulkarni et al. (1998) comment “In spite
of the practical importance of this estimate, relatively little is known about its properties. The
available theory is especially poor when it comes to analysing parameter selection based on
minimizing the deleted estimate.” (our emphasis). While some asymptotic results are avail-
able (Stone, 1977; Shao, 1993; Toussaint, 1974), these are not directly relevant to the situation
considered here, where over-fitting occurs due to optimising the values of hyper-parameters
using a model selection criterion evaluated over a finite, often quite limited, sample of data.
Estimates of the variance of the cross-validation error are available for some models (Luntz
and Brailovsky, 1969; Vapnik, 1982), however Bengio and Grandvalet (2004) have shown there
is no unbiased estimate of the variance of (k-fold) cross-validation. More recently bounds on
the error of leave-one-out cross-validation based on the idea of stability have been proposed
(Kearns and Ron, 1999; Bousquet and Elisseeff, 2002; Zhang, 2003). In this section, we have
demonstrated that over-fitting in model selection is a genuine problem in machine learning, and
hence is likely to be an area that could greatly benefit from further theoretical analysis.

3.5. Bias in Performance Estimation

Avoiding potentially significant bias in performance evaluation, arising due to over-fitting in
model selection, is conceptually straightforward. The key is to treat both training and model
selection together, as integral parts of the model fitting procedure and ensure they are never
performed separately at any point of the evaluation process. We present two examples of po-
tentially biased evaluation protocols that do not adhere to this principle. The scale of the bias
observed on some data sets is much larger than difference in performance between learning
algorithms, and so one could easily draw incorrect inferences based on the results obtained.
This highlights the importance of this issue in empirical studies. We also demonstrate that the
magnitude of the bias depends on the learning and model selection algorithms involved in the
comparison and that combinations that are more prone to over-fitting in model selection are
favored by biased protocols. This means that studies based on potentially biased protocols are
not internally consistent, even if it is acknowledged that a bias with respect to other studies may
exist.

3.5.1. An Unbiased Performance Evaluation Methodology

We begin by describing an unbiased performance protocol, that correctly accounts for any over-
fitting that may occur in model selection. Three classifiers are evaluated using an unbiased
protocol, in which model selection is performed separately for each realisation of each data set.

64

3. OVERFITTING IN MODEL SELECTION AND SELECTION BIAS IN EVALUATION

This is termed the “internal” protocol as the model selection process is performed independently
within each fold of the resampling procedure. In this way, the performance estimate includes a
component properly accounting for the error introduced by over-fitting the model selection cri-
terion. The classifiers used were as follows: RBF-KRR—Kkernel ridge regression with a radial
basis function kernel, with model selection based on minimisation of Allen’s PRESS statistic,
as described in Section 3.2. RBF-KLLR—kernel logistic regression with a radial basis function
kernel and model selection based on an approximate leave-one-out cross-validation estimate of
the log-likelihood (Cawley and Talbot, 2008). EP-GPC—expectation-propagation based Gaus-
sian process classifier, with an isotropic squared exponential covariance function, with model
selection based on maximising the marginal likelihood (e.g., Rasmussen and Williams, 2006).
The mean error rates obtained using these classifiers under an unbiased protocol are shown in
Table 3.4. In this case, the mean ranks of all methods are only minimally different, and so
there is little if any evidence for a statistically significant superiority of any of the classifiers
over any other. Figure 3.10 shows a critical difference diagram (DemS$ar, 2006), providing a
graphical illustration of this result. A critical difference diagram displays the mean rank of a
set of classifiers over a suite of benchmark data sets, with cliques of classifiers with statistically
similar performance connected by a bar. The critical difference in average ranks required for a
statistical superiority of one classifier over another is also shown, labelled “CD”.

RBF-KLR (internal) 20769 1.9281 RBF KRR (internal)

2 EP-GPC (internal)

Figure 3.10: Critical difference diagram (Demsar, 2006) showing the average ranks of three
classifiers with internal model selection protocol.

It is not unduly surprising that there should be little evidence for any statistically significant
superiority, as all three methods give rise to structurally similar models. The models though dif-
fer significantly in their model selection procedures, the EP-GPC is based on stronger statistical
assumptions, and so can be expected to excel where these assumptions are justified, but poorly
where the model is mis-specified (e.g., the ringnorm benchmark). The cross-validation based
model selection procedures, on the other hand, are more pragmatic and being based on much
weaker assumptions might be expected to provide a more consistent level of accuracy.

3.5.2. An Example of Biased Evaluation Methodology

The performance evaluation protocol most often used in conjunction with the suite of bench-
mark data sets, described in Section 3.3.2, seeks to perform model selection independently for
only the first five realisation of each data set. The median values of the hyper-parameters over
these five folds are then determined and subsequently used to evaluate the error rates for each
realisation. This “median” performance evaluation protocol was introduced in the same paper
that popularised this suite of benchmark data sets (Rétsch et al., 2001) and has been widely

65

CAWLEY TALBOT

Table 3.4: Error rate estimates of three classifiers over a suite of thirteen benchmark data sets:
The results for each method are presented in the form of the mean error rate over test
data for 100 realisations of each data set (20 in the case of the image and splice
data sets), along with the associated standard error.

Data Set GPC KLR KRR
(internal) (internal) (internal)

banana 10.413 4+ 0.046 | 10.567 £ 0.051 | 10.610 £ 0.051
breast cancer | 26.506 + 0.487 | 26.636 4+ 0.467 | 26.727 + 0.466
diabetis 23.280 4= 0.182 | 23.387 + 0.180 | 23.293 £ 0.169
flare solar 34.200 4 0.175 [34.197 £+ 0.170 | 34.140 £ 0.175
german 23.363 £ 0.211 [23.493 + 0.208 | 23.540 + 0.214
heart 16.670 4+ 0.290 | 16.810 + 0.315 | 16.730 + 0.359
image 2.817 £0.121 | 3.094 +0.130 | 2.990 + 0.159
ringnorm 4.406 £ 0.064 | 1.681 +0.031| 1.613 £0.015
splice 11.609 4+ 0.180 | 11.248 + 0.177 | 10.777 £ 0.144
thyroid 4373 £0.219| 4.293 +0.222| 4.747 £+ 0.235
titanic 22.637 +0.134 {22.473 £+ 0.103 | 22.483 £ 0.085
twonorm 3.060 & 0.034 | 2.944 £0.042| 2.846 4 0.021
waveform 10.100 = 0.047 | 9.918 £0.043 | 9.792 4 0.045

adopted (e.g., Mika et al., 1999; Weston, 1999; Billings and Lee, 2002; Chapelle et al., 2002;
Chu et al., 2003; Stewart, 2003; Mika et al., 2003; Gold et al., 2005; Pefia Centeno and D.,
2006; Andeli¢ et al., 2006; An et al., 2007; Chen et al., 2009). The original motivation for this
protocol was that the internal model selection protocol was prohibitively expensive using work-
stations available (Ritsch, 2006), which was perfectly reasonable at the time, but is no longer
true.? The use of the median, however, can be expected to introduce an optimistic bias into the
performance estimates obtained using this “median” protocol. Firstly all of the training data
comprising the first five realisations have been used during the model selection process for the
classifiers used in every fold of the re-sampling. This means that some of the test data for each
fold is no longer statistically “pure” as it has been seen during model selection. Secondly, and
more importantly, the median operation acts as a variance reduction step, so the median of the
five sets of hyper-parameters is likely to be better on average than any of the five from which
it is derived. Lastly, as the hyper-parameters are now fixed, there is no longer scope for over-
fitting the model selection criterion due to peculiarities of the sampling of data for the training
and test partitions in each realisation.

We begin by demonstrating that the results using the internal and median protocols are not
commensurate, and so the results obtained using different methods are not directly comparable.
Table 3.5 shows the error rate obtained using the RBF-KRR classifier with the internal and me-
dian performance evaluation protocols and the resulting bias, that is, the difference between the
mean error rates obtained with the internal and median protocols. It is clearly seen that the me-
dian protocol introduces a positive bias on almost all benchmarks (twonorm and waveform
being the exceptions) and that the bias can be quite substantial on some benchmarks. Indeed,
for several benchmarks, breast cancer, german, heart and thyroid in particular, the
bias is larger than the typical difference in performance between classifiers evaluated using an
unbiased protocol. DemsSar (2006) recommends the Wilcoxon signed ranks test for determina-

3. All of the experimental results presented in this paper were obtained using a single modern Linux workstation.

66

3. OVERFITTING IN MODEL SELECTION AND SELECTION BIAS IN EVALUATION

Table 3.5: Error rate estimates of three classifiers over a suite of thirteen benchmark data sets:
The results for each method are presented in the form of the mean error rate over test
data for 100 realisations of each data set (20 in the case of the image and splice data
sets), along with the associated standard error.

Data Set KRR KRR Bias
(internal) (median)

banana 10.610 & 0.051 | 10.384 £ 0.042 | 0.226 + 0.034
breast cancer | 26.727 + 0.466 | 26.377 + 0.441 | 0.351 +0.195
diabetis 23.293 +0.169 | 23.150 & 0.157 | 0.143 £ 0.074
flare solar 34.140 4+ 0.175 [34.013 £ 0.166 | 0.128 & 0.082
german 23.540 4+ 0.214 { 23.380 + 0.220 | 0.160 4 0.067
heart 16.730 + 0.359 | 15.720 £ 0.306 | 1.010 + 0.186
image 2.990 £+ 0.159| 2.802 +0.129 | 0.188 £ 0.095
ringnorm 1.613 £0.015| 1.573 £0.010| 0.040 £+ 0.010
splice 10.777 +0.144 | 10.763 £ 0.137 | 0.014 £ 0.055
thyroid 4747 £0.235| 4.560 +0.200 | 0.187 & 0.100
titanic 22.483 4+ 0.085 [22.407 £ 0.102 | 0.076 &+ 0.077
twonorm 2.846 +0.021 | 2.868 £0.017 | -0.022 4+ 0.014
waveform 9.792 £ 0.045| 9.821 + 0.039 | -0.029 £ 0.020

tion of the statistical significance of the superiority of one classifier over another over multiple
data sets. Applying this test to the data shown for EP-GPC (internal), RBF-KLR (internal) and
RBF-KRR (median), from Tables 3.4 and 3.5, reveals that the RBF-KRR (median) classifier
is statistically superior to the remaining classifiers, at the 95% level of significance. A critical
difference diagram, summarising this result is shown in Figure 3.12. However, the difference in
performance is entirely spurious as it is purely the result of reducing the effects of over-fitting
in model selection and does not reflect the true operational performance of the combination of
classifier and model selection method. It is clear then that results obtained using the internal
and median protocols are not directly comparable, and so reliable inferences cannot be drawn
by comparison of results from different studies, using biased and unbiased protocols.

3.5.2.1. Is THE BIAS SOLELY DUE TO INADVERTENT RE-USE OF TEST SAMPLES?

One explanation for the observed bias of the median protocol is that some of the training sam-
ples for the first five realisations of the benchmark, which have been used in tuning the hyper-
parameters, also appear in the test sets for other realisations of the benchmark used for perfor-
mance analysis. In this section, we demonstrate that this inadvertent re-use of test samples is
not the only cause of the bias. One hundred replications of the internal and median protocol
were performed using the synthetic benchmark, for which an inexhaustible supply of i.i.d.
data is available. However, in this case in each realisation, 100 training sets of 64 patterns and
a large test set of 4096 samples were generated, all mutually disjoint. This means the only
remaining source of bias is the amelioration of over-fitting in model selection by the reduction
of variance by taking the median of the hyper-parameters over the first five folds (cf. Hall and
Robinson, 2009). Figure 3.11 shows the mean test errors for the internal and median protocols
over 100 replications, showing a very distinct optimistic bias in the median protocol (statisti-
cally highly significant according to the Wilcoxon signed ranks test, p < 0.001), even though
there is absolutely no inadvertent re-use of test data.

67

CAWLEY TALBOT

0.165

0.16f .

0.1551
—_ + 4
< +
% 0.15¢ + ot i
O +
£ o+
© 0145} . vl et
[ok
5 + o +
= 0.141 + v Faty +
w o+ g

A
N
0.135} Lo
ot
+
013} Lyt
0.125 - y y y
0.13 0.14 0.15 0.16

Error rate (internal)

Figure 3.11: Mean error rates for the internal and median evaluation protocols for the
synthetic benchmark, without inadvertent re-use of test data.

3.5.2.2. Is THE MEDIAN PROTOCOL INTERNALLY CONSISTENT?

Having established that the median protocol introduces an optimistic bias, and that the results
obtained using the internal and median protocols do not give comparable results, we next turn
our attention to whether the median protocol is internally consistent, that is, does the median
protocol give the correct rank order of the classifiers? Table 3.6 shows the performance of three
classifiers evaluated using the median protocol; the corresponding critical difference diagram is
shown in Figure 3.13. In this case the difference in performance between classifiers is not statis-
tically significant according to the Friedman test, however it can clearly be seen that the bias of
the median protocol has favored one classifier, namely the RBF-KRR, much more strongly than
the others. It seems feasible then that the bias of the median protocol may be sufficient in other
cases to amplify a small difference in performance, due perhaps to an accidentally favorable
choice of data sets, to the point where it spuriously appears to be statistically significant. This
suggests that the median protocol may be unreliable and perhaps should be deprecated.

RBF-KLR (internal) 23846 | L 12808 ppr_ KRR (median)

23846 Ep_GPC (internal)

Figure 3.12: Critical difference diagram (DemsSar, 2006) showing the average ranks of three
classifiers, EP-GPC and RBF-KLR with internal model selection protocol and
RBF-KLR using the optimistically biased median protocol (cf. Figure 3.10).

68

3. OVERFITTING IN MODEL SELECTION AND SELECTION BIAS IN EVALUATION

Table 3.6: Error rate estimates of three classifiers over a suite of thirteen benchmark data sets:
The results for each method are presented in the form of the mean error rate over test
data for 100 realisations of each data set (20 in the case of the image and splice data

sets), along with the associated standard error.

Data Set EP-GPC RBF-KLR RBF-KRR
(median) (median) (median)

banana 10.371 4 0.045 | 10.407 £ 0.047 | 10.384 £ 0.042
breast cancer | 26.117 + 0.472 | 26.130 + 0.474 | 26.377 4+ 0.441
diabetis 23.333 +0.191 [23.300 + 0.177 | 23.150 £+ 0.157
flare solar 34.150 4+ 0.170 | 34.212 £ 0.176 | 34.013 £ 0.166
german 23.160 4+ 0.216 | 23.203 + 0.218 | 23.380 £ 0.220
heart 16.400 4+ 0.273 | 16.120 £ 0.295 | 15.720 + 0.306
image 2.851 £0.102| 3.030 +0.120| 2.802 £ 0.129
ringnorm 4400 £0.064 | 1.574 £0.011| 1.573 +0.010
splice 11.607 + 0.184 | 11.172 £ 0.168 | 10.763 4+ 0.137
thyroid 4307 £0.217 | 4.040 +0.221| 4.560 =+ 0.200
titanic 22.490 4 0.095 [22.591 + 0.135|22.407 £+ 0.102
twonorm 3.241 £0.039| 3.068 4+ 0.033 | 2.868 + 0.017
waveform 10.163 +=0.045 | 9.888 £ 0.042| 9.821 £ 0.039

Table 3.7: Results of a statistical analysis of the bias introduced by the median protocol into the
test error rates for RBF-KRR and RBF-EP-GPC, using the Wilcoxon signed ranks

test.

Data Set RBF-KRR | RBF-EP-GPC | Wilcoxon
bias bias p-value
banana 0.226 +£0.034 | 0.043 +0.012| < 0.05
breast cancer | 0.351 +£0.195| 0.390 +0.186| 0.934
diabetis 0.143 £0.074 | -0.053 + 0.051 | < 0.05
flare solar 0.128 £0.082 | 0.050 +0.090| 0.214
german 0.160 £ 0.067 | 0.203 & 0.051 0.458
heart 1.010 £0.186 | 0.270 £0.120| < 0.05
image 0.188 £ 0.095 | -0.035 + 0.032 | 0.060
ringnorm 0.040 £ 0.010| 0.006 +0.002| < 0.05
splice 0.014 £0.055| 0.002 +0.014| 0.860
thyroid 0.187 £0.100 | 0.067 +0.064 | 0.159
titanic 0.076 £ 0.077 | 0.147 £0.090| 0.846
twonorm -0.022 +0.014 | -0.180 +0.032| < 0.05
waveform -0.029 + 0.020 | -0.064 + 0.022 | 0.244

Next, we perform a statistical analysis to determine whether there is a statistically signifi-
cant difference in the magnitude of the biases introduced by the median protocol for different
classifiers, for each benchmark data set.* First the bias introduced by the use of the median pro-
tocol was computed for the RBF KRR and RBF EP-GPC classifiers as the difference between

4. We are grateful to an anonymous reviewers for suggesting this particular form of analysis.

69

CAWLEY TALBOT

the test set error estimated by the internal and median protocols. The Wilcoxon signed rank test
was then used to determine whether there is a statistically significant difference in the bias, over
the 100 realisations of the benchmark (20 in the case of the image and splice benchmarks)
. The results obtained are shown in Table 3.7, the p-value is below 0.05 for five of the thirteen
benchmarks, indicating that in each case the median protocol is significantly biased in favour of
the RBF KRR classifier. Clearly, as the median protocol does not impose a commensurate bias
on the estimated test error rates for different classifiers, it does not provide a reliable protocol
for comparing the performance of machine learning algorithms.

P

3 2 1
[! l ! I

RBF-KLR (median) 22308 L RBF-KRR (median)

22308 £p_GpC (median)

Figure 3.13: Critical difference diagram showing the average ranks of three classifiers with the
median model selection protocol (cf. Figure 3.10).

In the final illustration of this section, we show that the magnitude of the bias introduced
by the median protocol is greater for model selection criteria with a high variance. This means
the median protocol favors most the least reliable model selection procedures and as a result
does not provide a reliable indicator even of relative performance of classifier-model selection
procedures combinations. Again the RBF-KRR model is used as the base classifier, however in
this case a repeated split-sample model selection criterion is used, where the data are repeatedly
split at random to form disjoint training and validation sets in proportions 9:1, and the hyper-
parameters tuned to optimise the average mean-squared error over the validation sets. In this
way, the variance of the model selection criterion can be controlled by varying the number of
repetitions, with the variance decreasing as the number of folds becomes larger. Figure 3.14(a)
shows a plot of the average ranks of EP-GPC and RBF-KLR classifiers, with model selection
performed as in previous experiments, and RBF-KRR with repeated split-sample model selec-
tion, as a function of the number of folds. In each case the unbiased internal evaluation protocol
was used. Clearly if the number of folds is small (five or less), the RBF-KRR model performs
poorly, due to over-fitting in model selection due to the high variance of the criterion used.
However, as the number of folds increases, the variance of the model selection criterion falls,
and the performances of all three algorithms are very similar. Figure 3.14(b) shows the corre-
sponding result using the biased median protocol. The averaging of hyper-parameters reduces
the apparent variance of the model selection criterion, and this disguises the poor performance
of the RBF-KRR model when the number of folds is small. This demonstrates that the bias
introduced by the median protocol favors most the worst model selection criterion, which is a
cause for some concern.

70

3. OVERFITTING IN MODEL SELECTION AND SELECTION BIAS IN EVALUATION

——EP-GPC

——EP-GPC

28l RBF-KLRY] 28t RBF-KLRY]
- - RBF-KRR| - - RBF-KRR|
2.6 2,61
N
\
24r 2.4r
\ .
« 22F Yo \ R < 22F
= ol // \\/ \77/\,’\/ < 2k)
o N N o] A ’ N s~ -
15 - > S- € v v ST ~ s g
18 18F L, L AN , N
N N N
‘ N
1.6 1.6
1.4F 1.4r
1.2F 1.2F
P - P -
2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20
number of folds number of folds
(@) (b)

Figure 3.14: Mean ranks of three classifiers as a function of the number of folds used in the
repeated split sample model selection procedure employed by the kernel ridge
regression (RBF-KRR) machine, using (a) the unbiased internal protocol and (b)
the biased median protocol.

3.5.3. Another Example of Biased Evaluation Methodology

In a biased evaluation protocol, occasionally observed in machine learning studies, an initial
model selection step is performed using all of the available data, often interactively as part of a
“preliminary study”. The data are then repeatedly re-partitioned to form one or more pairs of
random, disjoint design and test sets. These are then used for performance evaluation using the
same fixed set of hyper-parameter values. This practice may seem at first glance to be fairly
innocuous, however the test data are no longer statistically pure, as they have been “seen” by the
models in tuning the hyper-parameters. This would not present a serious problem were it not for
the danger of over-fitting in model selection, which means that in practice the hyper-parameters
will inevitably be tuned to an extent in ways that take advantage of the statistical peculiarities
of this particular set of data rather than only in ways that favor improved generalisation. As a
result the hyper-parameter settings retain a partial “memory” of the data that now form the test
partition. We should therefore expect to observe an optimistic bias in the performance estimates
obtained in this manner.

Table 3.8 shows a comparison of 10-fold cross-validation estimates of the test error rate, for
kernel ridge regression with a Gaussian radian basis function kernel, obtained using protocols
where the model selection stage is either external or internal to the cross-validation procedure.
In the external protocol, model selection is performed once using the entire design set, as de-
scribed above. In the internal protocol, the model selection step is performed separately in each
fold of the cross-validation. The internal cross-validation procedure therefore provides a more
realistic estimate of the performance of the combination of model selection and learning algo-
rithm that is actually used to construct the final model. The table also shows the relative bias
(i.e., the mean difference between the internal and external cross-validation protocols). The ex-
ternal protocol clearly exhibits a consistently optimistic bias with respect to the more rigorous
internal cross-validation protocol, over all thirteen benchmarks. Furthermore, the bias is statis-
tically significant (i.e., larger than twice the standard error of the estimate) for all benchmarks,
apart from splice and twonorm. In many cases, the bias is of similar magnitude to the

71

CAWLEY TALBOT

Table 3.8: Error rate estimates for kernel ridge regression over thirteen benchmark data sets,
for model selection schemes that are internal and external to the cross-validation
process. The results for each approach and the relative bias are presented in the
form of the mean error rate over for 100 realisations of each data set (20 in the case
of the image and splice data sets), along with the associated standard error.

l Data Set \ External \ Internal \ Bias ‘
banana 10.355 +0.146 | 10.495 + 0.158 | 0.140 £ 0.035
breast cancer | 26.280 + 0.232 | 27.470 4+ 0.250 | 1.190 + 0.135
diabetis 22.891 + 0.127 [23.056 £+ 0.134 | 0.165 + 0.050
flare solar 34.518 +0.172 | 34.707 & 0.179 | 0.189 £ 0.051
german 23.999 +0.117 [24.217 £0.125| 0.219 + 0.045
heart 16.335 £ 0.214 | 16.571 + 0.220 | 0.235 4+ 0.073
image 3.081 £0.102| 3.173 £0.112 | 0.092 £ 0.035
ringnorm 1.567 £ 0.058 | 1.607 &+ 0.057 | 0.040 & 0.014
splice 10.930 +0.219| 11.170 + 0.280 | 0.240 4+ 0.152
thyroid 3.743 £0.137 | 4.279 +0.152 | 0.536 £+ 0.073
titanic 22.167 +0.434 { 22.487 £+ 0.442 | 0.320 + 0.077
twonorm 2.480 £ 0.067 | 2.502 4+ 0.070 | 0.022 £+ 0.021
waveform 9.613 £0.168 | 9.815 4+ 0.183 | 0.203 £ 0.064

typical difference observed between competitive learning algorithms (cf. Table 3.4). In some
cases, for example, banana and thyroid benchmarks, the bias is of a surprising magnitude,
likely to be large enough to conceal even the true difference between even state-of-the-art and
uncompetitive learning algorithms. This clearly shows that the external cross-validation proto-
col exhibits a consistent optimistic bias, potentially of a very substantial magnitude even when
the number of hyper-parameters is small (in this case only two), and so should not be used in
practice.

3.6. Conclusions

In this paper, we have discussed the importance of bias and variance in model selection and
performance evaluation, and demonstrated that a high variance can lead to over-fitting in model
selection, and hence poor performance, even when the number of hyper-parameters is relatively
small. Furthermore, we have shown that a potentially severe form of selection bias can be intro-
duced into performance evaluation by protocols that have been adopted in a number of existing
empirical studies. Fortunately, it seems likely that over-fitting in model selection can be over-
come using methods that have already been effective in preventing over-fitting during training,
such as regularisation or early stopping. Little attention has so far been focused on over-fitting
in model selection, however in this paper we have shown that it presents a genuine pitfall in the
practical application of machine learning algorithms and in empirical comparisons. In order to
overcome the bias in performance evaluation, model selection should be viewed as an integral
part of the model fitting procedure, and should be conducted independently in each trial in or-
der to prevent selection bias and because it reflects best practice in operational use. Rigorous
performance evaluation therefore requires a substantial investment of processor time in order
to evaluate performance over a wide range of data sets, using multiple randomised partition-
ings of the available data, with model selection performed separately in each trial. However,

72

3. OVERFITTING IN MODEL SELECTION AND SELECTION BIAS IN EVALUATION

it is straightforward to fully automate these steps, and so requires little manual involvement.
Performance evaluation according to these principles requires repeated training of models us-
ing different sets of hyper-parameter values on different samples of the available data, and so
is also well-suited to parallel implementation. Given the recent trend in processor design to-
wards multi-core designs, rather than faster processor speeds, rigorous performance evaluation
is likely to become less and less time-consuming, and so there is little justification for the con-
tinued use of potentially biased protocols.

Acknowledgments

The authors would like to thank Gareth Janacek, Wenjia Wang and the anonymous reviewers for
their helpful comments on earlier drafts of this paper, and the organisers and participants of the
WCCI-2006 Performance Prediction Challenge and workshop that provided the inspiration for
our work on model selection and performance prediction. G. C. Cawley is supported by the En-
gineering and Physical Sciences Research Council (EPSRC) grant EP/F010508/1 - Advancing
Machine Learning Methodology for New Classes of Prediction Problems.

References

D. M. Allen. The relationship between variable selection and prediction. Technometrics, 16:
125-127, 1974.

C. Ambroise and G. J. McLachlan. Selection bias in gene extraction on the basis of microarray
gene-expression data. Proceedings of the National Academy of Sciences, 99(10):6562-6566,
May 14 2002. doi: 10.1073/pnas.102102699.

S. An, W. Liu, and S. Venkatesh. Fast cross-validation algorithms for least squares support
vector machines and kernel ridge regression. Pattern Recognition, 40(8):2154-2162, August
2007. doi: 10.1016/j.patcog.2006.12.015.

E. Andeli¢, M. Schaffoner, M. Katz, S. E. Kriiger, and A. Wendermuth. Kernel least-squares
models using updates of the pseudoinverse. Neural Computation, 18(12):2928-2935, De-
cember 2006. doi: 10.1162/neco.2006.18.12.2928.

Y. Bengio and Y. Grandvalet. No unbiased estimator of the variance of k-fold cross-validation.
5:1089-1105, 2004.

S. A. Billings and K. L. Lee. Nonlinear Fisher discriminant analysis using a minimum squared
error cost function and the orthogonal least squares algorithm. Neural Networks, 15(2):263—
270, March 2002. doi: 10.1016/S0893-6080(01)00142-3.

C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press, 1995.

L. Bo, L. Wang, and L. Jiao. Feature scaling for kernel Fisher discriminant analysis using
leave-one-out cross validation. Neural Computation, 18(4):961-978, April 2006. doi: 10.
1162/neco0.2006.18.4.961.

O. Bousquet and A. Elisseeff. Stability and generalization. Journal of Machine Learning Re-
search, 2:499-526, 2002.

L. Breiman. Random forests. Machine Learning, 45(1):5-32, October 2001. doi: 10.1023/A:
1010933404324.

73

CAWLEY TALBOT

G. C. Cawley. Leave-one-out cross-validation based model selection criteria for weighted LS-
SVMs. In Proceedings of the IEEE/INNS International Joint Conference on Neural Networks
(IJCNN-06), pages 1661-1668, Vancouver, BC, Canada, July 16-21 2006. doi: 10.1109/
IJCNN.2006.246634.

G. C. Cawley and N. L. C. Talbot. Efficient leave-one-out cross-validation of kernel Fisher
discriminant classifiers. Pattern Recognition, 36(11):2585-2592, November 2003. doi: 10.
1016/S0031-3203(03)00136-5.

G. C. Cawley and N. L. C. Talbot. Preventing over-fitting during model selection via Bayesian
regularisation of the hyper-parameters. Journal of Machine Learning Research, 8:841-861,
April 2007.

G. C. Cawley and N. L. C. Talbot. Efficient approximate leave-one-out cross-validation for
kernel logistic regression. Machine Learning, 71(2-3):243-264, June 2008. doi: 10.1007/
$10994-008-5055-9.

G. C. Cawley, G. J. Janacek, and N. L. C. Talbot. Generalised kernel machines. In Pro-
ceedings of the IEEE/INNS International Joint Conference on Neural Networks (IJCNN-07),
pages 1720-1725, Orlando, Florida, USA, August 12-17 2007. doi: 10.1109/IJCNN.2007.
4371217.

O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee. Choosing multiple parameters for
support vector machines. Machine Learning, 46(1-3):131-159, January 2002. doi: 10.1023/
A:1012450327387.

H. Chen, P. Tino, and X. Yao. Probabilistic classification vector machines. IEEE Transactions
on Neural Networks, 20(6):901-914, June 2009. doi: 10.1109/TNN.2009.2014161.

W. Chu, S. S. Keerthi, and C. J. Ong. Bayesian trigonometric support vector classifier. Neural
Computation, 15(9):2227-2254, September 2003. doi: 10.1162/089976603322297368.

J. Demsar. Statistical comparisons of classifiers over multiple data sets. Journal of Machine
Learning Research, 7:1-30, 2006.

R. O. Duda, P. E. Hart, and D. G. Stork. Pattern classification. John Wiley and Sons, second
edition, 2001.

B. Efron and R. J. Tibshirani. Introduction to the bootstrap. Monographs on Statistics and
Applied Probability. Chapman & Hall, 1994.

S. Geman, E. Bienenstock, and R. Doursat. Neural networks and the bias/variance dilemma.
Neural Computation, 4(1):1-58, January 1992. doi: 10.1162/neco.1992.4.1.1.

C. Gold, A. Holub, and P. Sollich. Bayesian approach to feature selection and parameter tuning
for support vector machine classifiers. Neural Networks, 18(5):693-701, July/August 2005.
doi: 10.1016/j.neunet.2005.06.044.

I. Guyon, A. Saffari, G. Dror, and G. Cawley. Model selection: Beyond the Bayesian/frequentist
divide. Journal of Machine Learning Research, 11:61-87, 2009.

P. Hall and A. P. Robinson. Reducing the variability of crossvalidation for smoothing parameter
choice. Biometrika, 96(1):175-186, March 2009. doi: doi:10.1093/biomet/asn068.

74

3. OVERFITTING IN MODEL SELECTION AND SELECTION BIAS IN EVALUATION

M. Kearns and D. Ron. Algorithmic stability and sanity-check bounds for leave-one-out
cross-validation. Neural Computation, 11(6):1427-1453, August 1999. doi: 10.1162/
089976699300016304.

G. S. Kimeldorf and G. Wahba. Some results on Tchebycheffian spline functions. Journal of
Mathematical Analysis and Applications, 33:82-95, 1971.

S. R. Kulkarni, G. Lugosi, and S. S. Venkatesh. Learning pattern classification — a survey.
IEEE Transactions on Information Theory, 44(6):2178-2206, October 1998.

P. A. Lachenbruch and M. R. Mickey. Estimation of error rates in discriminant analysis. Tech-
nometrics, 10(1):1-12, February 1968.

A. Luntz and V. Brailovsky. On estimation of characters obtained in statistical procedure of
recognition (in Russian). Techicheskaya Kibernetica, 3, 1969.

D. J. C. MacKay. Bayesian interpolation. Neural Computation, 4(3):415-447, May 1992. doi:
10.1162/neco0.1992.4.3.415.

J. Mercer. Functions of positive and negative type and their connection with the theory of
integral equations. Philosophical Transactions of the Royal Society of London, Series A, 209:
415-446, 19009.

S. Mika, G. Ritsch, J. Weston, B. Scholkopf, and K.-R. Miiller. Fisher discriminant analysis
with kernels. In Neural Networks for Signal Processing IX, Proceedings of the 1999 IEEE
Signal Processing Society Workshop, pages 41-48, Maddison, WI, USA, 21-25 August 1999.
doi: 10.1109/NNSP.1999.788121.

S. Mika, G. Ritsch, J. Weston, B. Scholkpf, and K.-R. Miiller. Contructing descriptive and
discriminative nonlinear features: Rayleigh coefficients in kernel feature spaces. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 25(5):623-628, May 2003. doi:
10.1109/TPAMI.2003.1195996.

J. A. Nelder and R. Mead. A simplex method for function minimization. Computer Journal, 7T:
308-313, 1965.

T. Pefia Centeno and Lawrence N. D. Optimising kernel parameters and regularisation co-
efficients for non-linear discriminant analysis. Journal of Machine Learning Research, T:
455-491, February 2006.

T. Poggio and F. Girosi. Networks for approximation and learning. Proceedings of the IEEE,
78(9):1481-1497, September 1990. doi: 10.1109/5.58326.

Y. Qi, T. P. Minka, R. W. Picard, and Z. Ghahramani. Predictive automatic relevance determina-
tion by expectation propagation. In Proceedings of the Twenty First International Conference
on Machine Learning (ICML-04), pages 671-678, Banff, Alberta, Canada, July 4-8 2004.

C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. Adaptive
Computation and Machine Learning. MIT Press, 2006.

G. Ritsch, 2006. Personal communication.

G. Ritsch, T. Onoda, and K.-R. Miiller. Soft margins for AdaBoost. Machine Learning, 42(3):
287-320, March 2001. doi: 10.1023/A:1007618119488.

75

CAWLEY TALBOT

R. M. Ritkin and R. A. Lippert. Notes on regularized least squares. Technical Report MIT-
CSAIL-TR-2007-025, Computer Science and Atrtificial Intelligence Laboratory, MIT, May
2007.

B. D. Ripley. Pattern Recognition and Neural Networks. Cambridge University Press, 1996.

C. Saunders, A. Gammerman, and V. Vovk. Ridge regression learning algorithm in dual vari-
ables. In Proceedings of the Fifteenth International Conference on Machine Learning (ICML-
98), pages 515-521. Morgan Kaufmann, 1998.

J. Shao. Linear model selection by cross-validation. Journal of the American Statistical Society,
88:486-494, 1993.

I. Stewart. On the optimal parameter choice for v-support vector machines. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 25(10):1274-1284, October 2003. doi: 10.
1109/TPAMI.2003.1233901.

M. Stone. Cross-validatory choice and assessment of statistical predictions. Journal of the
Royal Statistical Society, Series B (Statistical Methodology), 36(2):111-147, 1974.

M. Stone. Asymptotics for and against cross-validation. Biometrika, 64(1):29-35, April 1977.
doi: 10.1093/biomet/64.1.29.

J. A. K. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor, and J. Vanderwalle. Least
squares support vector machine. World Scientific Publishing Company, Singapore, 2002.
ISBN 981-238-151-1.

A. N. Tikhonov and V. Y. Arsenin. Solutions of ill-posed problems. John Wiley, New York,
1977.

G. Toussaint. Bibliography on estimation of misclassification. IEEE Transactions on Informa-
tion Theory, IT-20(4):472-479, July 1974.

V. N. Vapnik. Estimation of dependences based on empirical data. Springer, 1982.

V. N. Vapnik. Statistical learning theory. Adaptive and learning systems for signal processing,
communications and control series. Wiley, 1998.

S. Weisberg. Applied linear regression. Probability and Mathematical Statistics. John Wiley &
Sons, second edition, 1985.

J. Weston. Leave-one-out support vector machines. In Proceedings of the Sixteenth Interna-
tional Joint Conference on Artificial Intelligence (IJCAI-99), pages 727-733, San Fransisco,
CA, USA, 1999. Morgan Kaufmann.

C. K. I. Williams and D. Barber. Bayesian classification with Gaussian processes. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 20(12):1342-1351, December 1998.
doi: 10.1109/34.735807.

P. M. Williams. A Marquardt algorithm for choosing the step size in backpropagation learning
with conjugate gradients. Technical Report CSRP-229, University of Sussex, February 1991.

T. Zhang. Leave-one-out bounds for kernel machines. Neural Computation, 15(6):1397-1437,
June 2003. doi: 10.1162/089976603321780326.

76

Part 11

Data representation

Overview

Every pattern recognition problem starts with data encoding and preprocessing. In our chal-
lenges, we alleviated the task of the participants by providing data already preprocessed as
feature vectors. Here are some examples of feature coding we used:

 Categorical variables were represented with a simple disjunctive code. For 4 levels, were
get 4 features taking values 1000,0100,0010,0r000 1.

* Images of handwritten digits were represented as pixel maps, after centering and scaling
the digit.

» Pharmaceutical molecules were represented as binary features indicating presence or ab-
sence of certain groups of atoms.

* Texts from newsgroups were represented as features indicating the frequency of appear-
ance of word.

In this part of the book, we selected a few techniques employed by the participants to improve
upon the data representations provided in the challenges, to illustrate various aspects of prepro-
cessing.

In Chapter 4, Mehreen Saeed proposes to use clustering methods to simplify the data
representation and reduce dimensionality before performing supervised learning. It has been a
long time debate whether it is beneficial to perform unsupervised preprocessing to reduce
data dimensionality. In addition to clustering, such techniques include Principal Component
Analysis (PCA), Independent Component Analysis (ICA) and many other principal subspace
methods, linear or non-linear. While space dimensionality reduction has gained a lot of pop-
ularity in the recent years, in supervised learning challenges, their have not prevailed as pre-
processing methods. This seems to be largely due to the fact that modern supervised learning
techniques are robust against overfitting and embed their own “implicit” space dimensionality
reduction, without performing “hard decisions” discarding dimensions at an early stage. For
instance, the popular “ridge regression” method penalizes dimensions corresponding to small
eigen values of the data correlation matrix, thus performing an implicit selection according
to principal components, like PCA. Yet the excellent performance of Mehreen Saeed in the
ALvVsPK challenge (first on NOVA, third on SYLVA in the agnostic track) reveal that well con-
ducted unsupervised learning may yield good results, with the additional benefit of gaining in
data understanding and ease of visualization.

In Chapter 5, Marc Boullé presents advanced discretization techniques providing a uni-
fied framework for representing data as piecewise constant distributions, including methods for
optimally discretizing continuous variables and for grouping values of variables, which are al-
ready discrete (including categorical variables). The paper follows a new methodology based
on data dependent Bayesian priors. Discretization may be performed as a preprocessing step to
classification techniques requiring discrete variables, such as the Naive Bayes algorithm. The
benefits of discretization include data compression, which may play a role in overfitting avoid-
ance, similarly to space dimensionality reduction. In this paper, “data grids” are obtained in a

79

supervised manner and may be used directly for classification, or as preprocessing to other clas-
sifiers. Data grids lend themseves to deriving simple rules of classification, like decision trees,
facilitating the understanding of the classification process. Marc Boullé consistently obtained
good results with his methods, ranking first on ADA and SYLVA in the performance prediction
challenge.

In Chapter 6, Chloé-Agathe Azencott and Pierre Baldi shows the benefit using low level
representations. In the ALvsPK challenge, the participants of the “agnostic learning” (AL)
track used the data representations provided by the organizers (all low-level feature represen-
tations) and those of the “prior knowedge” (PK) track constructed their own representation,
starting from raw data, and using their own domain knowledge. All the top ranking participant
in the PK track ended up using low level representation, namely many easy-to-extract features
not incorporating a lot of domain knowledge. To win first place on the HIVA dataset in the prior
knowledge track, Azencott and Baldi used features encoding molecular connectivity, detecting
the presence of certain molecule subgraphs. In contrast, other participants who used higher
level features crafted by phamacology experts, did not obtain as good results. Similarly, on
NOVA (text processing) the winner in the PK track used a bag-of-word representation, a variant
of the low-level representation proposed in the AL track by the organizers. No use was made of
word semantics nor grammatical constructs.

80

Chapter 4

Hybrid Learning Using Mixture Models and Artificial Neural
Networks

Mehreen Saeed MEHREEN.SAEED @NU.EDU.PK
Department of Computer Science

National University of Computer and Emerging Sciences

Lahore Campus, Pakistan.

Editor: Isabelle Guyon, Gavin Cawley, Gideon Dror and Amir Saffari

Abstract

This chapter describes a hybrid approach to learning using mixture models and artificial neu-
ral networks. Mixture models provide a semi-parametric approach for density estimation of
data. We show how these mixtures can be used for feature transformation, producing a huge
reduction in the dimensionality of the initial input space. The transformed features are fed into
a neural network for classification. We have explored the potential of using Bernoulli mixture
models for binary data and Gaussian mixtures for continuous data. The hybrid learning model
was applied to five datasets which were launched as part of the “Agnostic vs. Prior Knowledge”
challenge organized by the International Joint Conference on Neural Networks in 2007. Our
model achieved the best result on the NOVA dataset in the agnostic learning track and good
results on the other four datasets.

Keywords: Bernoulli mixture models, Gaussian mixture models, artificial neural networks,
hybrid learning, dimensionality reduction

4.1. Introduction

Hybrid learning involves the integration of an unsupervised learning technique with a super-
vised learning method. Learning takes place in two stages. In the first stage an unsupervised
method is used to determine data clusters. The data clusters can be determined using any ap-
propriate clustering method, e.g., partitional or agglomerative technique. In the second stage
a transformation of data is performed using the learned clusters and a supervised learning al-
gorithm is used to learn a function that discriminates between different class labels (Alpaydin,
2005). The supervised layer can be built from any suitable learning method like neural net-
works, support vector machines and decision trees, etc.

The use of hybrid models for learning is not new. A radial basis function (RBF) network is
an example of a hybrid model that uses local RBF functions at the input layer and its output is
used in supervised learning of labels or classes (Moody and Darken, 1989). Mixture of experts
is another example where a function is approximated using very simple local approximation
functions (Jacobs et al., 1991). The potential of combining generative models with discrimi-
native classifiers has also been discussed by Jaakkola and Haussler (1998), Ulusoy and Bishop
(2005) and Lasserre et al. (2006). They argue that both models have different properties and
characteristics and therefore their advantages can be exploited by combining them into a hybrid
model.

This chapter describes how we can construct a hybrid learning model by building the unsu-
pervised layer using mixture models and the supervised layer using artificial neural networks.

© M. Saeed.

SAEED

Mixture models involving Gaussian distributions have been used extensively for density esti-
mation in both supervised and unsupervised pattern classification. Our learning approach is not
restricted to Gaussian mixture models, as used traditionally, but also uses Bernoulli mixtures to
learn the data clusters. We argue that Gaussian mixtures are not suitable for all types of data.
When the data is discrete or binary a different probability distribution is more appropriate for its
density estimation. Also, adding a supervised learning technique on top of the mixture models
gives us dimensionality reduction and improves classification accuracy. Hence, we propose to
combine a generative model with a discriminative classifier.

Using the hybrid learning approach we model the binary features in an unconventional man-
ner. The importance of binary features cannot be denied as in many machine learning problems
different nominal/categorical attributes are converted into numeric data which is often a feature
vector of binary values. So, typically if there is an [-category attribute, it is converted into /
numbers where one of the / numbers is 1 and the rest are Os. For example, a three-category at-
tribute such as small, medium, large will be represented by (0,0, 1), (0,1,0) and (1,0,0) using
the above scheme. This scheme is normally known to give better results as compared to using
a single number to represent a nominal attribute (Chang and Lin, 2001). Instead of using the
traditional Gaussian mixture models, we use Bernoulli mixture models when the data is binary
and Gaussian mixture models when the data is composed of continuous features.

The use of Bernoulli mixture models for solving different problems involving binary vari-
ables is not new. The basic formula for a Bernoulli mixture model was proposed by Duda and
Hart (1973). They have been successfully used for OCR tasks by Juan and Vidal (2004) and
Grim et al. (2000). They have been used in supervised text classification tasks (for example,
Juan and Vidal, 2002). Mixture models including Bernoulli mixture models have also been used
for supervised dimensionality reduction task (Sajama and Orlitsky, 2005).

The organization of this chapter is as follows: In Section 4.2 of this chapter we give an
overview of the mixture models and the expectation maximization technique used to estimate
the parameters of these models. We describe how these mixtures can be used for classification.
In this section we also give a brief overview of artificial neural networks. In Section 4.3 we
discuss our hybrid approach for combining mixture models with a discriminative classifier such
as an artificial neural network. This section also details how our approach can be used for
feature transformation and dimensionality reduction. The simulation results of applying this
technique on various datasets are presented in Section 4.4 and the final conclusions are drawn
in Section 4.5.

4.2. Mixture Models and Expectation Maximization Algorithm

In this section we describe mixture density models and the use of expectation maximization
algorithm for finding the parameters of these models. Before we explain mixture models we
would like to point out that expectation maximization (EM) is a general optimization technique
for finding maximum likelihood solutions for models that use hidden or latent variables. The
name expectation maximization was coined by Dempster et al. and today it is used in many
learning applications in the computer vision, natural language processing, psychometrics, etc.,
domains. Wikipedia (http://www.wikipedia.org/) describes EM as a description of a
class of related algorithms or a ‘meta algorithm’ which is used to devise particular algorithms.
For example, Baum-Welch algorithm is an example of EM which is used for maximum likeli-
hood estimation in hidden Markov models. Generally, we can say that EM is an iterative method
in which the likelihood of the entire data or some subset of data, increases. Duda et al. have
used it for estimating the parameters of a distribution from a training set that has missing data
(2000). Bishop has described the use of this algorithm for estimating parameters of mixture

82

http://www.wikipedia.org/

4. HYBRID LEARNING USING MIXTURE MODELS AND ARTIFICIAL NEURAL NETWORKS

densities and Bayesian linear regression (2006). In this book chapter we will restrict our use of
EM for data clustering and finding the parameters of mixture models.

A finite mixture model assumes that the data is generated by a set of parametric probability
distributions instead of being generated by a single distribution. If we have labeled data then we
can generate mixture distributions for each class label. To keep the notation simple we suppress
the class indices from the equations and assume that right now we are dealing with just one
class, and therefore, only one set of mixture distributions. We will deal with multiple classes
later.

Suppose we have a sample of training data, X = {x1,X2,...,X;, }, consisting of m input vec-
tors. Each input vector x is an n-dimensional vector of attributes, hence, Xy = {X¢1, X2, -+, Xkn }-
If we want to estimate D mixture components from this data, then a finite mixture model is de-
scribed by a probability (density) function given by:

D
Z p(x|d)

Here P(d) is the prior of each mixture and p(x|d) is its component-conditional probability
(density) function. This model is termed a generative model which selects the ™ component
distribution with probability P(d), such that ¥, P(d) = 1, and then generates x according to
p(x/d).

Learning the parameters of a finite mixture model is a statistical parameter estimation prob-
lem. We use expectation maximization (EM) algorithm to estimate these parameters from a
sample of training data X. The expectation maximization algorithm determines the parameters
of a model by maximizing the log likelihood function of data given by:

Z(0X) = Zlog(ZP xk\d) (4.1)

Here © denotes the parameters of the EM algorithm. It consists of the priors, P(i), of each
mixture and the parameters, 6;, of each mixture distribution, i.e.,

® = {P(i), 6},

The EM algorithm assumes that the observed data is incomplete and associates a vector of
latent variables z; = {zx1,2x2, -, 2kp} With each data point. The latent variables are indicator
variables, with z;; = 1 indicating that the i’ mixture component generated the k" data point.

The EM optimization takes place iteratively in two steps. In step 1, also called the expec-
tation step (E-Step), we estimate the expected values of the hidden variables assuming that the
model parameters 6; are known. In step 2, also called the maximization step (M-Step), we esti-
mate the parameter values 6; to maximize the likelihood of data, given by Equation (4.1), on the
basis of the latent variables calculated in the E-step. This is done iteratively until the parameters
converge to stable values.

The form of E-step is the same for more or less all distributions and it is given by:

_ P(d)p(xid)
2 P(j)p(xil)

The M-step determines the maximum likelihood estimate of the priors, of each distribution, as
given below:

(Vd,1<d < D,Vk,1 <k<m)

1 m
d)=—Y =z (Vd,1<d<D)
mia

83

SAEED

Also, in this step the parameters of the particular probability distribution are estimated. These
parameters depend on the probability (density) function being used. We describe the M-step for
Bernoulli and Gaussian mixtures next.

4.2.1. Multivariate Bernoulli Mixtures

A Bernoulli mixture model assumes that each component of the model is an n-dimensional
multivariate Bernoulli probability distribution, each component or mixture having its own set
of parameters. The form of this distribution for a single vector x; € {0, 1}" in the d™ distribution
is given by (Bishop, 2006):

p(xi|d) Hp (1= pgi)' %

Here pg; € [0, 1] is the probability of success of the i component of vector x; for the d"* mix-
ture, i.e., pgi = p(xg = 1|d),Vk,1 <k <m,Vi,1 <i<n,Vd,1 <d < D. Also, we are assuming
that the n-dimensional vector x has n independent component attributes so that the overall prob-
ability is the product of the independent uni-dimensional Bernoulli probability functions. Here
the parameter 6 to be determined is the probability of success for each attribute of vector x, i.e.,
6 =p.

To start the EM algorithm we initialize the probabilities with random values. The M-step
finds the maximum likelihood estimate of the probability of success of each vector component
as given below:

Y1 Zkd Xk
il Tk

In the experiments described in Section 4.4 we have used the Laplacian prior to smooth the

probability estimates, hence, the probability values are estimated as below:

pi = (Vd,1 <d <D)

14+ Y70 | ZkaXk

Vd,1<d<D
24 Y0 Tk ()

Pa =

4.2.2. Multivariate Gaussian Mixtures

The n-dimensional multivariate Gaussian distribution has two parameters to be determined,
namely, mean vector and covariance matrix, i.e., 8 = (u;X). The form of the d"" multivariate
Gaussian mixture component for a vector x; € R" is given by:
1 xS,
p(xpld) = ——e (Xe—pa)' 2y (Xk—pea)
(27)"[X4l

Here pt; and 3, are the mean vector and the covariance matrix for the 4" mixture respectively.
The M-step estimates these parameters as given below:

Y ST
Y1 2k
m _ _ t
Ty = Zk:.de(ka) (X~) (Vd,1<d <D)
Y1 Zka

We have restricted the covariance matrix to a diagonal matrix of the variances of individual
features to prevent singularity during computation.

84

4. HYBRID LEARNING USING MIXTURE MODELS AND ARTIFICIAL NEURAL NETWORKS

4.2.3. Classification Using Mixture Models

Finding the mixture components is an unsupervised learning technique that finds the various
clusters within data. Each cluster is represented by a particular probability distribution. Now
we extend our terminology to include the class labels assigned to each example point. Suppose
we have a set of C labeled classes Q = {q1,42,...,qc} with prior for the ¢ class being P(q.)
then the class conditional probability function for the ¢! class having D, mixture components
is given by:

De
p(xlge) = Y, p(x|d,q.)P(d|qc)
d=1
The posterior probabilities for each class are calculated using Bayes’ Rule and the vector x is
assigned the label of the class which has the maximum posterior probability, i.e.,

Y(x) = argmaxP(gc)p(xlqc)
D,
= agmaxP(gc) Y, P(dlgc)p(xid.ge) 4.2)
¢ d=1

We can estimate the class priors from the data as the ratio of training examples of that class
to the total number of training examples. From Equation (4.2) we can see that the winning
class is determined by the class conditional probabilities p(x|q.) and the class priors P(g).
Also, the class conditional probabilities are determined by the weighted sum of the conditional
probability functions of the mixture component for that class p(x|d,q.) weighted by the prior of
that mixture with respect to that class P(d|q.). Hence, classification takes place using a linear
discriminant function y of p(x|d, q.) and the weights P(d|q.), i.e.,

¥(0) = w(p(xld.q.). Pldlq.)) 43)

4.2.4. Artificial Neural Networks

An artificial neural network (ANN) is a model of learning inspired by the biological neural net-
works. It consists of interconnected group of artificial neurons that act as non-linear processing
units and exhibit a complex global behavior. ANNs have been successfully applied to a wide
variety of applications involving regression, classification or data processing. There is an im-
mense amount of literature available on neural networks. The reader is referred to any standard
text book on machine learning, e.g., Bishop (2006), Alpaydin (2005) and Mitchell (1997). In
this section, we restrict the discussion of neural networks to the models of classification that we
have used for our work.

An ANN consists of several layers of neurons. Each neuron takes inputs from neurons in
the preceding layer and produces an output via a non-linear activation function. So if a neuron
i receives n inputs {x j}fl’»zl from the previous layer, then its output o; is given by:

0i=f(Y wjix))
=1

where f(.) represents a non-linear activation function such as the sigmoid function and w; is
the weight or strength of the connection between neuron i and the j" neuron in its predecessor
layer.

An ANN always has an input layer, an output layer and can have multiple hidden layers.
For our work we employed fully connected feedforward nets with just one hidden layer. Each

85

SAEED

neuron acts as a local processing unit but together the entire network is capable of modeling
complex relationships between the inputs and the outputs. The training of the network takes
place by iteratively adjusting the weights or connection strengths, based upon some error cri-
terion. We trained the network using back propagation training algorithm guided by scaled
conjugate gradient descent search. Also, we determined the network structure, i.e., the number
of units in the hidden layer via cross validation. The simulations were run using the imple-
mentation of neural networks provided by Challenge Learning Object Package (CLOP) library
(Saffari and Guyon, 2006).

4.3. Hybrid Learning

Input vector

_ t
X = X1’X2""’Xn]

ARTIFICIAL NEURAL NETWORK

l

Predicted label

Figure 4.1: Hybrid learning model

Section 4.2.3 describes a mechanism for classification if only mixture models are used.
We propose to combine the mixture modeling approach with a neural network model for hy-
brid learning. Our hybrid learning model is shown in Figure 4.1. The first step involved in
this approach is the determination of data clusters using expectation maximization described in
Section 4.2. For C classes, a set S of data clusters is determined:

§ =i}t 2"
Each member, s;;, of S represents the 7™ cluster or sub-class for the i class, e.g., the i class has
D; clusters associated with it, given by: s; = {s;1,52, . .. 3 Sip, }. Next, the conditional probability
p(x|s;i;) of the vector x is determined in each cluster. This, in effect, is equivalent to performing
a transformation T : X —— & of the input vector x; € R" (x; € {0, 1}" in case of a binary feature

86

4. HYBRID LEARNING USING MIXTURE MODELS AND ARTIFICIAL NEURAL NETWORKS

vector) to a new feature vector ¢ € [0, l]N , where the vector ¢ is given by:
i=C,j=Diyt
&= [{p(Xelsijtizi i1]

Also, N =Y | D;. The transformed set of feature vectors @ is then used to train a discriminative
classifier for learning the class separations. Hence, in this hybrid approach we propose that the
label of the class is some function of the class conditional probabilities, p(x|s;;), determined
by each mixture component. Any suitable discriminative classifier can be trained to learn this
function. In our present work, we mainly focused on using artificial neural networks in the
supervised layer to perform classification on the transformed vector. However, any suitable
supervised learning algorithm can perform this step.

In the hybrid learning approach that we have used, we are assuming that the data for each
class is being generated by a set of sub-classes represented by mixture models. This method is
similar to RBF networks, where the input to the neural network is a set of RBF functions, the
centers of which can be found using a suitable clustering method. The novel thing about this
approach is that binary data is being modeled by multivariate Bernoulli mixtures and Gaussians
are being used to model the continuous data. In case the input data has both continuous and
binary attributes we split the input vector x into two vectors, v| and vy, i.e., X = [v| v»]. Vector
vy is composed of only binary attributes and v, consists of only continuous attributes, i.e.,
vi €{0,1}%, v, € R? and a+ b = n. Vectors v; are used to determine Bernoulli mixtures for
all classes and v, are used to determine Gaussian mixtures for all classes. Also, instead of
using a linear model of classification as depicted by Equation (4.3), we are using a non-linear
discriminant function g to determine the classification, i.e.,

Y (x) = g(p(xld,q.))

This non-linear mapping is found using a discriminative classifier. An important characteristic
of this model is the assumption that the data of each class is being generated by different source
distributions instead of just one distribution. This is a realistic and reasonable assumption for
real life data. This enables us to capture the various interesting characteristics and properties of
data. Also, an immense reduction in dimensionality of the input vector results via this approach
(described later in Section 4.3.1). In this chapter we don’t address the problem of how many
mixture components can fall in one class. For the current set of experiments, we determine
this number using a cross validation approach. The details of the simulations are given in
Section 4.4.

4.3.1. Transformation of Input Space and Dimensionality Reduction

The hybrid learning approach, described in Section 4.3, is appealing because it not only gives
us improved accuracy of classification but it gives us means for input transformation and di-
mensionality reduction. Once we have the mixture models we determine the class conditional
probabilities of each data point with respect to the mixture densities of all classes. If the total
number of mixture components for all the classes is N = Y, D; then we have performed a
transformation of data equivalent to:

T:X+—d XecR" eV

If the inequality N < n holds true, then we have reduced the size of our feature vector for input
to a discriminative classifier.

The fact that the hybrid learning approach achieves a huge dimensionality reduction of data
is particularly useful in creating different views of data and making the data more manageable

87

SAEED

-100 & 4

s (log scale) for

| |

[T

o a

S o
T

-250 -

-300 -

-350

2
=
o
°
2
T
=
E
2
2
&
El
2
£
5
I

=l
2
e
o
=
£
g
£
2
g
o

—-400 -

Class boundary

—-450 -

% *
o0 E: ‘ ‘ ‘
-500 -400 -300 -200 -100 0
Conditional Probabilities (log scale) for
Bernoulli Mixture 1 for +ve Class

+ve class

L
=)

L
®

Conditional Probabilities (log scale) for
Bernoulli Mixture 1 for —ve Class

-20

N '
Class boundar

_oo L L L L L ¥
-24 22 -20 -18 -16 -14 -12 -10 -8 -6
Conditional Probabilities (log scale) for
Bernoulli Mixture 1 for +ve Class

Figure 4.2: Plots for a subset of training data for Nova (left) and SYLVA (right) datasets after
feature transformation. A possible class boundary has been marked by hand.

88

4. HYBRID LEARNING USING MIXTURE MODELS AND ARTIFICIAL NEURAL NETWORKS

for further processing. For example, Figure 4.2 shows the plot of a subset of training and vali-
dation data for two datasets, namely, the NOVA dataset and the SYLVA dataset used in [IJICNN’s
agnostic learning track. These datasets are described in Section 4.4. For the NOVA dataset we
had 7,131 features after initial input attribute elimination and we generated 2 Bernoulli mixtures
for the positive class and 2 for the negative class. The graph shows the plot of conditional prob-
abilities for mixture 1 of positive class against that of the negative class. It is very interesting to
see that there is a clear linear separation of the transformed features for both the negative and
positive class for the NOVA dataset. The same two features are plotted for the SYLVA dataset.
Again, we can see a clear separation of the two class labels when the transformed features are
used.

Table 4.1 shows the percentage reduction of dimensionality of the input space for various
datasets. Their detailed simulation results are presented in Section 4.4. The table shows the
total input attributes and the attributes left after initial attribute elimination step (described in
Section 4.4.2). Columns 4 and 5 show the number of mixture distributions generated for the
positive and negative class labels. The total mixture distributions is N which determine the size
of the new feature space. The last column shows the reduction in dimensionality of the input
space with respect to the total attributes after elimination. This percentage is as low as 99.9%
for the NOVA dataset.

The optimum number of mixtures (Column 4 and 5 of Table 4.1) for each dataset was either
determined by cross validation or the EM algorithm automatically determined this number. On
datasets like ADA and GINA we had to use cross validation. In case of NOVA and SYLVA
datasets, the EM algorithm found some Bernoulli mixtures with almost zero priors. In such
cases we retained only those mixtures with non-zero priors. For these datasets we observed that
the number of non-zero prior mixtures did not change with a changing value of D specified by
the user (D is the number, input to the EM algorithm, specifying the number of mixtures to be
generated). Hence we can conclude from our observations that for certain types of datasets EM
algorithm determines the optimum number of clusters present in the data.

Table 4.1: Dimensionality reduction on various datasets. n is the total number of initial at-
tributes, N is the number of transformed features. Columns 4 and 5 show the mix-
tures for positive and negative class separately

Dataset n After Bernoulli | Gaussian | N | Reduction
elimination | mixtures | mixtures

ADA 48 48 3+6 15+15 39 19%

GINA 970 433 35+35 - 70 83%

HIVA 1617 574 8+7 - 15 97 %

NOVA 16969 7131 242 - 4 99.9%

SYLVA 216 216 1+1 3+3 8 96%

4.4. Experimental Results

In this section we describe in detail the results obtained using various datasets. The datasets
were used for the “Agnostic Learning vs. Prior Knowledge” challenge, organized by I[JCNN
(2007a). There are 5 datasets, namely, ADA, GINA, NOVA, SYLVA and HIVA. All these
datasets have two possible class labels. For our simulations we have used the datasets from the

89

SAEED

agnostic learning track. As we are using the data from the agnostic learning track, we don’t
have any feature information. We give a brief summary of these datasets, as given by Guyon
et al. (2007), in Table 4.2. It can be seen that the above datasets are taken from different sources
and can be used as a test bed for various learning algorithms. Also, because these datasets were
launched as part of a machine learning competition, they serve as a benchmark for comparison
between different techniques. The evaluation of results described in this section is based on the
balanced error rate (BER) which is the average of the error rates on positive and negative class
labels (Guyon et al., 2007).

Table 4.2: Datasets used (Guyon et al., 2007) (Column 4, 5 and 6 show the total examples in the
training, validation and test sets. The last column shows the percentage of positive
examples)

Dataset (domain) Type Attributes | Train | Valid Test Pos %
ADA (marketing) mixed 48 4,147 415 41,471 24.8%
GINA (handwriting) | continuous 970 3,153 315 31,532 49.2%
HIVA (medicine) binary 1,617 3,845 384 38,449 3.5%
NOVA (text-mining) binary 16,969 1,754 175 17,537 | 28.5%
SYLVA (ecology) mixed 216 13,086 | 1,309 | 1,30,857 | 6.2%

4.4.1. Overall Hybrid Learning Model

The overall learning model is shown in Figure 4.3. The first step involved is that of attribute
elimination. We call it attribute elimination to distinguish it from feature transformation and di-
mensionality reduction. The next step is the estimation of mixture densities for various classes
and feature transformation. The transformed features are used for training with a discrimi-
native classifier which gives us the predicted label. To run the simulations we added objects
to the Challenge Learning Object Package (CLOP) library (Saffari and Guyon, 2006). For
pre-processing, cross-validation and neural network learning we used the objects provided by
CLOP. For mixture modeling we wrote our code in C++ and provided an interface to it in
Matlab.

4.4.2. Initial Attribute Elimination

We adopted a very simple counting procedure for reducing the dimensionality of the input space.
There are many raw data features which don’t convey substantial information about their class
and seem redundant. The attributes, whether continuous or binary, for which the percentage
of non-zero entries for both the positive and negative classes, was less than a certain threshold
were omitted. This threshold was determined empirically using cross validation. The rule for
the initial elimination of attributes is then given by the following:

Yl (i # 0 and yp = +1)

If < threshold and
Y I = +1) B
" I(xp; #£0and y, = —1
Yic (x,ﬁl 7 0 and yx) < threshold
Yl I(yy =—1)
then eliminate input variable x; “4.4)

90

4. HYBRID LEARNING USING MIXTURE MODELS AND ARTIFICIAL NEURAL NETWORKS

Input vector—> Reduction of input space Feature transformation
(attribute elimination) > using
mixture models

Pre—process
(standardize/scale/
normalize)
\
Predicted post—process Discriminative classifier
label

Figure 4.3: Overall model

where the function /(R) = 1 when the rule R holds. Although, this method of feature elimi-

nation may seem like an ad-hoc method at the first glance, it has an intuitive appeal and justi-
fication based on information theory. For all the datasets we have a two way classification and
if we consider only two possibilities for the value of an input attribute (zero or non-zero), the
information gain, A;, for attribute i (Vi, 1 <i < n) is given by (E is the entropy):

L i #0) o By [k =0)

A =E(X) - iy #£0) -

Ei(xk,izo) 4.5
Hence, the features that satisfy Rule (4.4) will have low information gain. Note that not all
features with low information gain as given by Equation (4.5) will be removed in this step.
Apart from ADA and SYLVA, this method of feature elimination when applied to the datasets
yielded good results.

4.4.3. Simulations for Finding Mixture Parameters and Number of Clusters

The EM algorithm was written in C++ to determine the parameters of the Gaussian mixture
models and Bernoulli mixture models. The number of mixture components, D, to be determined
is pre-defined by the user. The EM algorithm doesn’t give us any means for determining the
optimum number of mixture distributions or clusters. When running this algorithm for Bernoulli
mixture models it was observed that the priors of some of the mixture components were reduced
to zero after some iterations. For example, we started with the initial parameter D = 10 on the
NOVA dataset for the positive class and the number of resulting mixtures with non-zero priors
was 2. For most of the simulations we observed that the mixtures with non-zero priors was 2,
even with different starting values of D. Similarly, in SYLVA’s case, most of the simulations
resulted in only one or two mixture distributions with non-zero priors. Hence, in such cases
the EM algorithm results in a fewer number of mixture distributions compared to the initially
specified number. For our hybrid learning model we only retain the distributions with non-zero
priors. This gives us a way of determining the number of clusters needed for each class. This is
shown in detail for different datasets in the next sections.

91

SAEED

4.4.4. NOVA Dataset

Table 4.3: Results for the NOVA dataset. The second column (initial Bernoullies) shows the
value of D, the initial clusters, specified by the user for the EM algorithm. The third
column (Bernoulli mixtures) shows the number of clusters left with non-zero priors
after running the EM algorithm. For the last row entry, a layer of 5 boosting units
was used, each unit represented by 2-layer neural network having 25 hidden units.

No. Initial Bernoulli NN/w Train | Valid | Test

Bernoullies | mixtures units BER | BER | BER
1. 15+15 242 15 0.038 | 0.028 | 0.046
2. 20+20 2+3 20 0.037 | 0.028 | 0.048
3. 20+20 2+3 15 0.037 | 0.028 | 0.048
4. 20+20 243 8 0.037 | 0.028 | 0.049
5. 10+10 2+3 25 boost (5) | 0.037 | 0.028 | 0.050

Here, we present the results achieved for agnostic learning with the NOVA dataset. The
NOVA dataset has 16,969 binary features. Table 4.3 shows the results of the entries submitted
to the challenge. The initial step of feature elimination described in Section 4.4.2 was applied to
the dataset with a threshold value of 0.3%. This eliminates 9,838 features leaving behind only
7,131 features. These features were used to generate Bernoulli mixture models for feature trans-
formation. The second column shows the initial D parameter input to the EM algorithm for the
number of Bernoulli mixtures (see Section 4.4.3). The third column shows how many clusters
were left with non-zero priors. For this dataset we almost always ended up with 2 or 3 mixtures,
depending upon the initial values of the EM algorithm. The features were pre-processed using
the ‘shift-n-scale’ and ‘standardize’ functions from CLOP. The resulting data was then trained
using a 2 layer neural network. Column 4 shows the number of units comprising the hidden
layer. The final labels were post-processed using the bias option with transduction as provided
in CLOP. The topmost entry is the winning entry for the NOVA dataset in the agnostic learning
track. The last entry shows the results obtained by using a boosting layer of 5 units, each unit
being composed of a neural network having 25 hidden units. There is not much difference in
accuracy for different parameter values.

4.4.5. SYLVA Dataset

Table 4.4 shows the results obtained on the SYLVA dataset. The topmost entry was ranked third
in the agnostic learning track. The SYLVA dataset has both binary and continuous attributes
for which we generated Bernoulli and Gaussian mixtures respectively. It was interesting to
observe that for this dataset we always ended up with either 1 or 2 Bernoulli mixtures with
non-zero priors, depending upon the initial parameters used by the EM algorithm (see Sec-
tion 4.4.3). This observation leads us to conclude that the positive and negative examples can
be modeled by just 1 or 2 Bernoulli distributions for the binary attributes. Section 4.3.1 shows
the separation obtained by the features resulting from the Bernoulli mixtures. After generat-
ing Bernoulli mixtures the features were pre-processed using the standardize, shift-n-scale and
normalize options provided by CLOP. Also, the labels generated by the neural network model
were post-processed using the bias option 1. The first 3 entries show the results obtained by
using a 2-layer neural network at the supervised layer. The fourth entry shows the results ob-

92

4. HYBRID LEARNING USING MIXTURE MODELS AND ARTIFICIAL NEURAL NETWORKS

tained by using support vector machines as the discriminative classifier, where the kernel was
calculated using Kullback-Leibler (KL) divergence. The fifth entry uses a boosting layer of 20
units, each unit being made of 2-layer neural network with 5 hidden units. Neural networks
achieve a higher accuracy as compared to the other two discriminative methods. However, the
difference in accuracy is not very significant.

Table 4.4: Results for the SYLVA dataset. Entry 5 shows a supervised layer made from boost-
ing 20 units, each unit being composed of a 2-layer neural network having 5 hidden
units.

No. | Bernoulli | Gaussian | NN/w Other Train Valid Test

mixtures | mixtures | units classifier BER BER BER
1. 1+1 3+3 3 - 0.0072 | 0.0053 | 0.0094
2. 1+1 6+6 10 - 0.0069 | 0.0061 | 0.0096
3. 1+1 6+6 10 - 0.0078 | 0.0065 | 0.0104
4. 1+1 242 - SVM 0.0094 | 0.0057 | 0.0124
5. 242 6+6 - 5 boost (20) | 0.0083 | 0.0053 | 0.0131

4.4.6. GINA Dataset

Table 4.5: Results for the GINA dataset

No. | Bernoulli | NN/W | Boosting | Train | Valid | Test

mixtures | units units BER | BER | BER
1. 35+35 15 5 0.010 0 0.049
2. 25+25 20 5 0.014 | 0.006 | 0.050
3. 25425 15 5 0.014 | 0.006 | 0.051
4. 15415 15 5 0.023 | 0.013 | 0.052
5. 20420 20 5 0.010 | 0.006 | 0.052

The results obtained on the GINA dataset are given in Table 4.5. For this dataset the attribute
elimination threshold was kept at 40%, (method described in Section 4.4.2) which reduced our
initial attributes from 970 to 433. This dataset has continuous attributes. As we want to fit
Bernoulli mixtures to this dataset, we treated all the non-zero entries in this dataset as success
and all the zero values as failure, resulting in binary attributes. Even though this results in
information loss but surprisingly it still gives us good results. For pre-processing, shift-n-scale
and standardize methods of CLOP were used. Also, the output labels of the neural network
were post processed using the bias algorithm with the transduction option. The topmost entry
was ranked fifth in the agnostic learning track. For the supervised layer we used the boosting
method, with each unit being made of a 2-layer neural network. Boosting gave us better results
as compared to using a single 2-layer neural network. The difference in results for various
values of the parameters is not very significant in this case.

93

SAEED

4.4.7. HIVA Dataset

The results obtained on the HIVA dataset are shown in Table 4.6. The threshold used for the
initial attribute elimination step was 10%. So the initial input space was reduced from 1617 to
574. The inputs to the neural network were first pre-processed using shift-n-scale, standardize
and normalize options from CLOP. Also post-processing of output labels was done using bias
option 4. For the second entry we used boosting with 20 units, each unit being composed of a
2-layer neural network having 3 hidden units. For this dataset also, there is not much difference
between the error rates, when using different values of initial parameters.

Table 4.6: Results on the HIVA dataset

No. | Bernoulli NN/w Train | Valid | Test

mixtures units BER | BER | BER
1. 8+7 7 0.218 | 0.237 | 0.305
2. 9+4 3 boost (20) | 0.172 | 0.185 | 0.309
3. 8+7 20 0.151 | 0.110 | 0.309
4. 8+7 40 0.148 | 0.132 | 0.317
5. 8+7 35 0.166 | 0.147 | 0.319

4.4.8. ADA Dataset

Table 4.7 shows the results obtained on the ADA dataset. We found this dataset the most difficult
to train as this was the only dataset on which a simple neural network with 2 layers performed
as well as the other methods (row number 2, 3 and 4). The hybrid learning approach doesn’t
seem to give much benefit in this case.

Table 4.7: Results on the ADA dataset

No. | Eliminate | Bernoulli | Gaussian | NN/w | Train | Valid | Test

threshold | mixtures | mixtures | units | BER | BER | BER
1. 0 3+6 15+15 15 0.180 | 0.190 | 0.181
2. 0 - - 7 0.174 | 0.188 | 0.181
3. 0 - - 7 0.177 | 0.188 | 0.181
4. 0 - - 3 0.170 | 0.174 | 0.185
5. 1% 7+8 15+15 7 0.190 | 0.201 | 0.187

4.4.9. Comparison With Other Methods

In this section we compare the performance of the hybrid learning model with other methods.
First we will discuss the results obtained from the individual mixture model, individual neural
network model and the hybrid model. Then we’ll compare the classification results of the hybrid
model with the best models on the challenge datasets.

Table 4.8 shows the results of applying three different algorithms to the challenge datasets.
The third column shows the BER when only mixture models are used for classification (details
are given in Section 4.2.3). BER obtained by applying neural networks is shown in the fourth
column and the last column shows the BER of the hybrid learning model. All the error rates

94

4. HYBRID LEARNING USING MIXTURE MODELS AND ARTIFICIAL NEURAL NETWORKS

Table 4.8: Comparison of hybrid learning approach with individual mixture model and neural
network model. The table shows the balanced error rate of classification on the test
set of the various datasets

No. | Dataset | Mixture models | Neural network | Hybrid learning
1. ADA 0.264 0.1871 0.181
2. GINA 0.1379 0.1173 0.049
3. HIVA 0.3493 0.2961 0.305
4. NOVA 0.1241 0.1453 0.0456
5. SYLVA 0.0156 0.0119 0.0094

pertain to the test cases of the corresponding datasets. We can see from the table that for GINA,
NOVA and SYLVA the hybrid learning model achieves a significant improvement in accuracy
as compared to the individual mixture models or the neural network model. For ADA, the
performance of the hybrid approach is almost the same as the neural network model but better
than the individual mixture model. In case of HIVA, the mixture models have the worst accuracy
and the neural networks perform slightly better than the hybrid model.

The results of the “Agnostic vs. Prior Knowledge” (2007a) challenge can be found on
http://clopinet.com/isabelle/Projects/agnostic/Results.html. Table4.9
shows a comparison of our method with the winning entries in the agnostic learning track. This
comparison is based on the balanced error rates on the test dataset. It can be seen from the
table that apart from ADA and HIVA, our method achieves good results on the datasets. The
winner of the overall agnostic learning track is Lutz (2006) who has used boosting techniques
for classification. His entries are also ranked best on the ADA, GINA and SYLVA datasets. The
last row of the table shows an overall comparison of our method with the winning entry. We
can see that the difference in test BERs for the overall result of the two methods is not very
significant.

4.4.10. Discussion of Results

In this section we presented the results obtained by applying hybrid learning model on the five
different datasets of the agnostic track of the “Agnostic vs. Prior Knowledge” challenge. All the
five datasets have been taken from different domains and some have both binary and continuous
features and some have only binary features. Our approach for solving the classification prob-
lem on these datasets consists of mainly three stages. The first step involves the elimination of
attributes which do not have a high information gain. In the second step we use finite Gaussian
or Bernoulli mixture models for unsupervised clustering of data. Using these mixture models
we transform the original input space into a low dimensional probability space. In the third
phase, the transformed features are fed to an artificial neural network for classification.

The main motivation behind our technique is to use unsupervised technique to capture the
important properties of data using mixture models and classify the data using the non-linear
discriminative function provided by artificial neural networks. Hence, the model combines the
generative power of mixture models with the discriminative ability of neural networks. Mixture
models provide a semi-parametric approach for modeling the density of data when the distri-
bution of data is not unimodal. We have successfully demonstrated their ability to attain a high
reduction in the original dimensionality of data, hence making the data more manageable for

95

http://clopinet.com/isabelle/Projects/agnostic/Results.html

SAEED

Table 4.9: Comparison of hybrid learning approach with other methods (IJCNN, 2007b). Note
that the best entry for a dataset is not necessarily the best overall entry.

Best method Hybrid learning

Dataset Method Test BER || Test BER | Rank

ADA LogitBoost with trees 0.166 0.181 9
(Lutz, 2006)

GINA LogitBoost/Doubleboost 0.0339 0.0495 5
(Lutz, 2006)

HIVA RBF SVM 0.2827 0.305 10
(Franc, 2007)

NOVA Hybrid learning 0.0456 0.0456 1
(Saeed, 2007)

SYLVA LogitBoost with trees 0.0062 0.0094 3
(Lutz, 2006)

Overall LogitBoost with trees 0.1117 0.1194 6
(Lutz, 2006)

input to a classifier. The reduction in dimensionality is as low as 99.9% on the NOVA dataset,
97% and 96% on the HIVA and SYLVA datasets respectively.

Empirical results demonstrate that the hybrid learning model is a simple yet, effective
method for agnostic learning where the attributes involved are raw low level features. We
conducted experiments to compare the BER of the hybrid learning algorithm with individual
mixture models and neural network models and found that the combined model performs sig-
nificantly better than the individual models in case of GINA, SYLVA and NOVA. The perfor-
mance of this method is almost the same as neural networks in case of ADA and slightly worse
than neural networks in case of HIVA. In all cases the hybrid model has a much better accuracy
rate as compared to the mixture model classifiers.

The effectiveness of the hybrid learning model has been supported by empirical results on
the five challenge datasets. According to the August, 2007 ranking of the challenge partici-
pants our method achieved the best performance on the NOVA dataset, was ranked third on the
SYLVA dataset, fifth on the GINA dataset and ninth, tenth on the ADA and HIVA datasets re-
spectively. In the overall performance one of our entries was ranked sixth. The best participant
had a BER of 11.17% and our entry had an overall BER of 11.94%. The difference between the
BER of these two entries is not very significant.

4.5. Conclusions

In this chapter we have presented a hybrid learning method using mixture models and artificial
neural networks. The hybrid learning approach, described in this chapter, combines the gen-
erative model with a discriminative approach. This method is particularly intuitive as it first
models the data using mixture models. The mixture models assume that the entire data is gen-
erated from various sources and, hence, this method can capture the various properties of data
using different component distributions. These mixture models are used to perform a feature
transformation of the input vector. The transformed features are then used to train a discrimina-

96

4. HYBRID LEARNING USING MIXTURE MODELS AND ARTIFICIAL NEURAL NETWORKS

tive classifier. In this chapter we have also shown how mixture models can be used for feature
transformation and dimensionality reduction of the input space.

Our hybrid learning approach was applied to 5 datasets which were launched as part of
the “Agnostic vs. Prior Knowledge” challenge, by IICNN 2007, in the agnostic learning track.
This method has the winning entry on the NOVA dataset. Also, our entries were ranked third
and fifth for the SYLVA and GINA datasets. The entries sent to the challenge show that this
method is comparable to the other methods. Work is on going to devise methods for finding the
optimum number of mixture models for different types of datasets. Also, we are exploring the
potential of other mixture distributions to be used in the hybrid learning approach.

Acknowledgments

I would like to thank Dr. Haroon Babri and Mr. Kashif Javed of University of Engineering
and Technology, Lahore, for reviewing and providing valuable comments and feedback on this
chapter. I also thank Isabelle Guyon for all her technical help during the challenge.

References

Agnostic learning vs. prior knowledge challenge, 2007a. See http://www.agnostic.
inf.ethz.ch.

Agnostic learning vs. prior knowledge competition results, 2007b. See http://clopinet.
com/isabelle/Projects/agnostic/Results.html.

Ehem Alpaydin. Introduction to Machine Learning. Prentice-Hall of India Private Limited,
2005.

Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support vector machines, 2001.
Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

Arthur Dempster, Nan Laird, and Donald Rubin. Maximum likelihood from incomplete data
via the EM algorithm. Journal of the Royal Statistical Society, 39(1):1-38, 1977.

Richard O. Duda and Peter E. Hart. Pattern Classification and Scene Analysis. Wiley, 1973.

Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification. John Wiley and
Sons, inc, 2000.

Vojtech Franc. Modified multi-class SVM formulation; Efficient LOO computation, 2007. Fact
sheet available at http://clopinet.com/isabelle/Projects/agnostic/.

Jiri Grim, Pavel Pudil, and Petr Somol. Multivariate structural Bernoulli mixtures for recogni-
tion of handwritten numerals. In Proceedings of International Conference on Pattern Recog-
nition (ICPR’00), 2000.

Isabelle Guyon, Amir Saffari, Gideon Dror, and Gavin Cawley. Agnostic learning vs. prior
knowledge challenge. In Proceedings of International Joint Conference on Neural Networks,
August 2007.

97

http://www.agnostic.inf.ethz.ch
http://www.agnostic.inf.ethz.ch
http://clopinet.com/isabelle/Projects/agnostic/Results.html
http://clopinet.com/isabelle/Projects/agnostic/Results.html
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://clopinet.com/isabelle/Projects/agnostic/

SAEED

Tommi S. Jaakkola and David Haussler. Exploiting generative models in discriminative classi-
fiers. In Proceedings of the 1998 conference on Advances in neural information processing
systems II, pages 487-493, 1998.

Robert A. Jacobs, Michael 1. Jordan, Steven J. Nowlan, and Geoffrey E. Hinton. Adaptive
mixture of local experts. Neural Computation, 3:79-87, 1991.

Alfons Juan and Enrique Vidal. On the use of Bernoulli mixture models for text classification.
Pattern Recognition, 35(12):2705-2710, December 2002.

Alfons Juan and Enrique Vidal. Bernoulli mixture models for binary images. In Proceedings of
17th International Conference on Pattern Recognition (ICPR-04), 2004.

Julia A. Lasserre, Christopher M. Bishop, and Thomas P. Minka. Principled hybrids of genera-
tive and discriminative models. In Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition, CVPR, New York, 2006.

Roman W. Lutz. Logitboost with trees applied to the WCCI 2006 performance prediction
challenge datasets. In Proceedings of International Joint Conference on Neural networks,
pages 2966-2969, Vancouver, Canada, July 2006. Available at http://stat.ethz.
ch/~lutz/publ.

Tom Mitchell. Machine Learning. McGraw Hill, 1997.

John Moody and Christian Darken. Fast learning in networks of locally-tuned processing units.
Neural Computation, 1:281-294, 1989.

Mehreen Saeed. Hybrid approach for learning, 2007. Fact sheet available at http://
clopinet.com/isabelle/Projects/agnostic/.

Amir Saffari and Isabelle Guyon. Quick Start Guide For CLOP, May 2006. Available at
http://ymer.org/research/files/clop/QuickStartvl.0.pdf.

Sajama and Alon Orlitsky. Supervised dimensionality reduction using mixture models. In Pro-
ceedings of the 22nd international conference on machine learning, pages 768-775, Bonn,
Germany, 2005.

Ilkay Ulusoy and Christopher M. Bishop. Generative versus discriminative methods for ob-
ject recognition. In Proceedings of IEEE International Conference on Computer Vision and
Pattern Recognition, CVPR, San Diego, 2005.

98

http://clopinet.com/isabelle/Projects/agnostic/
http://clopinet.com/isabelle/Projects/agnostic/
http://ymer.org/research/files/clop/QuickStartV1.0.pdf

Chapter 5

Data Grid Models for Preparation and Modeling in
Supervised Learning

Marc Boullé MARC.BOULLE @ ORANGE-FTGROUP.COM
France Telecom R&D

2, avenue Pierre Marzin

22300 Lannion, France

Editor: Isabelle Guyon

Abstract

This paper introduces a new method to automatically, rapidly and reliably evaluate the class
conditional probability of any subset of variables in supervised learning. It is based on a par-
titioning of each input variable into intervals in the numerical case and into groups of values
in the categorical case. The cross-product of the univariate partitions forms a multivariate par-
tition of the input representation space into a set of cells. This multivariate partition, called
data grid, is a piecewise constant nonparametric estimator of the class conditional probabil-
ity. The best data grid is searched using a Bayesian model selection approach and an efficient
combinatorial algorithm.

We also extend data grids to joint density estimation in unsupervised learning and apply
this extension to the problem of coclustering the instances and variables of a sparse binary
dataset.

We finally present three classification techniques, exploiting the maximum a posteriori data
grid, an ensemble of data grids, or a coclustering data grid, and report results in the Agnostic
Learning vs. Prior Knowledge Challenge, where our method achieved the best performance
on two of the datasets. These experiments demonstrate the value of using data grid models in
machine learning tasks, for conditional density estimation, data preparation, supervised classi-
fication, clustering and rule based explanation.

5.1. Introduction

Univariate partitioning methods have been studied extensively in the past, mainly in the context
of decision trees (Kass, 1980; Breiman et al., 1984; Quinlan, 1993; Zighed and Rakotomalala,
2000). Supervised discretization methods split the numerical domain into a set of intervals and
supervised value grouping methods partition the input values into groups. Fine grained par-
titions allow an accurate discrimination of the output values, whereas coarse grain partitions
tend to be more reliable. When the size of the partition is a free parameter, the trade-off be-
tween information and reliability is an issue. In the MODL approach, supervised discretization
(Boullé, 2006) (or value grouping (Boullé, 2005)) is considered as a nonparametric model of
dependence between the input and output variables. The best partition is found using a Bayesian
model selection approach.

In this paper, we describe an extension of the MODL approach to the supervised bivariate
case for pairs of input variables (Boullé, 2007a)!, and introduce its generalization to any subset

1. The method is available as a shareware, downloadable at http://perso.rd.francetelecom.fr/
boulle/

© M. Boullé.

http://perso.rd.francetelecom.fr/boulle/
http://perso.rd.francetelecom.fr/boulle/

BOULLE

of variables of any types, numerical, categorical or mixed types. Each input variable is parti-
tioned, into intervals in the numerical case and into groups of values in the categorical case. The
cross-product of the univariate partitions forms a multi-dimensional data grid. The correlation
between the cells of this data grid and the output values allows the joint predictive informa-
tion to be quantified. The trade-off between information and reliability is established using a
Bayesian model selection approach. We also extend these models to the unsupervised case,
where the data grids are nonparametric models of dependence between all the variables, with
a piecewise constant estimation of the joint probability distribution. Sophisticated algorithms
are necessary to explore the search space of data grid models. They have to strike a balance
between the quality of the optimization and the computation time. Several optimization heuris-
tics, including greedy search, meta-heuristic and post-optimization, are introduced to efficiently
search the best possible data grid.

The paper is organized as follows. Section 5.2 summarizes the MODL method in the uni-
variate supervised discretization and value grouping cases. Section 5.3 extends the approach to
the multivariatiate case and Section 5.4 describes the generalization of such models to unsuper-
vised learning and coclustering. Section 5.5 presents the optimization algorithms. Section 5.6
evaluates the data grid models on artificial datasets. Section 5.7 reports experiments performed
on the agnostic learning vs. prior knowledge challenge datasets (Guyon et al., 2007) and ana-
lyzes their interest for classification and explanation. Finally, Section 5.8 gives a summary and
discusses future work.

5.2. The MODL Supervised Discretization and Value Grouping Methods

For the convenience of the reader, this section summarizes the MODL approach in the uni-
variate case, detailed in (Boullé, 2006) for supervised discretization, and in (Boullé, 2005) for
supervised value grouping.

5.2.1. Discretization

The objective of supervised discretization is to induce a list of intervals which partitions the
numerical domain of a continuous input variable, while keeping the information relative to the
output variable. A trade-off must be found between information quality (homogeneous intervals
in regard to the output variable) and statistical quality (sufficient sample size in every interval
to ensure generalization).

In the MODL approach, the discretization is turned into a model selection problem. First,
a space of discretization models is defined. The parameters of a specific discretization model
are the number of intervals, the bounds of the intervals and the frequencies of the output values
in each interval. Then, a prior distribution is proposed on this model space. This prior exploits
the hierarchy of the parameters: the number of intervals is first chosen, then the bounds of the
intervals and finally the frequencies of the output values. The prior is uniform at each stage
of the hierarchy. Finally, we assume that the multinomial distributions of the output values in
each interval are independent from each other. A Bayesian approach is applied to select the
best discretization model, which is found by maximizing the probability p(Model|Data) of the
model given the data. Using the Bayes rule and since the probability p(Data) is constant under
varying the model, this is equivalent to maximizing p(Model) p(Data|Model).

Let N be the number of instances, J the number of output values, I the number of input
intervals. N; denotes the number of instances in the interval i and N;; the number of instances
of output value j in the interval i. In the context of supervised classification, the number of

100

5. DATA GRID MODELS FOR PREPARATION AND MODELING IN SUPERVISED LEARNING

instances N and the number of classes J are supposed to be known. A discretization model M
is then defined by the parameter set {I, {N}<i<s» {Nij}lgigl,lgjgj}'

Using the definition of the model space and its prior distribution, Bayes formula can be used
to calculate the exact prior probabilities of the models and the probability of the data given a
model. Taking the negative log of the probabilities, this provides the evaluation criterion given
in Formula 5.1.

N+I—1 ! Ni+J— N;!
10gN—|—10g< I—1 >+Zl (B)—i—Zlog NAINAl Ny 5.1

The first term of the criterion stands for the choice of the number of intervals and the second
term for the choice of the bounds of the intervals. The third term corresponds to the parameters
of the multinomial distribution of the output values in each interval and the last term represents
the conditional likelihood of the data given the model, using a multinomial term. Therefore
“complex” models with large numbers of intervals are penalized.

Once the evaluation criterion is established, the problem is to design a search algorithm in
order to find a discretization model that minimizes the criterion. In (Boullé, 2006), a standard
greedy bottom-up heuristic is used to find a good discretization. In order to further improve
the quality of the solution, the MODL algorithm performs post-optimizations based on hill-
climbing search in the neighborhood of a discretization. The neighbors of a discretization are
defined with combinations of interval splits and interval merges. Overall, the time complexity
of the algorithm is O(JNlogN).

The MODL discretization method for supervised classification provides the most proba-
ble discretization given the data. Extensive comparative experiments report high performance
(Boullé, 2006).

5.2.2. Value Grouping

Categorical variables are analyzed in a way similar to that for numerical variables, using a par-
titioning model of the input values. In the numerical case, the input values are constrained to be
adjacent and the only considered partitions are the partitions into intervals. In the categorical
case, there are no such constraints between the values and any partition into groups of values
is possible. The problem is to improve the reliability of the estimation of the class conditional
probabilities owing to a reduced number of groups of values, while keeping the groups as in-
formative as possible. Producing a good grouping is harder with large numbers of input values
since the risk of overfitting the data increases. In the extreme situation where the number of
values is the same as the number of instances, overfitting is obviously so important that efficient
grouping methods should produce one single group, leading to the elimination of the variable.
Again, let N be the number of instances, V the number of input values, J the number of
output values and I the number of input groups. N; denotes the number of instances in the group
i, and N;; the number of instances of output value j in the group i. The Bayesian model selection
approach is applied like in the discretization case and provides the evaluation criterion given in
Formula 5.2. This formula has a similar structure as that of Formula 5.1. The two first terms
correspond to the prior distribution of the partitions of the input values, into groups of values in
Formula 5.2 and into intervals in Formula 5.1. The two last terms are the same in both formula.

logV—i—logB(VI)—l—zI:log (N N >+Zlog Nit (5.2)
7 i=1 - i=1 ll'le NJ '

101

BOULLE

B(V,I) is the number of divisions of V values into I groups (with eventually empty groups).
When I =V, B(V,I) is the Bell number. In the general case, B(V,I) can be written as B(V,I) =
I, 8(V,i), where S(V,i) is the Stirling number of the second kind (see Abramowitz and Ste-
gun, 1970), which stands for the number of ways of partitioning a set of V elements into i
nonempty sets. In (Boullé, 2005), a standard greedy bottom-up heuristic is proposed to find a
good partition of the input values. Several pre-optimization and post-optimization steps are in-
corporated, in order to both ensure an algorithmic time complexity of O(JNlog(N)) and obtain
accurate value groupings.

5.3. Supervised Data Grids Models for any Subset of Variables

In this section, we describe the extension of the MODL approach to pairs of variables introduced
in (Boullé, 2007a) and generalize it to any subset of input variables variables for supervised
learning, in the numerical, categorical and mixed type case. We first introduce the approach
using an illustrative example for the case of supervised bivariate discretization, then summa-
rizes the principles of the extension in the general case, and present the evaluation criterion of
such models. Finally, we relate our modeling approach to information theory and discuss the
robustness of our method.

5.3.1. Interest of the joint partitioning of two input variables

Figure 5.1 gives a multiple scatter plot (per class value) of the input variables V1 and V7 of
the wine dataset (Blake and Merz, 1996). This diagram shows the conditional probability of
the output values given the pair of input variables. The V1 variable taken alone cannot separate
Class 1 from Class 3 for input values greater than 13. Similarly, the V7 variable is a mixture of
Class 1 and Class 2 for input values greater than 2. Taken jointly, the two input variables allow
a better separation of the class values.

v7

6

5 4 L]

4 . . +Class 1 12.18, +oof (0,23,0) (59,0,4)

*3 . t 2 m Class 2

| e e .:‘...g‘;‘ v | |Lomes 11.235, 2.18] (0, 35, 0) 0,5, 6)
i " . A PSS]-o0, 1.235] 0,4, 11) 0,0, 31)

cE N e 3] R V7xV1 Jroo, 12.78] | 112.78, +oo]

L ol
1] R ‘Ir_ y
o - | i Vi
1" 12 13 14 15

Figure 5.1: Multiple scatterplot (per class value) of the input variables V1 and V7 of the wine
dataset. The optimal MODL supervised bivariate partition of the input variables is
drawn on the multiple scatterplot, and the triplet of class frequencies per data grid
cell is reported in the right table

Extending the univariate case, we partition the dataset on the cross-product of the input
variables to quantify the relationship between the input and output variables. Each input variable
is partitioned into a set of parts (intervals in the numerical case). The cross-product of the
univariate input partitions defines a data grid, which partitions the instances into a set of data

102

5. DATA GRID MODELS FOR PREPARATION AND MODELING IN SUPERVISED LEARNING

cells. Each data cell is defined by a pair of parts. The connection between the input variables
and the output variable is evaluated using the distribution of the output values in each cell of
the data grid. It is worth noting that the considered partitions can be factorized on the input
variables. For instance in Figure 5.1, the V1 variable is discretized into 2 intervals (one bound
at 12.78) and the V7 variable into 3 intervals (two bounds at 1.235 and 2.18). The instances of
the dataset are distributed in the resulting bidimensional data grid. In each cell of the data grid,
we consider the empirical distribution of the output values. For example, the cell defined by the
intervals]12.78,4-cc[on V1 and]2.18, +eo[on V7 contains 63 instances. These 63 instances are
distributed on 59 instances for Class 1 and 4 instances for Class 3. Coarse grain data grids tend
to be reliable, whereas fine grain data grids allow a better separation of the output values. In our
example, the MODL optimal data grid is drawn on the multiple scatter plot on Figure 5.1.

5.3.2. Principles of the Extension to Data Grid Models

The MODL approach has been studied in the case of univariate supervised partitioning for
numerical variables (Boullé, 2006) and categorical variables (Boullé, 2005). The extension to
the multivariate case applies the same principles as those described in Section 5.3.1. Each input
variable is partitioned, into intervals in the numerical case and into groups of values in the
categorical case. Taking the cross-product of the univariate partitions, we obtain a data grid of
input cells, the content of which characterizes the distribution of the output values. Compared to
the bivariate case, we introduce a new level in the hierarchy of the model parameters, related to
variable selection. Indeed, a multivariate data grid model implicitly handles variables selection,
where the selected variables that bring predictive information are partitioned in at least two
parts. The other variables, the partition of which consists of one single part, can be considered
as irrelevant and discarded.

The space of multivariate data grid models is very large. Selecting the best model is a
difficult task, both from a model selection and optimization point of view. In our approach, we:

precisely define the parameters of the data grid models,
define a prior on the model parameters,
establish an analytic criterion to evaluate the posterior probability of each model

o e

design sophisticated optimization algorithm to search the maximum a posteriori (MAP)
model.

Our space of models is data dependent: we exploit the input data in order to define the model
parameters and restrict their range. Note that our space of models is both nonparametric (the
number of parameters increase with the size of the data) and finite (each parameter is discrete
with a range bounded according to the input data). To select the best model, we adopt a Bayesian
approach and define a prior distribution on the model parameters. Following the principle of
parsimony, our prior exploits the hierarchy of the parameters and is uniform at each stage of this
hierarchy. We then obtain an analytic formula that evaluates the exact posterior probability of
each data grid model. Finally, we exploit the combinatorial algorithm described in Section 5.5
to efficiently search the space of data grid models.

5.3.3. Evaluation Criterion for Supervised Data Grids

We present in Definition 5.1 a family of multivariate partitioning models and select the best
model owing to a Bayesian model selection approach.

Definition 5.1 A data grid classification model is defined by a subset of selected input vari-
ables, for each selected variable by a univariate partition, into intervals in the numerical case

103

BOULLE

and into groups of values in the categorical case, and by a multinomial distribution of the output
values in each cell of the data grid resulting from the cross-product of the univariate partitions.

Notation.

¢ N: number of instances,

¢ Y: output variable,

¢ J: number of output values,

* Xj,...,Xk: input variables,

* K: number of input variables,

* ¢ set of input variables (|.7| = K),

e %, subset of numerical input variables,

e %, subset of categorical input variables,

e Vi, k € JZ;: number of values of the categorical input variable X,
* K;: number of selected input variables,

* J: subset of selected input variables (|.%;| = K),

e [;: number of parts (intervals or groups of values) in the univariate partition of input
variable X},

* Nji,..i,: number of instances in the input data cell (i1, 2, ...,ix),
* Nji,..ixj: number of instances of output value j in the input data cell (i1,i2y- -+, iK).

Like the bivariate case, presented in Section 5.3.1, any input information is used to define
the family of the model. For example, the numbers of instances per cell N;;,. i, do not belong
to the parameters of the data grid model: they are derived from the definition of the univariate
partitions of the selected input variables and from the dataset. These numbers of instances
allow the specification of the multinomial distribution of the output values in each input cell to
be constrained.

We now introduce in Definition 5.2 a prior distribution on the parameters of the data grid
models.

Definition 5.2 The hierarchical prior of the data grid models is defined as follows:

¢ the number of selected input variables is uniformly distributed between 1 and K,

e for a given number Kg of selected input variables, the subsets of Kg variables are uni-
formly distributed (with replacement),

* the numbers of input parts, are independent from each other, and uniformly distributed
between 1 and N for numerical variables, between 1 and Vi for categorical variables,

e for each numerical input variable and for a given number of intervals, every partition
into intervals is equiprobable,

e for each categorical input variable and for a given number of groups, every partition into
groups is equiprobable,

e for each cell of the input data grid, every distribution of the output values is equiprobable,
* the distributions of the output values in each cell are independent from each other.

104

5. DATA GRID MODELS FOR PREPARATION AND MODELING IN SUPERVISED LEARNING

Applying the MODL approach, this prior exploits the hierarchy of the parameters and is
uniform at each stage of this hierarchy.

For the variable selection parameters, we reuse the prior introduced by Boullé (2007b) in the
case of the selective naive Bayes classifier. We first choose the number of variables and second
the subset of selected variables. For the number of selected variables K, we adopt a uniform
prior between 0 and K variables, representing (K + 1) equiprobable alternatives. For the choice
of the K; variables, we assign the same probability to every subset of K; variables. The number
of combinations (Ilé) seems the natural way to compute this prior, but it has the disadvantage
of being symmetrié. Beyond K/2 variables, adding variables is favored. As we prefer simpler
models, we propose to use the number of combinations with replacement (K +11<<:— 1) , which leads
to a prior probability decreasing with the number of variables. ’

For the specification of each univariate partition, we reuse the prior presented by Boullé
(2006) for supervised discretization of numerical variables and by Boullé (2005) for supervised
value grouping of categorical variables (see Section 5.2). We apply the Bayesian model selec-
tion approach and obtain the evaluation criterion of a data grid model in Formula 5.3.

K+K;—1
log(K +1) +1log < +KS)
5

N+, —1
+ Z (logN—Hog(kal))-i— Z (logVi +1og B(Vi, It))
ke

ke Nty HsNH

I I (5.3)
33 Y (M)

i1=1ip=1 ix=1
L DL

J
4 Z Z Z (lOgNlllz ! ZIOgNiliz---in!>

ll 112 1 lK 1

The first line in Formula 5.3 corresponds to the prior for variable selection. As in the uni-
variate case, the second line is related to the prior probability of the discretization parameters
(like in Formula 5.1) for the selected numerical input variables and to that of the value group-
ing parameters (like in Formula 5.2) for the selected categorical input variables. The binomial
terms in the third line represent the choice of the multinomial distribution of the output values in
each cell of the input data grid. The multinomial terms in the last line represent the conditional
likelihood of the output values given the data grid model.

5.3.4. Relation with Information Theory

Let us first introduce the null model My, where no input variable is selected. The null model is
composed of a single cell containing all the instances. Applying Formula 5.3, the cost ¢(Mp) of
the null model (its value according to evaluation criterion 5.3) reduces to

N!

N+J—1
My) =log(K+1)+1 log
C(0)) Og(+)+Og< J—1 >+0gN1'1\72'1\]J'7

where N; denotes the frequency of the output value j. This corresponds to the posterior proba-
bility of a multinomial model of the output variable, independently of any input variable. To get
an asymptotic evaluation of the cost of the null model, we now introduce the Shannon entropy
H(Y) (Shannon, 1948) of the output variable, H(Y) = —E§:1 pjlogp;, where p; if the prior
probability of the output value j. Using the approximation logN! = N(logN — 1) + O(logN)
based on Stirling’s formula, the cost of the null model is asymptotically equivalent to N times

105

BOULLE

the Shannon entropy of the output variable:
c(Mp) =NH(Y)+ O(logN). (5.4)

As the negative log of a probability can be interpreted as a coding length (Shannon, 1948), our
model selection technique is closely related to the minimum description length (MDL) approach
(Rissanen, 1978; Hansen and Yu, 2001; Griinwald et al., 2005), which aims to approximate the
Kolmogorov complexity (Li and Vitanyi, 1997) for the coding length of the output data. The
Kolmogorov complexity is the length of the shortest computer program that encodes the output
data given the input data.

Overall, our prior approximates the Kolmogorov complexity of the data grid model given the
input data and our conditional likelihood encodes the output values given the data grid model.
In our approach, the choice of the null model corresponds to the lack of predictive information.
The coding length of the null model is asymptotically equivalent to the Shannon entropy the
output data (cf. Formula 5.4), which corresponds to a basic encoding of the output data, with
no use of the input data. This is close to the idea of Kolmogorov, who considers data to be
random if its algorithmic complexity is high, that is if it cannot be compressed significantly. This
makes our approach very robust, since detecting predictive information using data grid models
is necessarily related to a coding length better than that of the null model, thus to non random
patterns according Kolmogorov’s definition of randomness. This robustness has been confirmed
using extensive experiments in the univariate case (Boullé, 2006, 2005), and is evaluated in the
multivariate case in Section 5.6.

5.4. Data Grid Models for Coclustering of Instances and Variables

In (Boullé, 2008b), we have investigated the extension of data grid models to unsupervised
learning, in order to evaluate the joint probability distribution of any subset of variables, nu-
merical or categorical. In Section 5.4.1, we present a detailed description of these models in
the case of two categorical variables. In Section 5.4.2, we show how to apply such bivariate
categorical models to the problem of coclustering the instances and variables of a dataset, as a
data preparation technique for supervised learning.

5.4.1. Bivariate Value Grouping of Categorical Variables

In this section, we focus on the case of two categorical variables. We introduce unsupervised
bivariate data grid models and their evaluation criterion. We then show how such models can
be interpreted as nonparametric models of the correlation between the variables.

5.4.1.1. PRESENTATION

Our objective is to provide a joint description of two categorical variables Y| and Y,, as illus-
trated in Figure 5.2. In the case of categorical variables with many values, the contingency
table between the variables is sparse and does not allow the identification of reliable correla-
tions. Standard statistical tests rely on approximations which are valid only asymptotically. For
example, the chi-square test requires an expected frequency of at least 5 in each cell of the con-
tingency table (Cochran, 1954), which does not permit its application in sparse cases. Grouping
the values of each variable allows the cell frequencies to be raised (at the expense of potentially
mixing interesting patterns), and gives greater confidence in the observed correlation. However,
since many grouping models might be considered, there is a risk of overfitting the data. The
issue is to find a trade-off between the quality of the density estimation and the generalization
ability, on the basis of the granularity of the grid.

106

5. DATA GRID MODELS FOR PREPARATION AND MODELING IN SUPERVISED LEARNING

D|0|e|0]| e

Cle|[0|e|0D {B,D} 0)

B[O |e |0 | e

Ale | Q]| e|0 {A,C}) 0
al|lblc|d {a,c} | {b,d}

Figure 5.2: Example of joint density for two categorical variables ¥} having 4 values a, b, ¢, d
and Y, having 4 values A, B, C, D. The initial contingency table on the left contains
instances only for one half of the cells (tagged as e), and the remaining cells are
empty. After the bivariate value grouping, the preprocessed contingency table on
the right provides a synthetic description of the correlation between Y; et ;.

5.4.1.2. FORMALIZATION

Our objective is to describe the joint distribution of the data, which turns into describing the
value of the instances for each variable. We introduce a family of unsupervised partitioning
models, based on groups of values for each variable and on a multinomial distribution of all
the instances on the cells of the resulting data grid. This family of models is formalized in
Definition 5.3.

Definition 5.3 An unsupervised bivariate value grouping model is defined by:

e a number of groups for each variable,

e for each variable, the repartition of the values into the groups of values,

* the distribution of the instances of the data sample among the cells of the resulting data
grid,

e for each variable and each group, the distribution of the instances of the group on the
values of the group.

Notation.

* Y1,Y,: variables (both considered as output variables)

* V1, V2: number of values for each variable (assumed as prior knowledge)
e N: number of training instances

* D={D;,D3,...,D,}: training instances

* Ji,J2: number of groups for each variable

e G = J1J,: number of cells in the resulting data grid

* j1(v1), j2(v2): index of the group containing value v; (resp. v7)
* mj,,mj,: number of values in group j; (resp. j2)

* ny,,n,,: number of instances for value v; (resp. v2)

* Nj,: number of instances in the group j; of variable Y)

* Nj,: number of instances in the group j, of variable Y,

* Nj, j,: number of instances in the cell (i, j») of the data grid

107

BOULLE

We assume that the numbers of values V| and V, per categorical variable are known in ad-
vance and we aim to model the joint distribution of the finite data sample of size N on these
values. The family of models introduced in Definition 5.3 is completely defined by the param-
eters describing the partition of the values into groups of values

Ji 2, {71 (vi) b <y {2(v2) Fi<in<vy s

by the parameters of the multinomial distribution of the instances on the data grid cells

{Njvh hi<pi<na<ip<n,

and by the parameters of the multinomial distribution of the instances of each group on the
values of the group

{rv, hr<v <vy s {m, Fi<in <,

The numbers of values per groups m; and m;, are derived from the specification of the
partitions of the values into groups: they do not belong to the model parameters. Similarly, the
number of instances in each group can be deduced by adding the cell frequencies in the rows or
columns of the grid, according to N;, = Zz Nj,j, and Nj,):jl 1 Njija-

In order to select the best model, we apply a Bayesian approach using the prior distribution

on the model parameters described in Definition 5.4.

Definition 5.4 The prior for the parameters of an unsupervised bivariate value grouping model
are chosen hierarchically and uniformly at each level:

e the numbers of groups J| and J, are independent from each other, and uniformly dis-
tributed between 1 and V| for Yy, between 1 and V, for Y5,

e for a given number of groups J| of Y1, every partition of the V| values into J| groups is
equiprobable,

e for a given number of groups J of Y, every partition of the V, values into Jy groups is
equiprobable,

* for a data grid of given size (J1,J»), every distribution of the N instances on the G = J,J»
cells of the grid is equiprobable,

e for a given group of a given variable, every distribution of the instances of the group on
the values of the group is equiprobable.

Taking the negative log of the probabilities, this provides the evaluation criterion given in
Theorem 5.5.

Theorem 5.5 An unsupervised bivariate value grouping model distributed according to a uni-
form hierarchical prior is Bayes optimal if the value of the following criteria is minimal

logV) +1logV, +1og B(Vy,J1) +1og B(Va,J2)

N+G-1 ! Nj, +mj, — L Amj,—1
1 lo J1 J1 1 J2
ron(") Bn () ¢ B ()

j1=1 1T Jja=1
Ji L
+logN! — Z Z logN;, j,! (5:3)
J1=1j2=1
Ji J2 Vi Va
+ Z logN; !+ Z logN;,! — Z logn,, ! — Z logn,, !
=1 ja=1 vi=1 va=1

108

5. DATA GRID MODELS FOR PREPARATION AND MODELING IN SUPERVISED LEARNING

The first line in Formula 5.5 relates to the prior distribution of the group numbers J; and
J> and to the specification the partition of the values in groups for each variable. These terms
are the same as in the case of the MODL supervised univariate value grouping method (Boullé,
2005), summarized in Section 5.2.2. The second line in Formula 5.5 represents the specification
of the parameters of the multinomial distribution of the N instances on the G cells of the data
grid, followed by the specification of the multinomial distribution of the instances of each group
on the values of the group. The third line stands for the likelihood of the distribution of the
instances on the data grid cells, by the mean of a multinomial term. The last line corresponds
to the likelihood of the distribution of the values locally to each group, for each variable.

5.4.1.3. INTERPRETATION

The null model My contains one single cell and Formula 5.5 reduces to

N+V—1 N+V,—1
c(Mp) =logV; +1logVs +log h +log +h
Vi—1 Vo—1

! N!

| | V+10g
Ny, Ny, ... Ry, -

(5.6)

lo
+log 1. | |
ny, 1y, L ny, !

which corresponds to the posterior probability of the multinomial model for the distribution
of the instances on the values, for each variable. This means that each variable is described
independently.

More complex data grid models allow a nonparametric description of the correlation be-
tween the variables, by the means of cells where groups of values are correlated. The penal-
ization of the model is balanced by a shorter description of each variable given the model. The
best trade-of is searched using a Bayesian model selection approach.

Example with two identical categorical variables. Let us consider two identical categorical
variables Y| =Y, and the maximum data grid model My, with as many groups as values (J; =
V1), as illustrated in Figure 5.3. The evaluation criterion of the data grid is equal to

N+VE-1 N
M, =2logV; +2logB(V1,V] 1 log——— 5.7
¢(Mmax) ogVi+2logB(Vi, V1) + og(v2-1)+ Ognvl'nvZ!...nvll 7

o oo | &

ISR R RSIRSTRS]
[on ST RS RS
[ARSIRSIN BRS)
[sARSIRSIRSSIN)

Figure 5.3: Bivariate value grouping data grid with as many groups as values for two identical
categorical variables Y] = Y;, having four values a, b, ¢ and d.

If we compare ¢(Mp) in Formula 5.6 to ¢(Mpy,,) in Formula 5.7 in the case of two identical
categorical variables, we observe an overhead in the prior terms of the maximum model (spec-
ification of the value grouping with Bell numbers and specification of the distribution of the N
instances on the V12 cells of the grid). On the other hand, the likelihood term is divided by a
factor two: since the correlation between the variables is perfectly detected using the data grid

109

BOULLE

model, describing the joint distribution of the data given the model reduces to describing the
distribution of one single variable.

Let us now compare Formulae (5.6) and (5.7) in the asymptotic case. The multinomial term
for the distribution of the values of a categorical variable can be approximated with

N!

ny, ny, ooy !

log ~ NH(Y)),
where H(Y)) is the Shannon entropy of variable ¥; (Shannon, 1948). In the case of the null
model having one single cell, we get

c(Mp) ~2(Vi —1)logN +2NH (7).
In the case of the maximum model with as many groups as values, we obtain
c(Mpyax) = (V2 —1)logN + NH(Yy).

The maximum model, which detects the correlation between the variables, will thus be preferred
as soon as there are enough instances compared to the number of values. It is worth noting that
Formulae (5.6) and (5.7) allow us to select the best model in the non-asymptotic case.

5.4.2. Coclustering of Instances and Variables

In this section, we first introduce the application of unsupervised bivariate data grids to the
coclustering problem, and then describe how to build a classifier on the basis of a coclustering
model.

5.4.2.1. COCLUSTERING

A coclustering (Hartigan, 1972) is the simultaneous clustering of the rows and columns of a
matrix. In case of sparse binary datasets, coclustering is an appealing data preparation technique
to identify the correlation between clusters of instances and clusters of variables (Bock, 1979).

Let us consider a sparse binary dataset with N instances, K variables and V non-null values.
A sparse dataset can be represented in tabular format, with two columns and V rows. This
corresponds to a new dataset with two variables named “Instance ID” and “Variable ID” where
each instance is a couple of values (Instance ID, Variable ID), like in Figure 5.4.

InstancelD VariablelD

Vi o V3 Vg Vs I V>
LIOJT1]0]0]0 b Vs
L{OJO[T 1[0 L Vi
&} 0 1 0 0 0 — L \%)
b 101010 1 1 Iy \

. Iy Vs

Figure 5.4: Sparse binary dataset: from the sparse (instances x variables) table to the dense
bivariate representation.

The application of bivariate unsupervised data grid models forms groups of instance /Ds
and groups of variable IDs, so as to maximize the correlation between instances and variables.

110

5. DATA GRID MODELS FOR PREPARATION AND MODELING IN SUPERVISED LEARNING

We expect to find “natural” patterns both in the space of instances and in the space of variables.
It is worth noting that the clusters retrieved by data grid models are non-overlapping, since they
form a partition of the whole dataset.

5.4.2.2. APPLICATION TO SEMI-SUPERVISED LEARNING

We apply a semi-supervised learning approach (Chapelle et al., 2006) to exploit all the data
from the train, validation and test datasets. In the first step, all of the instances are processed
without any output label to identify the “natural” clusters of instances owing to the data grid
coclustering technique. In a second step, the available labeled instances are used to describe
the output distribution in each cluster of instances. The label of a test instance is then predicted
according to the output distribution of its cluster.

Preprocessing the data with semi-supervised coclustering makes sense under the assumption
that the “natural” clusters are correlated with the output values (predefined clusters). We expect
this assumption to be true for some datasets, especially in the pattern recognition domain.

5.5. Optimization Algorithm for Multivariate Data Grids

The space of data grid models is so large that straightforward algorithms will almost surely fail
to obtain good solutions within a practicable computational time.

Given that the MODL criterion is optimal, the design of sophisticated optimization algo-
rithms is both necessary and meaningful. In this section, we describe such algorithms. They
finely exploit the sparseness of the data grids and the additivity of the MODL criterion, and
allow a deep search in the space of data grid models with O(KN) memory complexity and
O(N+v/NlogNmax(K,logN)) time complexity.

5.5.1. Greedy Bottom-Up Heuristic

Let us first focus on the case of numerical input variables. The optimization of a data grid is a
combinatorial problem. For each input variable X, there are 2V possible univariate discretiza-
tions, which represents (2N)K possible multivariate discretizations. An exhaustive search over
the whole space of models is unrealistic.

We describe in Algorithm 5.1 a greedy bottom up merge heuristic (GBUM) to optimize the
data grids. The method starts with the maximum data grid My, which corresponds to the finest
possible univariate partitions, based on single value parts, intervals or groups. It evaluates all
the merges between adjacent parts for any variables (ties are broken randomly), and performs
the best merge if the evaluation criterion decreases after the merge. The process is iterated until
no further merge can decrease the criterion.

Each evaluation of a data grid requires O(NX) time, since the initial data grid model My
contains NX cells. Each step of the algorithm relies on O(N) evaluations of interval merges
times the number K of variables. There are at most O(KN) steps, since the data grid becomes
equal to the null model Mj (one single cell) once all the possible merges have been performed.
Overall, the time complexity of the algorithm is O(K2N>NX) using a straightforward imple-
mentation of the algorithm. However, the GBUM algorithm can be optimized in O(K?NlogN)
time, as shown in next section and demonstrated in (Boullé, 2008a) in the bivariate case.

5.5.2. Optimized Implementation of the Greedy Heuristic

The optimized algorithm mainly exploits the sparseness of the data and the additivity of the
evaluation criterion. Although a data grid may contain O(NX) cells, at most N cells are non

111

BOULLE

Algorithm 5.1: Greedy Bottom-Up Merge heuristic (GBUM)

Require: M {Initial data grid solution}

Ensure: M*,c(M*) < c¢(M) {Final solution with improved cost}
I M*+ M
2: while improved solution do

{Evaluate all the merges between adjacent parts }

4 oo m* 0

5 for all Variable X; € .7 do

6: for all Merge m between two adjacent parts of variable X; do

7

8

9

(98]

M’ < M* +m {Evaluate merge m on data grid M*}
if c(M') < ¢* then
: <+ c(M),m* +m

10: end if

11: end for

12: end for

13: {Perform best merge}

14: if ¢* < c(M*) then

15: M* «— M* +m*
16: end if
17: end while

empty. Thus, each evaluation of a data grid can be performed in O(N) time owing to a specific
algorithmic data structure.

The additivity of the evaluation criterion means that it can be decomposed according to
Definition 5.6 on the hierarchy of the components of the data grid: grid size, variables, parts
and cells.

Definition 5.6 An evaluation criterion ¢(M) of a data grid model M is additive if it can be
decomposed as a sum of terms according to

K K Ik I I Ix
)= ()4 e et + Y Y e (A7) £ X Y Y e (Ci)
k=1 k=lig=1 i=lir=1 Q=1

where

o the grid criterion c(©) (7)) relies only on the sizes & = {I1,b,...,Ix} of the univariate
partitions of the data grid,
o the variable criterion ¢V) (X, Iy) relies only on features of the input variable X;. and on

the number of parts I of its partition,

e the part criterion c® (Pl(kk>) for each part Plik

variable X relies only on features of the part,

) of the univariate partition of the input

e the cell criterion ¢(©) (Chiz-.-iK) for each cell Cy;,...ix of the data grid relies only on fea-
tures of the cell, and is null for empty cells.

One can easily check that the evaluation criteria introduced in Formula 5.3 or Formula
5.5 are additive. Using this additivity property, all the merges between adjacent parts can be
evaluated in O(N) time. Furthermore, when the best merge is performed, the only merges that
need to be re-evaluated for the next optimization step are the merges that share instances with
the best merge. Since the data grid is sparse, the number of partial re-evaluations of the criterion

112

5. DATA GRID MODELS FOR PREPARATION AND MODELING IN SUPERVISED LEARNING

is limited by the number of instances, not by the number of cells in the data grids. Sophisticated
algorithmic data structures and algorithms, detailed in (Boullé, 2008a), are necessary to exploit
these optimization principles and guarantee a time complexity of O(K>NlogN).

5.5.3. Post-Optimization

The greedy heuristic is time efficient, but it may fall into a local optimum. First, the greedy
heuristic may stop too soon and produce too many parts for each input variable. Second, the
boundaries of the intervals may be sub-optimal since the merge decisions of the greedy heuristic
are never reconsidered. We propose to reuse the post-optimization algorithms described in
(Boull€, 2006) in the case of univariate discretization.

In a first stage called exhaustive merge, the greedy heuristic merge steps are performed
without referring to the stopping condition until the data grid consists of one single cell. The
best encountered data grid is then memorized. This stage allows escaping local minima with
several successive merges and needs O(K>NlogN) time.

In a second stage called greedy post-optimization, a hill-climbing search is performed in the
neighborhood of the best data grid. This search alternates the optimization on each input vari-
able. For each given input X;, we freeze the partition of all the other input variables and optimize
the partition of Xj. Since a multivariate additive criterion turns out to be an univariate additive
criterion once all except one univariate partitions are frozen, we reuse the post-optimization
algorithms described in (Boullé, 2006) for univariate discretizations. This process is repeated
for all variables until no further improvement can be obtained. This algorithm converges very
quickly in practice and requires only a few steps.

We summarize the post-optimization of data grids in Algorithm 5.2.

Algorithm 5.2: Post-optimization of a Data Grid
Require: M {Initial data grid solution}
Ensure: M*;c(M*) < ¢(M) {Final solution with improved cost}
1: M* < call exhaustive merge (M)
2: while improved solution do
3: {Take a random permutation of %"}

4 for all Variable X, € 7 do

5 Freeze the univariate partition of all the variables except Xj
6: M* «+ call univariate post-optimization (M*) for variable X,
7. end for

8: end while

5.5.4. Meta-Heuristic

Since the GBUM algorithm is time efficient, it is then natural to apply it several times in order
to better explore the search space. This is done according to the variable neighborhood search
(VNS) meta-heuristic introduced by Hansen and Mladenovic (2001), which consists of applying
the primary heuristic to a random neighbor of the solution. If the new solution is not better, a
bigger neighborhood is considered. Otherwise, the algorithm restarts with the new best solution
and a minimal size neighborhood. The process is controlled by the maximum length of the
series of growing neighborhoods to explore.

For the primary heuristic, we choose the greedy bottom-up heuristic followed by the post-
optimization heuristic. In order to “purify” the randomly generated solutions given to the pri-

113

BOULLE

mary heuristic, we also incorporate a pre-optimization heuristic, that exploits the same principle
as the post-optimization heuristic.

This meta-heuristic is described in Algorithm 5.3. According to the level of the neighbor-
hood size I, a new solution M’ is generated close to the current best solution. We define the
structure of neighborhood by exploiting at most Ky, = log, N new variables. For each ex-
ploited variable, a random discretization is obtained with the choice of random interval bounds

without replacement, with at most ly;;y = N % intervals. This heuristic choice for the maxi-
mum neighborhood size results from the analysis of Formula 5.3. In the case of two equidis-
tributed output values, if we have selected Ky, variables with Iy, intervals per variable and
exactly one instance per input cell, the cost of the model is slightly worse than that of the null
model with no selected variable. This means that data grids that are too sparse are not likely to
be informative according to Formula 5.3.

The VNS meta-heuristic only requires the number of sizes of neighborhood as a parameter.
This can easily be turned into an anytime optimization algorithm, by calling the VNS algorithm
iteratively with parameters of increasing size and stopping the optimization only when the al-
located time is elapsed. In this paper, all the experiments are performed by calling the VNS
algorithm with successive values of 1,2,4,...,27 for the parameter MaxLevel.

In order to improve the initial solution, we choose to first optimize the univariate partition of
each variable and to build the initial solution from a cross-product of the univariate partitions.
Although this cannot help in case of strictly bivariate patterns (such as XOR for example), this
might be helpful otherwise.

Algorithm 5.3: VNS meta-heuristic for data grid optimization

Require: M {Initial data grid solution}

Require: MaxLevel {Optimization level }

Ensure: M*,c(M* < c(M) {Final solution with improved cost}
1: Level <1
2: while Level < MaxLevel do

3: {Generate a random solution in the neighborhood of M*}

. " 3 H _ __Level
4: M" < random solution with K = 375

new intervals per selected variable
5 M — M*uUM"
6: {Optimize and evaluate the new solution}
7. M’ « call Pre-Optimization(M")
8
9

: Level 1%
log, N new selected variables and ;52— N&s

M’ < call Greedy Bottom-Up Merge(M")
. M’ + call Post-Optimization(M")
10: if ¢(M') < ¢(M*) then

11: M* «— M

12: Level + 1

13: else

14: Level + Level + 1
15: end if

16: end while

5.5.5. The Case of Categorical Variables

In the case of categorical variables, the combinatorial problem is worse still for large num-
bers of values V. The number of possible partitions of the values is equal to the Bell number

114

5. DATA GRID MODELS FOR PREPARATION AND MODELING IN SUPERVISED LEARNING

B(V)=1yr,]2—\,/ which is far greater than the O(2") possible discretizations. Furthermore,
the number of possible merges between parts is O(V?) for categorical variables instead of O(N)
for numerical variables. Specific pre-processing and post-processing heuristics are necessary
to efficiently handle the categorical input variables. Mainly, the number of groups of values is
bounded by O(v/N) in the algorithms, and the initial and final groupings are locally improved
by the exchange of values between groups. This allows us to keep an O(N) memory complexity
per variable and bound the time complexity by O(N+/NlogN) per categorical variable, with an

overall time complexity of O(K>N+/NlogN) for the complete greedy heuristic.

5.5.6. Summary of the Optimization Algorithms

The optimization of multivariate data grid models can be summarized as an extension of the
univariate discretization and value grouping algorithms to the multivariate case.

The main heuristic is a greedy bottom-up heuristic, which starts from an initial fine grain
data grid and iteratively performs the best merges between two adjacent parts of any input
variable. Post-optimizations are carried out to improve the best data grid, by exploiting a local
neighborhood of the solution. The main optimization heuristic (surrounded by pre-optimization
and post-optimization steps) is run from several initial solutions, coming from the exploration
of a global neighborhood of the best solution using a meta-heuristic.

These algorithms are efficiently implemented, on the basis of two main properties of the
problem: the additivity of the criterion, which consists of a sum of independent terms related
to the dimension of the data grid, the variables, the parts and the cells, and the sparseness of
the data grids, which contain at most N non empty cells for O(NX) cells. Furthermore, in the
meta-heuristic, we restrict to data grids with at most Ky, = log, N variables, which reduces
the time complexity of the main greedy heuristic.

Sophisticated algorithms, detailed in (Boullé, 2008a), are necessary to make the most of
these problem properties and to reach the following algorithmic performance:

* O(KN) memory complexity for K variables and N instances,
* O(KNlogNmax(K,logN)) if all the input variables are numerical,

» O(KN+/NlogN max(K,logN)) in the general case of numerical variables and categorical
variables having large number of input values (V > v/N).

5.6. Experiments on Artificial Datasets

In the bivariate case, the data grid models have been intensively evaluated on artificial and real
datasets in (Boullé, 2007a). In this section, we evaluate the multivariate data grid models on
artificial datasets, where the true data distribution is known. Two patterns are considered: noise
and multivariate XOR. This enables the evaluation of both the reliability of the method and its
rate of convergence for the detection of complex patterns. We also analyze the effect of each
part of the algorithm and study the limits of the method.

5.6.1. The Noise Pattern

The purpose of the noise pattern experiment is to evaluate the noise resistance of the method,
under varying sample size and the number of input variables. The noise pattern consists of an
output variable independent from the input variables. The expected data grid contains one single
cell, meaning that the output distribution is independent from the input variables. The output
variable is equidistributed on two values. The experiment is performed on a set of sample
sizes ranging from 2 to 1000 instances, for 1, 2 and 10 numerical input variables uniformly

115

BOULLE

distributed on the [0, 1] numerical domain. The criterion evaluated is the number of cells in
the data grid. In order to obtain reliable results, the experiment is performed one million times
on randomly generated training datasets for each sample size and number of input variables.
In order to study the impact of variable selection in the prior distribution of the models (terms
log(K + 1) +1log (Kiléf*l) in Formula 5.3), we perform the experiment with and without the
variable selection terms. Figure 5.5 presents the mean cell number for each sample size and
number of input variable, with and without the prior for variable selection.

% informative Without variable selection prior % informative With variable selection prior
data grids data grids
1 15
—o—K=1 —e—K=1
—o—K=2 ——K=2

0.1 —o-K=10 0.1 —=—K=10

v K\ o . i
0.01 \ 0.01

0.001 0.001

0.0001 0.0001

Sample
Size 0.00001

1 10 100 1000 1 10 100 1000

Sample

0.00001 Size

Figure 5.5: Percentage of informative data grids having more than one cell, for 1, 2 and 10
numerical input variable independent from the target variable, with and without
prior for variable selection.

The results demonstrate the robustness of the approach: very few data grids are wrongly
detected as informative, and the percentage of false detection rapidly decreases with the sample
size. However, without prior for variable selection, the percentage of false detection grows
almost linearly with the number of input variables. This makes sense since a set of K variables
can be detected as an informative multivariate data grid if at most one of the K variables is
detected as an informative univariate discretization.

When the prior for variable selection is accounted for, the percentage of wrongly informative
models falls down by two orders of magnitude, and the rates of false detection are rapidly con-
sistent for the different numbers of input variables. The selection prior significantly strengthens
the robustness of the method and makes it almost independent from the number of variables in
the representation space.

5.6.2. The Multivariate XOR Pattern

The purpose of the XOR pattern experiment is to evaluate the capacity of the method to detect
complex correlations between the input variables. The pattern consists of an output variable
which depends upon the input variables according to a XOR schema, as illustrated in Figure 5.6.
All the input variables are uniformly distributed on the [0, 1] numerical domain. For each input
variable, we compute a Boolean index according to whether the input value is below or beyond
0.5, and the output value is assigned a Boolean value related to the parity of the sum of the input
indexes, which corresponds to a XOR pattern.

We first present a theoretical threshold of detection for the XOR pattern, then illustrate
the behavior of the algorithms for this problem, and finally report experimental results on this
complex pattern detection problem.

116

5. DATA GRID MODELS FOR PREPARATION AND MODELING IN SUPERVISED LEARNING

Figure 5.6: Multivariate XOR pattern in dimension 2 and 3.

5.6.2.1. THEORETICAL DETECTION THRESHOLD

Let us consider K input variables, K; of which represent a multivariate XOR pattern related
to the output variable. The expected multivariate discretization for this pattern consists of a
data grid model M; with K; selected input variables, each of which is discretized into two
intervals. The data grid model Mg contains G = 2% cells. In order to obtain a closed formula,
let us assume that these cells contain the same number Ng = N/G of instances. Let us evaluate
the null model My, reduced to one single cell, and the expected XOR data grid model M.
According to Formula 5.3, we get

N!
c(Mp) = log(K+1)+log(N+1)+log———, (5.8)
Ni!INy!
K+K,—1
c(Mg) = log(K+1)—|—log< K Sl)+ (5.9)
—

K logN + K;log(N + 1) + Glog(Ng + 1).

For Ng = 1, the null model is always preferred: one instance per cell is not enough to detect
the multivariate pattern.

For small values of K and for K; = K, we perform a numerical simulation to compute the
minimum cell frequency Ng such that the cost ¢(Mg) of the multivariate XOR model is lower
than that of the null model. The results, reported in Figure 5.7, indicate that at least ten instances
per cell, representing overall forty instances, are necessary to detect the bi-dimensional XOR
pattern. This cell frequency threshold decreases with the number of input variables, and falls
down to two instances per cell when the number of input variables is beyond ten. Let us notice
that in spite of a very small cell frequency threshold, the whole dataset frequency threshold still
grows exponentially with the number of variables.

We now extend these simulation results in the asymptotic case, assuming that each cell
contains exactly Ng = N/G instances. From Equations (5.8) and (5.9), we get

K+K,—1

(Mo) =c<M@>+log(o

) +(2K;—1)logN —N(log2 — NLG log(Ng+1))+ O(logN).

This implies that for Ng > 2, the multivariate XOR model has an asymptotically lower cost
than that of the null model, even when the total number K of input variables exceeds the number
K of informative input variables.

Overall, about 2X*! instances are sufficient to detect K-dimensional informative patterns,
which correspond to 2 instances per cell. Since this is close from the theoretical detection
threshold, this means that for a dataset consisting of N instances, it might be difficult to detect
patterns exploiting more than log, N informative dimensions.

117

BOULLE

O 2N WA OO N ®O O

N
.

TN

Min cell frequency

0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of input variables

Figure 5.7: Min cell frequency necessary to detect a multivariate XOR pattern using a data grid
model. For example, for a 5-dimensional XOR, 6 instances per cell, or 192 = 25 %6
instances in the sample, allow to detect the pattern using a data grid of 32 cells.

5.6.2.2. EMPIRICAL ANALYSIS OF THE ALGORITHMS

Let us first analyze the behavior of the greedy bottom-up heuristic presented in Section 5.5.1.
This heuristic starts with the maximum data grid, which contains O(NX) cells for at most N
non-empty cells. During the whole merge process, O(KN) merges are necessary to transform
the maximum data grid with NX elementary cells into the null data grid with one single cell.
During the first (K — 1)N merges, most of the merges between adjacent intervals concern merges
between two empty adjacent cells or merges between one non-empty cell and one empty cell.
When the data grid is too sparse, most interval merges do not involve “collisions” between non-
empty cells. According to Formula 5.3, the only cell merges that have an impact on the likeli-
hood of the data grid model are the “colliding” cell merges. This means that at the beginning of
the greedy bottom-up heuristic, the earlier merges are guided only by the prior distribution of
the models, not by their likelihood. These “blind” merges are thus likely to destroy potentially
interesting patterns.

To illustrate this behavior, we perform an experiment with the basic greedy heuristic de-
scribed in Algorithm 5.1 on a bi-dimensional XOR pattern. According to Formulas 5.8 and 5.9,
about 40 instances are sufficient to detect the pattern. However, the greedy bottom-heuristic
fails to discover the XOR pattern when the number of instance is below 1000.

The algorithms presented in Section 5.5 enhance the basic greedy heuristic using a random
initialization, a pre-processing step, the greedy bottom-up merge heuristic and a post-processing
step, as illustrated in Figure 5.8. The random initialization produces a dense enough data grid
with at least one instance per cell on average. This is achieved by selecting at most Ky =
log, N input variables and N 1/K;s parts per variable. The purpose of the pre-processing step is to
“purify” the initial solution, since a random solution is likely to be blind to informative patterns.
This pre-processing consists in moving the boundaries of the initial data grid, in order to get
“cleaner” initial cells, as illustrated in Figure 5.8. The greedy merge heuristic is then applied
on this dense cleaned data grid, and the merges are guided by the data, since the data grid
is sufficiently dense. The role of the post-processing step is to improve the final solution, by
exploring a local neighborhood of the solution consisting of interval splits, merges and moves
of interval boundaries.

All these steps are repeated several times in the VNS meta-heuristic described in Sec-
tion 5.5.4, which generates several random initial data grids of varying size. The only opti-

118

5. DATA GRID MODELS FOR PREPARATION AND MODELING IN SUPERVISED LEARNING

Initial random data grid
X2

X2

Pre-optimized data grid

Greedy optimized data grid

Post-optimized data grid

! o X x ! ° * ! oo * ! o x
X x X X
o X X o X o X
X X X X X X X
5 s 5 X Xy o s X Xy o o & Xy
X X X x oo X x oo X X
o o o o
05 x 05 * 05 © * 05 o X
X
b ° X * x ! ° * x °
o Q o 4 o ° o
x X X
— Xx 0 %o s Xx ° %o 60 Xx 0 %0 0o
x| X x|l Xy x *x o x *x o
0 X1 0+—H — X1 0 X1 0 X1

Figure 5.8: Main steps in the optimization algorithm: a random initial solution is first generated
to start with a dense enough data grid, then cleaned during a pre-processing step,
optimized with the greedy bottom-up merge heuristic and improved during the post-
processing step.

mization parameter relates to the number of iterations in the meta-heuristic, which controls the
intensity of the search.

A quantitative evaluation of the effect of each part of the algorithm is reported in (Boullé,
2008a) in the case of bivariate XOR patterns. The greedy heuristic alone is likely to be misled by
the sparsity of the data and needs a very large number of instances to discover the true patterns.
The meta-heuristic, which starts multiple times from dense enough random initial solutions,
manages to approximate the true patterns with about 100 times fewer instances than the greedy
heuristic. However, the random initialization process is not likely to produce candidate data
grids with accurate boundaries. This is corrected by the pre-optimization and post-optimization
heuristics.

All of the algorithmic components are useful in achieving an effective search of the space of
data grids and efficiently detecting informative patterns. Using these algorithms, the empirical
threshold for the detection of simple XOR patterns reaches the theoretical threshold, even with
one single iteration in the meta-heuristic. For example, bi-dimensional randomly generated
patterns require only 40 instances to be detected, and 5-dimensional XOR pattern only 200
instances. In the following sections, we study the detection of more complex XOR patterns,
which require more intensive search.

5.6.2.3. DETECTION OF A COMPLEX PATTERNS WITH FEW INSTANCES

In this experiment, we study the detection of a 10-dimensional XOR pattern in a 10-dimensional
input space. The experiment is performed on a set of sample sizes ranging from 1000 to 10000
instances, and repeated 100 times for each sample size. We evaluate the empirical detection
threshold for the VNS meta-heuristic, with optimization parameters 7', where VNS(T') performs
around 27 iterations of the algorithm from a variety of random initial data grids. Figure 5.9
reports the average computation time for each sample size and for parameters of the VNS meta-
heuristic ranging from T = 1 to T = 12. We also report the threshold related to the sample size
and computation time, among which the XOR pattern is detected in 50% of the cases.

The results show that the empirical detection threshold is close to the theoretical thresh-
old: the pattern is never detected with 1000 instances but frequently detected with only 1500
instances, which is less than 2 instances per cell of the 10-dimensional XOR pattern. How-
ever, when the instance number is close to the theoretical threshold, the problem of finding the
correct 10 variable splits among N'© possible XOR patterns and (2V)!9 potential multivariate

119

BOULLE

Computation . . .
‘fme XOR(10) in 10 dimensions
10000 1
—e—VNS1
—e— VNS5
—o—VNS9
1000 =0=509% detection
100
10
V
1 / Sample size

1000 2000 3000 4000 5000 6000 7000 8000 9000

Figure 5.9: Study of the algorithm for the detection of the 10-dimensional XOR pattern.

discretizations is very hard. In this case, detecting the pattern requires much more time than
when the instance number is large enough or when the pattern is simpler. For example, detect-
ing the pattern with only 1500 instances requires about one hundred times more computation
time than with 4000 instances

5.6.2.4. FINDING A NEEDLE IN A HAYSTACK

In this experiment, we study the detection of a 5-dimensional XOR pattern in a 10-dimensional
input space. We use the same protocol as in the previous case, and report the results in Fig-
ure 5.10.

Computation . . .
time XOR(5) in 10 dimensions
100 1
/ —e—VNS1
—e—VNS5
—e—VNS9
P | =0=50% detection
10 +
14
0.1 Sample size
100 1000 10000

Figure 5.10: Study of the algorithm for the detection of the 5-dimensional XOR pattern, hidden
in a 10-dimensional input space.

The results show that about 200 instances are sufficient to detect this pattern, which is
consistent with the theoretical threshold. However, whereas the 5-dimensional XOR pattern is
easily detected even within one or two iterations in the VNS meta-heuristic, the search in that
10-dimensional input space requires much more intensive search.

120

5. DATA GRID MODELS FOR PREPARATION AND MODELING IN SUPERVISED LEARNING

Apart from of the problem of finding the correct XOR boundaries, which is a difficult task,
the problem of variable selection complicates the detection of the pattern. The optimization al-
gorithm is restricted to the exploration of dense data grids, which consist of K, < max(log, N, K)
dimensions. Finding the XOR pattern requires us to select a subset of K, input variables among
K, which is a superset of the K informative variables. The probability that such a subset con-
tains the informative variable is (ﬁ) /([Ifs) For example, for the detection of a 5-dimensional
XOR (K; = 5) with 256 instances (K, = log, 256 = 8), the probability of finding a potentially
good subset is 100% for K =5, 22% for K = 10, 0.36% for K = 20 and 0.04% for K = 30.

We performed an experiment to detect the 5-dimensional XOR in 20 dimensions with sam-
ples of size 256. The result confirms that there are enough instances for a reliable detection
of the pattern, but the computational time necessary to detect the pattern in 50% of the cases
amounts to about one hundred times that in 10 dimensions. This result, consistent with the ratio
22/0.36, illustrates the problem of finding a needle in a haystack.

Overall, the evaluation criterion given in Formula 5.3 is able to reliably differentiate infor-
mative patterns from noise with very few instances. The detection of complex patterns is a
combinatorial problem, that is hard to solve when the number of instances is close to the detec-
tion threshold or when the informative patterns are hidden in large dimensional input spaces.
Our optimization algorithm succeeds in reliably and efficiently detecting information, with per-
formance close to the theoretical detection threshold.

5.7. Evaluation on the Agnostic Learning vs. Prior Knowledge Challenge

In this section, we first summarize the evaluation protocol of the challenge, then describe how
classifiers are built from data grid models, and finally report the results from a performance and
understandability point of view.

5.7.1. The Agnostic Learning vs. Prior Knowledge Challenge

The purpose of the challenge (Guyon, 2007; Guyon et al., 2007) is to assess the real added value
of prior domain knowledge in supervised learning tasks. Five datasets coming from different
domains are selected to evaluate the performance of agnostic classifiers vs. prior knowledge
classifiers. These datasets come into two formats, as shown in Table 5.1. In the agnostic format,
all the input variables are numerical. In the prior knowledge format, the input variables are both
categorical and numerical for three datasets and have a special format in the two other datasets:
chemical structure or text. The evaluation criterion is the test balanced error rate (BER).

Table 5.1: Challenge datasets with their prior and agnostic format.

Name Domain Num. ex. Prior Agnostic
train/valid/test features features
Ada Marketing 4147/415/41471 14 48
Gina Handwritting reco. 3153/315/31532 784 970
Hiva Drug discovery 3845/384/38449 Chem. struct. 1617
Nova Text classification 1754/175/17537 Text 16969
Sylva Ecology 13086/1309/130857 108 216

5.7.2. Building Classifiers from Data Grid Models

In this section, we describe three ways of building classifiers from data grid models.

121

BOULLE

5.7.2.1. DATA GRID

In this evaluation of data grid models, we consider one individual supervised data grid, the
MAP one. We build a classifier from a data grid model by first retrieving the cell related to a
test instance, and predicting the output conditional probabilities of the retrieved cell. For empty
cells, the conditional probability used for the prediction is that of the entire grid.

Data grid models can be viewed as a feature selection method, since the input variables
whose partition reduces to a single part can be ignored. The purpose of this experiment is
to focus on understandable models and evaluate the balance between the number of selected
variables and the predictive performance.

5.7.2.2. DATA GRID ENSEMBLE

In this evaluation, we focus on the predictive performance rather than on understandability, by
means of averaging the prediction of a large number of classifiers. This principle was success-
fully exploited in Bagging (Breiman, 1996) using multiple classifiers trained from re-sampled
datasets. This was generalized in Random Forests (Breiman, 2001), where the subsets of vari-
ables are randomized as well. In these approaches, the averaged classifier uses a voting rule
to classify new instances. Unlike this approach, where each classifier has the same weight, the
Bayesian Model Averaging (BMA) approach (Hoeting et al., 1999) weights the classifiers ac-
cording to their posterior probability. The BMA approach has stronger theoretical foundations,
but it requires both to be able to evaluate the posterior probability of the classifiers and to sample
their posterior distribution.

In the case of data grid models, the posterior probability of each model is given by an
analytic criterion. Concerning the problem of sampling the posterior distribution of data grid
models, we have to strike a balance between the quality of the sampling and the computation
time. We adopt a pragmatic choice by just collecting all the data grids evaluated during training,
using the optimization algorithms introduced in Section 5.5. We keep all the local optima
encountered in the VNS meta-heuristic and eliminate the duplicates.

An inspection of the data grids collected reveals that their posterior distribution is so sharply
peaked that averaging them according to the BMA approach almost reduces to the MAP model.
In this situation, averaging is useless. The same problem has been noticed by Boullé (2007b)
in the case of averaging Selective Naive Bayes models. To find a trade-off between equal
weights as in bagging and extremely unbalanced weights as in the BMA approach, we exploit a
logarithmic smoothing of the posterior distribution called compression-based model averaging
(CMA), like that introduced in (Boullé, 2007b).

To summarize, we collect the data grid models encountered during the data grid optimization
algorithm and weight them according to a logarithmic smoothing of their posterior probability
to build a data grid ensemble classifier.

5.7.2.3. COCLUSTERING

The coclustering method introduced in Section 5.4 applies on binary sparse datasets. Whereas
the supervised data grids are limited in practice to a small number of selected input variables
(see Section 5.6), the coclustering data grids are able to account for all the input variables.

The coclustering data grid is trained on all the available input data (train, validation and test),
then the available labeled instances are used to predict the output distribution in each cluster of
instances. In the case where a test instance belongs to a cluster with no labeled instance, we
iteratively merge this unlabeled cluster so as to keep the coclustering evaluation criterion as low
as possible, until at least one labeled cluster is encountered.

122

5. DATA GRID MODELS FOR PREPARATION AND MODELING IN SUPERVISED LEARNING

5.7.3. Evaluation of Supervised Data Grids

We first analyze the classification performance of supervised data grids, then focus on their
benefit for understandability.

5.7.3.1. CLASSIFICATION RESULTS

To evaluate the supervised data grid models, we use all the datasets in their agnostic format and
only three of them in their prior format (the ones that come in a tabular format). In the case of
the Sylva dataset in its prior format, we replace each subset (per record) of 40 binary SoilType
variables by one single categorical variable with 40 values. The resulting dataset has only 30
variables instead of 108.

The data grid techniques are able to predict the output conditional probabilities for each test
instance. When the evaluation criterion is the classification accuracy, predicting the class with
the highest conditional probability is optimal. This is not the case for the BER criterion used in
the challenge. We post-process each trained classifier by optimizing the probability threshold
in order to maximize the BER. This optimization is performed directly on the train dataset.

Our four submissions related to supervised data grid models are named Data Grid (MAP)
and Data Grid (CMA) in the prior or agnostic track and dated from February 27, 2007 for the
challenge March 1st, 2007 milestone. The classifiers are trained with the any time optimiza-
tion algorithm described in Section 5.5 using VNS(12) parameter. About 4000 data grids are
evaluated, needing around one hour optimization time per dataset. Tables 5.2 and 5.4 report our
results in the agnostic and prior track.

Table 5.2: Best challenge results versus our supervised data grid methods results for the
datasets in the agnostic track.

Dataset Winner Best BER Data Grid (CMA) Data Grid (MAP)
Ada Roman Lutz 0.166 0.1761 0.2068
Gina Roman Lutz 0.0339 0.1436 0.1719
Hiva Vojtech Franc 0.2827 0.3242 0.3661
Nova Mehreen Saeed 0.0456 0.1229 0.2397
Sylva Roman Lutz 0.0062 0.0158 0.0211

Table 5.3: Best challenge results versus our supervised data grid methods results for the
datasets in the agnostic track.

Table 5.4: Best challenge results versus our supervised data grid methods results for the Gina,
Hiva and Nova datasets in the prior track.

Dataset Winner Best BER Data Grid (CMA) Data Grid (MAP)
Ada Marc Boullé 0.1756 0.1756 0.2058
Gina Vladimir Nikulin 0.0226 0.1254 0.1721
Sylva Roman Lutz 0.0043 0.0228 0.0099

123

BOULLE

The data grid classifiers obtain good results on the Ada and Sylva datasets, especially on
the prior track, with a winning submission for the Ada dataset. The other datasets contain very
large numbers of variables, which explains the poor performance of the data grid models. Since
individual data grid models are essentially restricted to about log, N selected variable, they
cannot exploit much of the information contained in the representation space. This is analyzed
in Section 5.7.3.2.

The data grid ensemble classifiers confirm the benefits of compression-based model averag-
ing. They obtain a very significant improvement of the BER criterion compared to the individual
data grid classifiers. This focus on predictive performance is realized at the expense of under-
standability, since each trained data grid ensemble averages several hundreds of elementary data
grid models.

However, even data grid ensembles fail to achieve competitive performance for datasets
with large numbers of variables. A close inspection reveals that although about 4000 data grids
are evaluated for each dataset, only a few hundreds (= 500) of different solutions are retrieved.
Removing the duplicates significantly improves the performances, but there is still too much
redundancy between data grids to produce an efficient ensemble classifier. Furthermore, a few
hundred redundant classifiers, each with only ~ log, N variables, is not enough to exploit all the
variables (think of Nova with 17000 variables for example). In future work, we plan to improve
our meta-heuristic in order to better explore the search space and to collect a set of data grid
solutions with better diversity.

5.7.3.2. UNDERSTANDABILITY

Let us now focus on understandability and inspect the number of selected variables in each
trained data grid model. In the agnostic track, the MAP data grid exploits only 5 variables for
Ada, 5 for Gina, 4 for Hiva, 8 for Nova and 8 for Sylva. In the prior track, the MAP data
grid exploits 6 variables for Ada, 7 for Gina and 4 for Sylva. These numbers of variables are
remarkably small w.r.t. the BER performance of the models.

Table 5.5: Most frequent cells in the best individual data grid model for the Ada dataset in the
prior track.

ID | relationship occupation education age capital capital | frequency % class 1
number gain loss
1 Married Low <12 >27 <4668 <1805 736 22.1%
2 | Not married Low <12 >27 <4668 <1805 571 3.1%
3 | Not married High <12 >27 <4668 <1805 531 5.8%
4 Married High <12 >27 <4668 <1805 489 41.3%
5 Married High > 12 >27 <4668 < 1805 445 68.5%
6 Not married Low <12 <27 <4668 <1805 425 0.2%
7 | Not married High <12 <27 <4668 <1805 316 0.6%
8 | Not married High > 12 >27 <4668 <1805 268 20.5%
9 Not married High > 12 <27 <4668 <1805 112 0.9%
10 Married Low <12 <27 <4668 <1805 96 52%
11 Married High > 12 >27 >5095 <1805 93 100.0%
12 Married Low > 12 >27 <4668 <1805 50 24.0%

In Table 5.5, we summarize the MAP data grid trained using the 4562 train+valid instances
of the Ada dataset in the prior track. This data grid selects six variables among 14 and ob-

124

5. DATA GRID MODELS FOR PREPARATION AND MODELING IN SUPERVISED LEARNING

tains a 0.2068 test BER. The selected variables are relationship, occupation, education num-
ber, age, capital gain and capital loss, which are partitioned into 2, 2, 2, 2, 3 and 3 groups
or intervals. The relationship variable is grouped into Married = {Husband, Wife} vs. Not
Married = {Not-in-family, Own-child, Unmarried, Other-relative}, and the occupation into
Low = {Craft-repair, Other-service, Machine-op-inspct, Transport-moving, Handlers-cleaners,
Farming-fishing, Priv-house-serv} vs. High = {Prof-specialty, Exec-managerial, Sales, Adm-
clerical, Tech-support, Protective-serv, Armed-Forces}. Overall, the data grid contains 144 =
2%2%2x2%3 %3 cells, but 57 of them are non empty and the twelve most frequent cells reported
in Table 5.5 contains 90% of the instances.

Each cell of the data grid can directly be interpreted as a decision rule. For example, the
most frequent cell is described by Rule 1, with a support of 736 instances.

Rule 1: IF relationship € Married = {Husband, Wife}
occupation € Low = {Craft-repair, Other-service, Machine-op-inspct,... }
education number < 12
age > 27
capital gain <4668
capital loss < 1805
THEN P(class=1) =22.1%

The whole data grid forms a set of rules (Mitchell, 1997) which corresponds to a partition
(not a coverage) of the training set. Since all rules exploit the same variables with the same
univariate partitions, interpretation is much easier. For example, rule 5 (ID cell=5 in Table 5.5)
has a large support of 445 instances with 68.5% of class 1. Rule 4 with 41.3% of class 1 only
differs in the education number variable (< 12 vs. > 12), and rule 8 with 20.5% of class 1 in
the relationship variable (Not married vs. Married).

5.7.4. Evaluation of Coclustering Data Grids

We first inspect the dimension of the data grids resulting from the coclustering method intro-
duced in Section 5.4.2, then analyze its performance results and finally present its interest for
understandability in the case of the Nova text corpus.

To evaluate the coclustering data grid models, we consider three datasets (Gina, Hiva and
Nova) as sparse binary datasets. For the Gina dataset, the binary representation is obtained
from the prior format by replacing each non zero value by 1. The Hiva dataset is used directly
in its agnostic binary format. For the Nova dataset, we exploit the prior format in order to
get insights on the understandability of the models. We preprocess the Nova text format by
keeping all words of at least three characters, converting them to lowercase, truncating them
to at most seven characters, and keeping the most frequent resulting words (> 8) so as to get
a manageable bag-of-words representation (we keep the most frequent 19616 words using this
frequency threshold). This preprocessing is very similar to that for the agnostic track, except
that we do not exclude the 2000 most frequent words.

5.7.4.1. DIMENSIONALITY REDUCTION

The coclustering method exploits all the available unlabeled data to represent the initial binary
matrix (instances x variables) which is potentially sparse into a denser matrix with clusters
of instances related to clusters of variables. It is worth noting that the space of coclustering
models is very large. For example, in the case of the Nova dataset, the number of ways of
partitioning both the text and the words, based on the Bell number, is greater than 10129090 To

125

BOULLE

Table 5.6: Properties of the (instances x variables) matrix for the Gina, Hiva and Nova datasets,
in their initial and coclustering representation.

Dataset Initial representation Coclustering representation
Inst. Var. Size Sparseness | Inst. cl. Var. cl. Size Sparseness
Gina 35000 784 274107 19.2% 480 125 6.00 10* 79.1%
Hiva 42673 1617 6.90 107 9.1% 1230 210 2.58 10 52.2%
Nova 17537 19616 3.44 108 0.6% 207 1058 2.1910° 84.3%

obtain the best possible coclustering according to our MAP approach, we allocated several days
of computation time to our anytime optimization heuristic.

In Table 5.6, we recall the properties of each dataset in its initial representation and present
its pre-processed representation after the coclustering. The datasets are initially represented
using very larges matrices, with up to hundreds of millions of cells. Their sparseness vary from
less than 1% to about 20%. The number of non-zero elements (one variable activated for one
instance) is about five million for Gina, six million for Hiva and two million for Nova. Once
the coclustering is performed, we get dense representations with numbers of cells reduced by a
factor of one hundred to one thousand.

5.7.4.2. CLASSIFICATION RESULTS

In order to evaluate the quality of the representation, we train classifiers using the train and
validation labeled instances to learn the distribution of the labels in each cluster of instances.

Table 5.7: Best challenge results vs. our coclustering method results for the Gina, Hiva and
Nova datasets.

Dataset Prior track Agnostic track Coclustering
Winner Best BER Winner Best BER BER
Gina Vladimir Nikulin 0.0226 Roman Lutz 0.0339 0.0516
Hiva Chloé Azencott 0.2693 Vojtech Franc 0.2827 0.3127
Nova Jorge Sueiras 0.0659 Mehreen Saeed 0.0456 0.0370

We recall in Table 5.7 the BER results of the challenge winner in the agnostic and prior track
(see Guyon et al., 2007), and present our results obtained with the semi-supervised coclustering
method (submission named “Data Grid(Coclustering)”, dated 2007-02-27 for Gina and Hiva
and 2007-09-19 for Nova). It is noteworthy that for datasets with large numbers of variables,
the coclustering technique obtains far better performance than the supervised technique, with
BER results about three times better on the Gina and Nova datasets. This comes from the ability
of the coclustering to exploit all the variables, whereas each supervised data grid is restricted to
a subset of about log, N variables.

Overall, the supervised coclustering method obtains good predictive performance, compet-
itive with that of most of the challenge participants. On the Gina dataset, which is not very
sparse, the BER is over twice as high as that of the leader. In the case of the Nova dataset,
which is very sparse, the predictive performance significantly outperforms that of the winners

126

5. DATA GRID MODELS FOR PREPARATION AND MODELING IN SUPERVISED LEARNING

and reaches the best reference result of the organizers, which is remarkable since our clusters
were learned without using any class label.

5.7.4.3. UNDERSTANDABILITY

The assumption that the “natural” patterns identified by the coclustering are correlated with the
classes looks true in the challenge datasets. Since we obtain many more patterns than classes,
it is interesting to provide an interpretation of our coclusters.

The Gina dataset comes from the MNIST dataset (LeCun and Cortes, 1998). The task,
which is handwritten digit recognition, consists of predicting the value of a digit from an image
representation of 28 x 28 pixels. The coclustering method identifies about one hundred clusters
of pixels (regions) and five hundred clusters of images (“natural” shapes), each of them dis-
tributed similarly on the regions. Although the classification BER is only 0.0516 (about twice
as high as that of the winner), it is interesting to notice that each digit (among the ten possible
output digits) comes under a large variety of shapes. This is discovered without any domain
knowledge and could be the foundation for adequate preprocessing.

In the case of the Hiva, further investigation with a domain specialist would be necessary to
understand the meaning of the clusters of instances and variables.

The Nova dataset comes from the 20-Newsgroup dataset (Mitchell, 1999). The original task
is to classify the texts into 20 classes (atheism, graphics, forsale, autos, motorcycles, baseball,
hockey, crypt, electronics, med, space, religion.christian, politics.guns, politics.mideast, poli-
tics.misc, religion.misc). In the challenge, the classification task was a binary one, with two
groups of classes (politics or religion vs. others). The coclustering method identifies about one
thousand clusters of words (vocabulary themes) and two hundred clusters of texts (“natural”
topics), each of them distributed similarly on the themes.

The distribution of the 17537 texts in the 207 clusters of texts (topics) is reasonably bal-
anced. On the other hand, the repartition of the 19616 words in the 1058 clusters of words
(themes) is not balanced at all. About 150 themes are singletons, like for example the, and, for,
that, this, have, you. These are frequent words with low semantic, and even slightly different
distribution of the topics on these singleton themes are significant and might be helpful for clas-
sification. For example, observing one of the singleton themes say, why or who approximately
doubles the conditional probability of being in the challenge positive class (politics or religion).

A correlation study between the themes and the 20 original labels available on the train
dataset reveals that the most informative themes are:
hockey, playoff, nhl, penguin, devils, pens, leafs, bruins, islande, goalie, mario, puck,...
team, season, league, fans, teams, rangers, detroit, montrea, wins, scored, coach,...
clipper, encrypt, nsa, escrow, pgp, crypto, wiretap, privacy, cryptog, denning,...
dod, bike, motorcy, ride, riding, bikes, ama, rider, helmet, yamaha, harley, moto,...
basebal, sox, jays, giants, mets, phillie, indians, cubs, yankees, stadium, cardina,...
bible, scriptu, teachin, biblica, passage, theolog, prophet, spiritu, testame, revelat,...
christi, beliefs, loving, rejecti, obedien, desires, buddhis, deity, strive, healed,...
windows, dos, apps, exe, novell, ini, borland, ver, lan, desqvie, tst, workgro, sdk,...

pitcher, braves, pitch, pitchin, hitter, inning, pitched, pitches, innings, catcher...
car, cars, engine, auto, automob, mileage, autos, cactus, pickup, alarm, sunroof,...

e o o o o o o o o o

About one third of the theme are detected as informative with respect to the original la-
bels. The partition of the words is very fine grained, so that many themes are hard to interpret,
whereas other ones clearly capture semantics, such as:

book, books, learnin, deals, booksto, encyclo, titled, songs, helper

cause, caused, causes, OCCUL, OCCUT'S, Causing, persist, excessi, 0cCurin

importa, extreme, careful, essenti, somewha, adequat

morning, yesterd, sunday, friday, tuesday, saturda, monday, wednesd, thursda,...
receive, sent, placed, returne, receivi, sends, resume

127

BOULLE

Overall, our coclustering preprocessing method is able to produce a precise and reliable
summary of the corpus of texts, which is demonstrated by the very good classification perfor-
mance reported in Table 5.7.

5.8. Conclusion

The supervised data grid models introduced in this paper are based on a partitioning model of
each input variable, into intervals for numerical variables and into groups of values for cate-
gorical variables. The cross-product of the univariate partitions, called a data grid, allows the
quantification of the conditional information relative to the output variable. We have detailed
this technique in the multivariate case, with a Bayesian approach for model selection and so-
phisticated combinatorial algorithms to efficiently search the model space.

We have also presented the principles of the extension of data grid models to unsupervised
learning to evaluate the joint probability distribution of the variables. We have detailed the
case of two categorical variables and applied it to the problem of coclustering the instances and
variables of a sparse binary dataset.

In extensive artificial experiments, we have shown that our technique is able to reliably
detect complex patterns. Our experiments quantify the limits of the approach, with data grid
models limited to about log, variables, and provides insights into the relation between the com-
plexity of the patterns and the required computation time necessary to detect them.

We have introduced three ways of building classifiers from data grids and experimented
them on the Agnostic Learning vs. Prior Knowledge challenge. This preliminary evaluation
looks promising since our method was first on two of the datasets, one within the challenge
deadline and the other one using a later submission. The analysis of the results demonstrates that
the data grid models are of considerable interest for data understandability and data preparation.

Overall, the supervised data grids obtain good performance on datasets with small numbers
of variables, while the coclustering data grids perform well on sparse binary datasets with very
large numbers of variables. In future research, we plan to investigate how to better exploit
the potential of these models to build more powerful classifiers. Apart from improving the
optimization algorithms and building ensemble classifiers based on a wider diversity of data
grid models, we intend to further explore the problem of conditional or joint density estimation.

Whereas the naive Bayes strategy (Langley et al., 1992) factorizes the multivariate density
estimation on univariate estimations, our strategy with the data grid models directly estimates
the multivariate joint density, which encounters a limit in the number of variables considered.
Between these two opposite strategies, other approaches have been considered, based on a re-
laxation of the naive Bayes assumption. This is the case for example in semi-naive Bayesian
classifiers (Kononenko, 1991) or in Bayesian network classifiers (Friedman et al., 1997). In this
context, we expect data grid models to be promising building blocks of future better multivariate
density estimators.

References

M. Abramowitz and 1. Stegun. Handbook of mathematical functions. Dover Publications Inc.,
New York, 1970.

C.L. Blake and C.J. Merz. UCI repository of machine learning databases, 1996. http://
www.lcs.uci.edu/mlearn/MLRepository.html.

H. Bock. Simultaneous clustering of objects and variables. In E. Diday, editor, Analyse des
Données et Informatique, pages 187-203. INRIA, 1979.

128

http://www.ics.uci.edu/mlearn/MLRepository.html
http://www.ics.uci.edu/mlearn/MLRepository.html

5. DATA GRID MODELS FOR PREPARATION AND MODELING IN SUPERVISED LEARNING

M. Boullé. A Bayes optimal approach for partitioning the values of categorical attributes. Jour-
nal of Machine Learning Research, 6:1431-1452, 2005.

M. Boullé. MODL.: a Bayes optimal discretization method for continuous attributes. Machine
Learning, 65(1):131-165, 2006.

M. Boullé. Optimal bivariate evaluation for supervised learning using data grid models. Ad-
vances in Data Analysis and Classification, 2007a. submitted.

M. Boullé. Compression-based averaging of selective naive Bayes classifiers. Journal of Ma-
chine Learning Research, 8:1659-1685, 2007b.

M. Boullé. Bivariate data grid models for supervised learning. Technical Report
NSM/R&D/TECH/EASY/TSI/4/MB, France Telecom R&D, 2008a. http: //perso.rd.
francetelecom. fr/boulle/publications/BoulleNTTSI4MBO8.pdf.

M. Boullé. Multivariate data grid models for supervised and unsupervised learn-
ing. Technical Report NSM/R&D/TECH/EASY/TSI/5/MB, France Telecom R&D,
2008b. http://perso.rd.francetelecom.fr/boulle/publications/

BoulleNTTSI5S5MBO8.pdf.
L. Breiman. Bagging predictors. Machine Learning, 24(2):123-140, 1996.
L. Breiman. Random forests. Machine Learning, 45(1):5-32, 2001.

L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. Classification and Regression Trees.
California: Wadsworth International, 1984.

O. Chapelle, B. Scholkopf, and A. Zien. Semi-Supervised Learning. MIT Press, Cambridge,
MA, 2006.

W.G. Cochran. Some methods for strengthening the common chi-squared tests. Biometrics, 10
(4):417-451, 1954.

J. Connor-Linton. Chi square tutorial, 2003. http://www.georgetown.edu/
faculty/ballc/webtools/web_chi_tut.html.

N. Friedman, D. Geiger, and M. Goldsmidt. Bayesian network classifiers. Machine Learning,
29:131-163, 1997.

P.D. Griinwald, I.J. Myung, and M.A. Pitt. Advances in minimum description length : theory
and applications. MIT Press, 2005.

I. Guyon. Agnostic learning vs. prior knowledge challenge, 2007. http://clopinet.
com/isabelle/Projects/agnostic/.

I. Guyon, A.R. Saffari, G. Dror, and G. Cawley. Agnostic learning vs. prior knowledge chal-
lenge. In International Joint Conference on Neural Networks, pages 829-834, 2007.

M.H. Hansen and B. Yu. Model selection and the principle of minimum description length. J.
American Statistical Association, 96:746-774, 2001.

P. Hansen and N. Mladenovic. Variable neighborhood search: principles and applications.
European Journal of Operational Research, 130:449-467, 2001.

129

http://perso.rd.francetelecom.fr/boulle/publications/BoulleNTTSI4MB08.pdf
http://perso.rd.francetelecom.fr/boulle/publications/BoulleNTTSI4MB08.pdf
http://perso.rd.francetelecom.fr/boulle/publications/BoulleNTTSI5MB08.pdf
http://perso.rd.francetelecom.fr/boulle/publications/BoulleNTTSI5MB08.pdf
http://www.georgetown.edu/faculty/ballc/webtools/web_chi_tut.html
http://www.georgetown.edu/faculty/ballc/webtools/web_chi_tut.html
http://clopinet.com/isabelle/Projects/agnostic/
http://clopinet.com/isabelle/Projects/agnostic/

BOULLE

J.A. Hartigan. Direct clustering of a data matrix. Journal of the American Statistical Associa-
tion, 67(337):123-129, 1972.

J.A. Hoeting, D. Madigan, A.E. Raftery, and C.T. Volinsky. Bayesian model averaging: A
tutorial. Statistical Science, 14(4):382—-417, 1999.

G.V. Kass. An exploratory technique for investigating large quantities of categorical data. Ap-
plied Statistics, 29(2):119-127, 1980.

I. Kononenko. Semi-naive Bayesian classifier. In Y. Kodrato, editor, Sixth European Working
Session on Learning (EWSL91), volume 482 of LNAI, pages 206-219. Springer, 1991.

P. Langley, W. Iba, and K. Thompson. An analysis of Bayesian classifiers. In /0th national
conference on Artificial Intelligence, pages 223-228. AAAI Press, 1992.

Y. LeCun and C. Cortes. The MNIST database of handwritten digits, 1998. http://yann.
lecun.com/exdb/mnist/.

M. Li and PM.B. Vitanyi. An Introduction to Kolmogorov Complexity and Its Applications.
Springer-Verlag, Berlin, 1997.

T.M. Mitchell. Machine Learning. McGraw-Hill, New York, 1997.

T.M. Mitchell. The 20 newsgroup dataset, 1999. http://kdd.ics.uci.edu/
databases/20newsgroups/20newsgroups.html.

J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.
J. Rissanen. Modeling by shortest data description. Automatica, 14:465-471, 1978.

C.E. Shannon. A mathematical theory of communication. Technical Report 27, Bell systems
technical journal, 1948.

D.A. Zighed and R. Rakotomalala. Graphes d’induction. Hermes, France, 2000.

130

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://kdd.ics.uci.edu/databases/20newsgroups/20newsgroups.html
http://kdd.ics.uci.edu/databases/20newsgroups/20newsgroups.html

Chapter 6

Virtual High-Throughput Screening with Two-Dimensional
Kernels

Chloé-Agathe Azencott CAZENCOT@ICS.UCL.EDU
Department of Computer Science

Institute for Genomics and Bioinformatics

University of California, Irvine

Irvine, CA 92697-3435, USA

Pierre Baldi PFBALDI@ICS.UCI.EDU
Department of Computer Science

Institute for Genomics and Bioinformatics

University of California, Irvine

Irvine, CA 92697-3435, USA

Abstract

High-Throughput Screening (HTS) is an important technology that relies on massively testing
large numbers of compounds for their activity on a given assay in order to identify potential
drug leads in the early stages of a drug discovery pipeline. However, because identification of
drug leads by HTS is very costly, it is of great interest to develop computational methods for vir-
tual HTS (VHTS), in order to prioritize the compounds to be screened and identify a relatively
small, but highly promising, subset from a screening library that can be tested more economi-
cally. Here we develop statistical machine learning methods, based on two-dimensional spec-
tral kernels for small molecules and extended-connectivity molecular substructures (ECFPs),
to address this task. We apply them to the HIVA dataset of the Agnostic Learning versus Prior
Knowledge Challenge and obtain the best results with a balanced error rate of 0.2693 and an
area under the ROC curve of 0.7643 on the testing set.

Keywords: virtual high-throughput screening, drug discovery, drug screening, kernels, HTS,
SVM

6.1. Introduction: The Virtual High-Throughput Screening Problem

High-Throughput Screening (HTS) is an approach to drug discovery developed in the 1980’s
in the pharmaceutical industry that allows to massively test large numbers (up to millions) of
compounds for their activity on a given assay in order to identify potential drug leads. Nowa-
days, it is possible to screen up to 100,000 molecules per day in a single HTS facility. This
process, however, requires a considerable amount of resources and capital investment, for in-
stance in terms of robotics, molecular libraries, and the amount of relevant protein that must be
produced. A widely circulated figure is that HTS screening costs on the order of one dollar per
compound, a price that cannot be afforded by most academic laboratories.

The in silico approach to HTS, also called virtual HTS (VHTS), attempts to computationally
select from a list of molecular compounds only those most likely to possess the properties
required to positively satisfy a given assay. When the 3D structure of a target protein is known,
the most common approach to VHTS is docking, which consists in scoring the compatibility
of each small molecule in the screening library with respect to the known, or putative, binding

© C.-A. Azencott & P. Baldi.

AZENCOTT BALDI

pockets of the protein target. When the 3D structure of the targets is not known, or to further
validate the results of a docking experiment, other computational methods must be used. In
many cases, an initial list of positive and negative compounds may be known from previous,
possibly small-scale, screening experiments. Therefore, in these cases, one is interested in using
statistical machine learning or other methods to build a good molecular predictor and possibly
clarify what are the desirable properties a molecule should have in order to positively satisfy
the conditions of a given assay. The development of good VHTS methods is essential if one is
to drastically reduce the number of compounds that must be experimentally assayed and reduce
the time and cost of HTS.

Among the five datasets offered by the IICNN-07 Agnostic Learning versus Prior Knowl-
edge Challenge ', we decided to focus on the HIVA set derived from the DTP AIDS Antiviral
Screen program made available by the National Cancer Institute (NCI)2. This dataset contains
assay results for 42,678 chemicals tested for their activity against the AIDS virus and provides
a reasonable benchmark for the development of VHTS algorithms.

As in most chemoinformatics applications, such as the storage and search of large databases
of small molecules (Chen et al., 2005; Swamidass and Baldi, 2007) or the prediction of their
physical, chemical, and biological properties (Swamidass et al., 2005; Azencott et al., 2007), the
issues of molecular data structures and representations play an essential role (Leach and Gillet,
2005). These representations and data structures are essential to define “molecular similarity”,
which in turn is crucial for developing efficient methods both to search the databases and predict
molecular properties using kernel methods. Leveraging previous work in our group and in
the literature, here we use SVMs in combination with 2D spectral representations of small
molecules with Tanimoto and MinMax kernels to address the VHTS problem and tackle the
HIVA challenge.

6.2. Molecular Data Representation

Small molecules are often described by graphs (King, 1983; Bonchev, 1991; McNaught and
Wilinson, 1997), where vertices represent atoms and edges represent bonds. Other represen-
tations, such as one-dimensional SMILES strings (Weiniger et al., 1989) or three-dimensional
descriptions based on the atomic coordinates, have been developed. Previous studies (Swami-
dass et al., 2005; Azencott et al., 2007) in our group as well as in other groups suggest, however,
that these representations do not lead for now to better predictive performance. In this regard,
it is worth noting for SMILES strings that the information they contain is identical to the in-
formation contained in the bond graphs. For 3D-based representations, the majority of the co-
ordinates must be predicted, since only a relatively small fraction of molecular structures have
been empirically solved. Furthermore, the 2D representation of molecules as graphs is also the
representation of choice that underlies the structural similarity search algorithms of chemical
databases such as ChemBank (Strausberg and Schreiber, 2003), ChemMine (Girke et al., 2005),
or ChemDB (Chen et al., 2005, 2007).

6.2.1. Molecular Graphs

We describe a molecule as a labeled graph of bonds. Labels on the vertices represent the atom
types and labels on the edges characterize the bonds. More precisely, vertices are labeled ac-
cording to one of the following schemes:

1. http://www.agnostic.inf.ethz.ch/index.php
2. http://dtp.nci.nih.gov/docs/aids/aids_data.html

132

http://www.agnostic.inf.ethz.ch/index.php
http://dtp.nci.nih.gov/docs/aids/aids_data.html

6. VIRTUAL HIGH-THROUGHPUT SCREENING WITH TWO-DIMENSIONAL KERNELS

Figure 6.1: Example of molecular graphs. The vertices represent atoms, labeled with the Ele-
ment scheme on the left and the Element-Connectivity scheme on the right. Bonds
are represented by edges, labeled “s” for simple bonds and “d” for double bonds.
Note that by convention Hydrogen atoms are ignored.

* E: Element. Each atom is simply labeled by its symbol (e.g. C for carbon, O for oxygen,
N for nitrogen)

* EC: Element-Connectivity. Each atom is labeled by its symbol together with the number
of atoms it is bonded to (e.g. C3 for a carbon with three atoms attached)

The bonds are simply labeled according to their type (e.g. single, double).

Figure 6.1 gives an example of the two-dimensional representation of a molecule as a graph.

From these graphs, a number of features can be extracted, such as the presence/absence or
number of occurrences of particular functional groups. A more recent and general trend, how-
ever, has been to define features in terms of labeled subgraphs, such as labeled paths (Swamidass
et al., 2005; Azencott et al., 2007) or labeled trees (Mahé et al., 2006), and to combinatorially
extract and index all such features to represent molecules using large feature vectors, also known
as fingerprints. While in other work we have compared the use of different features and have
tried several of them on the HIVA challenge, here we focus on a class of shallow labeled trees,
also known as extended-connectivity features in the literature (Hassan et al., 2006).

6.2.2. Extended-Connectivity Molecular Features

The concept of molecular connectivity (Razinger, 1982; Kier and Hall, 1986) leads to the idea
of extended-connectivity substructures (Rogers and Brown, 2005; Hassan et al., 2006), which
are labeled trees rooted at each vertex of the molecular graph. A depth parameter d controls
the depth of the trees (Figure 6.2). For a given tree, this algorithm recursively labels each tree
node (or atom) from the leaf nodes to the root, appending to each parent’s label the labels of its
children in the tree. Each resulting vertex label is then considered as a feature. For the labeling
process to be unique, the vertices of the graph need to be ordered in a unique canonical way.
This ordering is achieved using Morgan’s algorithm (Morgan, 1965).

We extract extended-connectivity substructures of depth d up to 2, where the depth indicates
the maximum distance, measured in number of bonds, to the root of each labeled tree. For
example, a depth of two indicates that the label for a given atom will be composed of the labels
for the neighboring atoms which are connected to it by at most two bonds. Other depths (3 to
6) have been tested but did not lead to any performance improvement.

133

AZENCOTT BALDI

Figure 6.2 shows an example of extended-connectivity labeling.

C|d{0|dC}|s{C|sC|sN|sO}|s{O|sC}

Figure 6.2: The extended-connectivity label of depth d up to 2 of the C atom circled in bold
is given by the labels of depth up to 1 of its three neighboring atoms: (1) an
O atom to which it is connected by a double bond, (2) a C atom to which it
is connected by a single bond, and (3) an O atom to which it is connected by
a single bond. If the EC scheme was to be used, the resulting label would be:
C3|1d{01]dC3}s{C3|sC3|sN1|sOl}|s{01l]|sC3}.

6.2.3. Molecular Fingerprints

The molecular features are computed across the whole dataset. Each molecule can then be
represented as a vector of fixed size N, where N is the total number of features found. For a
given molecule, each component of the vector is set to 1 if the corresponding feature is present
in the chemical, and O otherwise. We also use count vectors where each component of the vector
is set to ¢, where c is the number of times the corresponding feature appears in the chemical.
These feature vectors are actually extensions of traditional chemical fingerprints (Flower, 1998;
Raymond and Willett, 2001).

The spectral or combinatorial approach to molecular fingerprints can easily be automated
and has several advantages: (1) it alleviates the need for relying on expert knowledge, that may
itself be incomplete, to select relevant molecular descriptors; (2) it produces a fixed-size rep-
resentation for data of varying size.; and (3) it has been shown to be effective in the literature.
Furthermore these long vectors, which have on the order of 100,000 components for the HIVA
dataset, are also very sparse and can be efficiently compressed, in lossy or even lossless fash-
ion (Baldi et al., 2007), to reduce their dimensionality and improve storage and computational
complexity.

134

6. VIRTUAL HIGH-THROUGHPUT SCREENING WITH TWO-DIMENSIONAL KERNELS

6.3. Support Vector Machines for virtual HTS
6.3.1. Kernels For Molecules

To define kernels for chemical compounds, we need to introduce a similarity measure between
molecular fingerprints. Here we use the MinMax and Tanimoto similarity measures.

If fi=(fi1,....fin)and fo = (f2,1,..., fon) are two count fingerprints, the MinMax sim-
ilarity measure (Swamidass et al., 2005; Ralaivola et al., 2005) is defined by

Yimax(f1, f2,i)

In the case of binary fingerprints the MinMax measure reduces to the Tanimoto similarity
measure defined by
NNt

K1) = fiufa

Both similarity measures have been shown (Swamidass et al., 2005) to be semi-definite
positive and satisfy Mercer’s kernel conditions. Thus the MinMax and Tanimoto kernels can be
applied in combination with an SVM optimization framework to derive a molecular predictor
in VHTS experiments.

K(f1,f>) = (6.1)

(6.2)

6.3.2. Implementation

The HIVA dataset contains 42,678 examples. The associated pair-to-pair kernel matrix being
rather large, an online implementation of SVM is desirable. Here we use the SVMTorch (Col-
lobert and Bengio, 2001) implementation, which allows on-line learning and is thus well suited
for our purpose.

Besides their size, one of the other issues with HTS datasets is that they are often highly
unbalanced, usually containing far more negative than positive examples. This is the case of
the HIVA dataset, which has about 28 times as many negative examples as positive examples.
Without any further processing, this will negatively affect the predictor and bias it towards
negative examples.

The most straightforward method to deal with class unbalance is to control the sensitivity
(or C parameter) of the SVM (Veropoulos et al., 1999; Shin and Cho, 2003). By assigning
a higher sensitivity to the under-represented class, one increases the coefficients of the corre-
sponding support vectors, thus biasing the classifier towards the minority class. We first tested
this method, which did not lead to significant improvements.

Another way of compensating for the small amount of positive examples is to re-sample the
data, so as to train the SVM on a balanced set of examples. In this work we focus on over-
sampling, which consists in replicating the under-represented class so as to get a more balanced
number of examples. This method has been widely studied in the literature (Estabrooks et al.,
2004; Orriols and Bernad-Mansilla, 2005).

If m is the number of training examples and m_ the number of positive training examples we
randomly split the negative data in - subsets of about m, examples and build ™ o classifiers,
each trained on a set composed of one of the negative subsets together with the 7 m4 positive
examples. Each individual classifier produces a value of +1 if its prediction is positive and
-1 if its prediction is negative. Then these values are added, and the final decision is made by
comparing the resulting sum to a threshold. As this method overcompensates and leads to a bias
favoring the positive class, the decision threshold has to be adjusted to a value greater than 0. To
address this problem, we apply this method using 10-fold cross-validation over the training set

135

AZENCOTT BALDI

and select the threshold that leads to the best performance on the training set. An SVM trained
according to this algorithm will further be referred to as an oversampled SVM.

Eventually, we run a 10-fold cross-validation over the training set for each combination of
labeling scheme, representation by bits or counts, and oversampling or not, and retain as best
models the ones leading to optimal performance.

6.3.3. Performance Measures

The SVM classifiers associate a prediction value to each of the data points. We then order the
values, thus ranking the data points, and set a threshold so as to separate predicted actives from
predicted inactives. A number of performance measures can then be used in order to assess the
performance and compare different methods.

The Agnostic Learning versus Prior Knowledge Challenge focused on the balanced error
rate (BER) and area under the ROC curve (AUC) measures.

If m_ = m —m is the number of negative examples, TP the number of true positives, TN
the number of true negatives and F P the number of false positives, the BER is defined by

1 /TP TN
BER=1—~ (+> (6.3)
2 my m_

and the AUC is the area under the ROC curve defined by plotting the true positive rate %

against the false positive rate Z—f for each confidence value.

While these measures allow one to compare all the predictors to each other (especially in the
Agnostic Learning track), they may not provide an optimal way of assessing VHTS methods.
Indeed, these performance metrics do not address the "early recognition problem", in the sense
that they do not quantify how efficient a given classifier is at retrieving active compounds early,
i.e. at the top of the ranked list. High-enrichment for positives in the top of the list is highly
desirable in VHTS, especially in conditions where only few compounds can be empirically
tested.

An enrichment curve, representing the percentage of true positives captured as a function
of the percentage of the ranked list screened, can be used to judge the ability of a predictor to
recover active compounds early.

Whereas enrichment curves provide a graphical means for evaluating early recognition
across many thresholds, capturing this property in a single numerical value is also desirable as a
summary and to allow for easy comparison of several predictors. Truchon and Bayly (2007) de-
velop this idea and propose a performance measure called Boltzmann-Enhanced Discrimination
of Receiver Operating Characteristic (BEDROC) which partly addresses this issue.

The notion of BEDROC measure stems from the study of various virtual screening metrics,
including the area under the enrichment curve (AUEC). If T P(x) denotes the true positive rate,
then the AUEC is defined by

1
AUEC = /0 TP(x)dx (6.4)

The AUEC can be interpreted as the probability that an active compound will be ranked better
than a compound selected at random by a uniform distribution. Therefore, in order to address
the early recognition problem, Truchon and Bayly (2007) introduce the concept of weighted
AUEC (WAUEQC), defined by

fol TP(x)w(x)dx

wAUEC = 1
Jo w(x)dx

(6.5)

136

6. VIRTUAL HIGH-THROUGHPUT SCREENING WITH TWO-DIMENSIONAL KERNELS

where w(x) is a weighting probability distribution. The wAUEC is the probability that an active
compound will be ranked better than a compound that would come from the probability dis-
tribution function w. By choosing for w an exponential distribution w(x) = C(at)e™**, which
has higher values for low values of x, one gives a higher importance to the active compounds
recognized at the top of the ranked list.

In the general case, the theoretical extreme values of the AUEC and the wAUEC measures
depend on the number of actives and inactives of the problem being considered and differ from
the usual 0 and 1 values associating for instance with the AUC measure. Note that the AUC is
simply a scaled version of the AUEC, obtained through the following linear transformation:

AUEC — AUEC,

AUC = .
ve AUEC4x —AUECpin ©6)

Truchon and Bayly (2007) define the BEDROC by a similar scaling of the wAUEC:

WAUEC — wAUEC s
BEDROC — 6.7
wAUE Cmax —wAUE Cmin ()

Therefore, the BEDROC measure can be seen as a generalization of the AUC metric that takes
early recognition into account.

It Oc.";—;r < 1 and o # 0, then the BEDROC measure is approximately equal to the wAUEC
measure, and can be interpreted as the probability that an active compound will be ranked better
than a compound selected at random from an exponential probability distribution function of
parameter o.

Formally, if for every k in [1,...,m.] we let r; be the ranking of the k-th active compound,
then the BEDROC metric can be estimated by
1 ZZQ} e~ 2-(re/N) 1
BEDROC =~ P < 1_/e,al + = (6.8)
elX m__

In what follows, we use a typical value of o = 1 for the early recognition parameter.

6.4. Results

The Agnostic Learning versus Prior Knowledge Challenge is run using a training set composed
of 4,229 compounds randomly selected in the HIVA dataset, and a blind test set composed of
the remaining 38,449 compounds. We optimize our models by 10-fold cross-validation on the
training set and then evaluate their performance on the test set. The aim of the challenge is to
reach the lowest possible BER on the testing set.

Table 6.1 reports the 10-fold cross-validation BER and AUC over the training set as well
as the final performance of several of the tested methods. Combining molecular fingerprints
with an Element labeling of atoms and a count-based fingerprint representation, together with
an oversampled SVM framework, lead to the best entry among all competing groups for the
HIVA dataset in the Prior Knowledge track, with a BER of 0.2693. The best 10-fold cross-
validated BER on the training set, with a value of 0.1975, is achieved by the same method. We
compare these results to those obtained by the winner of the Performance Prediction Challenge
(Guyon et al., 2006), where the dataset was the same, but split in training and testing sets in a
different fashion, and to the best results in the Agnostic Learning track>, as well as to the second
best results in the Prior Knowledge track. These second best results, with a BER of 0.2782,

3. available from http://clopinet.com/isabelle/Projects/agnostic/Results.html

137

http://clopinet.com/isabelle/Projects/agnostic/Results.html

AZENCOTT BALDI

have been obtained by S. Joshua Swamidass, also from our laboratory, by applying a neural-
network-based approach to the same molecular fingerprints. This approach will be described
elsewhere and has its own advantages, for instance in terms of speed. Both top entries in the
Prior Knowledge track achieve better performance than the best entry in the Agnostic Learning
track.

Table 6.1: 10-fold cross-validation BER and AUC over the HIVA training set, as well as final
BER and AUC for several methods. (*) Winning entry. Best performance in bold
and second best performance in italics. ‘E’ and ‘EC’ refer to the labeling schemes
introduced in Section 6.2.1; ‘binary’ and ‘counts’ refer to the vector representa-
tions defined in Section 6.2.3; and ‘oversampled’ refers to an SVM trained on a
balanced dataset obtained by replicating the underrepresented class as exposed in

Section 6.3.2.
Method Training set Test set
BER AUC BER AUC

E, binary (not oversampled) 0.2249 0.8293 | 0.2816 0.7550
E, binary (oversampled) 0.1980 0.8511 | 0.2765 0.7611
E, counts (not oversampled) 0.2238 0.8294 | 0.2799 0.7576
E, counts (oversampled) (*) 0.1975 0.8523 | 0.2693 0.7643
EC, binary (not oversampled) 0.2174 0.8338 | 0.2828 0.7673
EC, binary (oversampled) 0.2030 0.8413 | 0.2860 0.7595
EC, counts (not oversampled) 0.2189 0.8358 | 0.2826 0.7626
EC, counts (oversampled) 0.1993 0.8450 | 0.2820 0.7650
Second Best (Prior Knowledge) 0.2168 0.8198 | 0.2782 0.7072
Best (Agnostic Learning) - - 0.2827 0.7707
Performance Prediction Challenge - - 0.2757 0.7671

The 10-fold cross-validated enrichment curves over the training set for several methods are
displayed on Figure 6.3. Close to the origin, the highest enrichment on these curves is clearly
observed when using a non-oversampled SVM. This region is further magnified in Figure 6.4
which focuses on the first 10% of the ranked list. It suggests that a slightly better ability at
early recognition is attained with the model derived from binary fingerprints using the element
labeling scheme.

The actual enrichment curves obtained on the testing set are displayed on Figure 6.5. Here
again, the best early recognition ability is clearly observed for non-oversampled SVM. Fig-
ure 6.6, which focuses on the first 10% of these enrichment curves, suggests that the model
derived from count fingerprints obtained with the element labeling scheme has the best ability
to recover actives at the top of the ranked list.

Table 6.2 presents the 10-fold cross-validation BEDROC over the HIVA training set as well
as the final BEDROC of several methods. The best final BEDROC of 0.507 is also obtained
with molecular fingerprints combined with an Element labeling of atoms and a count-based fin-
gerprint representation, but together with an non-oversampled SVM framework. This method,
which corresponds to the enrichment curve with the steepest slope before 5%, achieves a 10-
fold cross-validated BEDROC of 0.609 on the training set, just behind the best value of 0.610
obtained when using a binary fingerprint representation instead of the count-based one.

138

6. VIRTUAL HIGH-THROUGHPUT SCREENING WITH TWO-DIMENSIONAL KERNELS

Enrichment for a 10-fold cross—-validation over the HIVA training set

100
90
80
T =7 ——- EC binary
o 70— - EC counts
2 - 4// El binary
£ //// ——— El counts
g 60 4
2 |
=] —— EC binary oversampled
5 50
® 1 EC counts oversampled
g / El binary oversampled
§ 40 ,’ ——— El counts oversampled
g 1!
Q |
30 |
|1
|
20/
Bl
I
10|
0 T T T T T T T T T
0 10 20 30 40 50 60 70 80 90 100

percentage cutoff

Figure 6.3: Ten-fold cross-validation enrichment curves over the HIVA training set for several

methods. ‘E’ and ‘EC’ refer to the labeling schemes introduced in Section 6.2.1;
‘binary’ and ‘counts’ refer to the vector representations defined in Section 6.2.3;
and ‘oversampled’ refers to an SVM trained on a balanced dataset obtained by
replicating the underrepresented class as exposed in Section 6.3.2.

139

AZENCOTT BALDI

Enrichment for a 10-fold cross—-validation over the HIVA training set (zoomed)

70
4 —
60— /,//::::::”/
- ’/////
- z=
/////
50 =7
8 =
2] =
N ~
y
@ 40 ////
=1 - Vi ——~ EC binary
EISE 7 EC counts
S 7 El binar
D | y y
£ 30 VA ——~ Elcounts
[0 B 7
3 Vi
g 7 —— EC binary oversampled
20 / EC counts oversampled
| / El binary oversampled
i / — El counts oversampled
10
0 T T T T T T T T T
0 1 2 3 4 5 6 7 8 9 10

percentage cutoff

Figure 6.4: Ten-fold cross-validation enrichment curves, limited to the first 10% of the ranked

140

list, over the HIVA training set for several methods. ‘E’ and ‘EC’ refer to the
labeling schemes introduced in Section 6.2.1; ‘binary’ and ‘counts’ refer to the
vector representations defined in Section 6.2.3; and ‘oversampled’ refers to an SVM
trained on a balanced dataset obtained by replicating the underrepresented class as
exposed in Section 6.3.2.

6. VIRTUAL HIGH-THROUGHPUT SCREENING WITH TWO-DIMENSIONAL KERNELS

Enrichment over the HIVA testing set

100

percentage of true positives
(&)
T

——- EC binary
EC counts
El binary

——— El counts

—— EC binary oversampled
EC counts oversampled
El binary oversampled

—— El counts oversampled

T T T T T T T T T
10 20 30 40 50 60 70 80 90 100

percentage cutoff

Figure 6.5: Actual enrichment curves over the HIVA testing set for several methods. ‘E’ and

‘EC’ refer to the labeling schemes introduced in Section 6.2.1; ‘binary’ and ‘counts’
refer to the vector representations defined in Section 6.2.3; and ‘oversampled’ refers
to an SVM trained on a balanced dataset obtained by replicating the underrepre-
sented class as exposed in Section 6.3.2.

141

AZENCOTT BALDI

Enrichment over the HIVA testing set (zoomed)

60
50 e i_’_—’——i/*// =
7 ///////
8 40 =
2] /////// ——- EC binary
é = EC counts
o | v El binary
£ V. ——- El counts
5 30 V.
7
S 7 7
g 4 e —— EC binary oversampled
c
8 A e EC counts oversampled
g 20 // El binary oversampled
g // —— El counts oversampled
N /
, /
/
10 /
i /
/
-~ 7/
/
1/
0 T T T T T T T T T
0 1 2 3 4 5 6 7 8 9 10

percentage cutoff

Figure 6.6: Actual enrichment curves, limited to the first 10% of the ranked list, over the HIVA

142

testing set for several methods. ‘E’ and ‘EC’ refer to the labeling schemes intro-
duced in Section 6.2.1; ‘binary’ and ‘counts’ refer to the vector representations
defined in Section 6.2.3; and ‘oversampled’ refers to an SVM trained on a bal-
anced dataset obtained by replicating the underrepresented class as exposed in Sec-
tion 6.3.2.

6. VIRTUAL HIGH-THROUGHPUT SCREENING WITH TWO-DIMENSIONAL KERNELS

Table 6.2: 10-fold cross-validation BEDROC over the training set as well as final BEDROC
for several methods. (*) Winning entry. Best performance in bold and second best
performance in italics. 'E’ and ’EC’ refer to the labeling schemes introduced in
Section 6.2.1; ’binary’ and ’counts’ refer to the vector representations defined in
Section 6.2.3; and ’oversampled’ refers to an SVM trained on a balanced dataset
obtained by replicating the underrepresented class as exposed in Section 6.3.2.

Method Training set Test set
BEDROC | BEDROC
E, binary (not oversampled) 0.610 0.495
E, binary (oversampled) 0.580 0.454
E, counts (not oversampled) 0.609 0.507
E, counts (oversampled) (¥) 0.581 0.465
EC, binary (not oversampled) 0.606 0.499
EC, binary (oversampled) 0.573 0.446
EC, counts (not oversampled) 0.602 0.500
EC, counts (oversampled) 0.573 0.454
Second Best (Prior Knowledge) 0.607 0.483

6.5. Discussion

By defining feature vectors that capture molecular structural information, we have developed
a kernel leading to the best results on the HIVA dataset in the Agnostic Learning versus Prior
Knowledge Challenge.

The extended-connectivity molecular fingerprints present the advantage of being built auto-
matically, without the need for human curation and expert knowledge. The results obtained with
these representations are superior to those obtained using the set of binary molecular descrip-
tors computed using the ChemTK package* which were offered in the Agnostic Learning track.
Also, one of the challenge participants tried to collaborate with chemists to define meaningful
features, but did not manage to get better results than using the Agnostic Learning features.

Overall, the results suggest that extended-connectivity fingerprints yield efficient molecular
representations that can be successfully applied to a variety of chemoinformatics problems,
from the prediction of molecular properties to the clustering of large libraries of compounds.
These fingerprints are actually implemented in the current version of the ChemDB database
(Chen et al., 2007) and routinely used to search compounds.

We also notice that the model selection method adopted here, although somewhat naive
being based only on the cross-validation performance over the training set, still allows us to
efficiently choose the top classifiers and rank first in the competition. This is especially inter-
esting because the test set is about nine times larger than the training set, raising concern of
over-fitting. It may be of some interest to combine our features with the best methods of the
Agnostic Learning track to see whether any further improvements can be derived.

Other extensions of this work include applying our best methods to other virtual HTS
datasets. An important observation in this context is that the methods yielding best BER perfor-
mance do not yield best BEDROC performance. This is because optimizing for early recogni-
tion is not equivalent to optimizing for overall classification. The enrichment curves, which are

4. http://www.sageinformatics.com

143

http://www.sageinformatics.com

AZENCOTT BALDI

systematically steeper for low thresholds when using non-oversampled SVM, corroborate this
observation. More precisely, it appears that oversampling improves the global performance of
the classifier in terms of BER but not the early recognition in terms of BEDROC. This suggests
that putting more emphasis on the positive training examples reduces the bias of the SVM, but
also leads to assigning higher prediction values to some of the negative points. It is therefore
critical to carefully choose which performance measure to optimize with regards to the specific
problem being tackled and the resources available to conduct laboratory experiments to confirm
the computational prediction.

Acknowledgments

Work supported by NIH Biomedical Informatics Training grant (LM-07443-01), NSF MRI
grant (EIA-0321390), NSF grant 0513376, and a Microsoft Faculty Innovation Award to PB.
We would like also to acknowledge the OpenBabel project and OpenEye Scientific Software
for their free software academic licenses.

References

C.-A. Azencott, A. Ksikes, S. J. Swamidass, J. H. Chen, L. Ralaivola, and P. Baldi. One- to
Four-Dimensional Kernels for Virtual Screening and the Prediction of Physical, Chemical,
and Biological Properties. J. Chem. Inf. Model, 47(3):965-974, 2007.

P. Baldi, R. W. Benz, D. S. Hirshberg, and S. J. Swamidass. Lossless Compression of Chemical
Fingerprints Using Integer Entropy Codes Improves Storage and Retrieval. J. Chem. Inf.
Model., 2007.

Danail Bonchev. Chemical Graph Theory: Introduction and Fundamentals. Taylor & Francis,
1991. ISBN 0856264547.

J. Chen, S. J. Swamidass, Y. Dou, J. Bruand, and P. Baldi. ChemDB: A Public Database Of
Small Molecules And Related Chemoinformatics Resources. Bioinformatics, 21:4133-4139,
2005.

Jonathan H. Chen, Erik Linstead, S. Joshua Swamidass, Dennis Wang, and Pierre Baldi.
ChemDB Update - Full-Text Search and Virtual Chemical Space. Bioinformatics,
2007. doi: 10.1093/bioinformatics/btm341. URL http://bioinformatics.
oxfordjournals.org/cgi/content/abstract/btm341vl.

R. Collobert and S. Bengio. SVMTorch: Support Vector Machines for Large-
Scale Regression Problems. J. Mach. Learn. Res., 1:143-160, Sep. 2001 2001.
http://www.idiap.ch/learning/SVMTorch.html.

A. Estabrooks, T. Jo, and N. Japkowicz. A Multiple Resampling Method for Learning From
Imbalanced Data Set. Computational Intelligence, 20(1), 2004.

D. R. Flower. On the Properties of Bit String-Based Measures of Chemical Similarity. J. Chem.
Inf. Comput. Sci., 38:378-386, 1998.

T. Girke, L.-C. Chen, and N. Raikhel. ChemMine. A Compound Mining Database For Chemi-
cal Genomics. Plant Physiol., 138:573-577, 2005. URL http://bioinfo.ucr.edu/
projects/PlantChemBase/search.php.

144

http://bioinformatics.oxfordjournals.org/cgi/content/abstract/btm341v1
http://bioinformatics.oxfordjournals.org/cgi/content/abstract/btm341v1
http://bioinfo.ucr.edu/projects/PlantChemBase/search.php
http://bioinfo.ucr.edu/projects/PlantChemBase/search.php

6. VIRTUAL HIGH-THROUGHPUT SCREENING WITH TWO-DIMENSIONAL KERNELS

I. Guyon, A. Saffari, G. Dror, and J. M. Buhman. Performance Prediction Challenge. In
IEEE/INNS conference IJCNN 2006, Vancouver July 16-21, 2006.

M. Hassan, R. D. Brown, S. Varma-O’Brien, and D. Rogers. Cheminformatics Analysis and
Learning in a Data Pipelining Environment. Molecular Diversity, 10:283-299, 2006.

Lemont B Kier and Lower H Hall. Molecular connectivity in structure-activity analysis. Wiley,
New York, 1986. ISBN 0-471-90983-1.

R.B. King. Chemical Applications of Topology and Graph Theory. Elsevier, October 1983.
ISBN 0444422447,

A.R. Leach and V. J. Gillet. An Introduction to Chemoinformatics. Springer, 2005.

P. Mahé, L. Ralaivola, V. Stoven, and J.-P. Vert. The Pharmacophore Kernel for Virtual Screen-
ing with Support Vector Machines. J. Chem. Inf. Model., 46:2003-2014, 2006.

Alan D. McNaught and Andrew Wilinson. Molecular Graph, 1997. URL http://www.
iupac.org/publications/compendium/index.html.

H.L. Morgan. The Generation of Unique Machine Description for Chemical Structures - A
Technique Developed at Chemical Abstracts Service. Journal of Chemical Documentation,
5:107-113, 1965.

A. Orriols and E. Bernad-Mansilla. The Class Imbalance Problem in Learning Classifier Sys-
tems: A Preliminary Study. In Proceedings of the 2005 Workshops on Genetic and Evolu-
tionary Computation (Washington, D.C., June 25 - 26, 2005), pages 74-78, New York, NY,
2005. ACM Press.

L. Ralaivola, S. J. Swamidass, H. Saigo, and P. Baldi. Graph Kernels for Chemical Informatics.
Neural Netw., 18(8):1093-1110, 2005.

J.W. Raymond and P. Willett. Effectiveness of Graph-Based and Fingerprint-Based Similarity
Measures for Virtual Screening of 2D Chemical Structure Databases. J. Comput.-Aided Mol.
Des., 16:59-71, 2001.

Razinger. Extended Connectivity in Chemical Graphs. Theoretical Chemistry Accounts:
Theory, Computation, and Modeling (Theoretical Chimica Acta), 61:581-586, 1982. doi:
10.1007/BF02394734. URL http://dx.doi.org/10.1007/BF02394734.

David Rogers and Robert D. Brown. Using Extended-Connectivity Fingerprints with
Laplacian-Modified Bayesian Analysis in High-Throughput Screening Follow-Up. Journal
of Biomolecular Screening, 10:682—686, October 2005. doi: 10.1177/1087057105281365.
URL http://jbx.sagepub.com/cgi/content/abstract/10/7/682.

H. Shin and S. Cho. How to Deal With Large Datasets, Class Imbalance and Binary Output in
SVM Based Response Model. In Proceedings of the Korean Data Mining Conference, pages
93-107, 2003. Best Paper Award.

R.L. Strausberg and S.L. Schreiber. From Knowing To Controlling: A Path From Genomics
To Drugs Using Small Molecule Probes. Science, 300:294-295, 2003. URL http://
chembank.broad.harvard.edu/.

145

http://www.iupac.org/publications/compendium/index.html
http://www.iupac.org/publications/compendium/index.html
http://dx.doi.org/10.1007/BF02394734
http://jbx.sagepub.com/cgi/content/abstract/10/7/682
http://chembank.broad.harvard.edu/
http://chembank.broad.harvard.edu/

AZENCOTT BALDI

S. J. Swamidass, J. H. Chen, J. Bruand, P. Phung, L. Ralaivola, and P. Baldi. Kernels for Small
Molecules and the Predicition of Mutagenicity, Toxicity, and Anti-Cancer Activity. Bioinfor-
matics, 21(Supplement 1):1359-368, 2005. Proceedings of the 2005 ISMB Conference.

S.J. Swamidass and P. Baldi. Bounds and Algorithms for Exact Searches of Chemical Finger-
prints in Linear and Sub-Linear Time. Journal of Chemical Information and Modeling, 47
(2):302-317, 2007.

J.-F. Truchon and C. I. Bayly. Evaluating Virtual Screening Methods: Good and Bad Metrics
for the "Early Recognition" Problem. J. Chem. Inf. Model., 47(2):488 —508, 2007.

K. Veropoulos, C. Campbell, and N. Cristianini. Controlling the Sensitivity of Support Vector
Machines. In Proceedings of the International Joint Conference on Al, pages 55-60, 1999.

D. Weiniger, A. Weiniger, and J.L. Weiniger. SMILES. 2. Algorithm for Generation of Uniques
SMILES Notation. J. Chem. Inf. Comput. Sci., 29:97-101, 1989.

146

Part 111

Robust Parameter Estimation

Overview

Preventing overfitting or monitoring the fit versus robustness tradeoff has been the name of
the game in machine learning and statistics for the past few decades. Several robust parameter
estimation methods in the generalized linear model and kernel method families have emerged,
stemming from statistical learning theory. Such methods optimize a two-part cost function.
The first part is the “training error”, that is the average loss over all traning examples. Loss
functions include the hinge loss of Support Vector Machines (SVMs) for pattern recognition
and the square loss for regression (also sometimes used for pattern recognition). The second
part of the cost function is a term penalizing complex solutions, such as the norm of the weight
vector. More generally, the penalty may be a norm of function in a Hilbert space containing the
family of models considered.

In this part, three chapters illustrate methods derived from such approaches. In Chapter 7,
Mathias M. Adankon and Mohamed Cheriet reformulate the classical SVM optimization
problem to incorporate the box constraint as an extra kernel parameter, which facilitates per-
forming hyper-parameter optimization with gradient descent and, in some intances, reduced
the number of hyper-paramenters to be optimized. In Chapter 8, Erinija Pranckeviciene and
Ray Somorjai explore the possibilities offered by a 1-norm regularizer, as opposed to the
classical 2-norm regularizer generally used for SVMs. Such approaches provide an embedded
method of feature selection, since the contraints thus imposed on the weight vector drive some
weights to exactly zero. All these methods are not exempt of hyperparameter selection. Bounds
on the generalization error are often used to carry out hyperparameter selection in SVMs and re-
lated kernel methods. Chapter 7 uses the radius-margin bound, while Chapter 8 uses transvari-
ation intensity (another measure of average margin error). In Chapter 9, Michiel Debruyne,
Mia Hubert, and Johan A.K. Suykens propose a closed-form approximation of the leave-
one-out-error based on the influence function. See also Chapter 13, Part V, which describes
a method for regularizing the leave-one-out error estimated by the PRESS statistic for LSSVM
classifiers. This last method won overall second place in the performance prediction challenge
and yielded best reference performance in the ALvsPK challenge (agnostic track).

149

150

Chapter 7

Unified Framework for SVM Model Selection

Mathias M. Adankon MATHIAS @LIVIA.ETSMTL.CA

Mohamed Cheriet MOHAMED.CHERIET @ETSMTL.CA
Synchromedia Laboratory for Multimedia Communication in Telepresence

Ecole de Technologie Supérieure, University of Quebec

1100 Notre-Dame West, Montreal, Quebec, Canada, H3C 1K3

Editor: Isabelle Guyon, Gavin Cawley, Gideon Dror and Amir Saffari.

Abstract

Model selection for support vector machines (SVMs) involves tuning SVM hyperparameters,
such as C, which controls the amount of overlap, and the kernel parameters. Several criteria
developed for doing so do not take C into account. In this paper, we propose a unified frame-
work for SVM model selection which makes it possible to include C in the definition of the
kernel parameters. This makes tuning hyperparameters for SVMs equivalent to choosing the
best kernel parameter values. We tested this approach using empirical error and radius margin
criteria. Our experiments on the Challenge Benchmarks dataset show promising results which
confirm the usefulness of our method.

Keywords: Model Selection, SVM, Support vector machine, hyperparameter, kernel.

7.1. Introduction

Support vector machines (SVMs) are particular classifiers which are based on the margin max-
imization principle (Vapnik, 1998). They perform structural risk minimization, which was in-
troduced to machine learning by Vapnik (Vapnik, 1982, 1992) and which has yielded excellent
generalization performance. However, the generalization capacity of the SVM depends on hy-
perparameters such as C and the kernel parameters. The hyperparameter C is a regularization
parameter which controls the trade-off between training error minimization and margin max-
imization. As an illustration, Figure 7.1 shows the variation of the error rate on a validation
set versus the variation of the Gaussian kernel with a fixed value of C and Figure 7.2 shows
the variation of the error rate on the validation set versus the variation of the hyperparameter C
with a fixed value of the RBF kernel parameter. In each case, we resolve the binary problem
described by the “Thyroid” data taken from the UCI benchmark. Clearly, the best performance
is achieved with an optimum choice of the kernel para-meter and of C.

Several methods (Wahba et al., 1999; Vapnik, 1998; Jaakkola and Haussler, 1999; Joachims,
2000; Opper and Winther, 1999, 2000; Chapelle and Vapnik, 1999; Vapnik and Chapelle, 2000;
Gold and Sollich, 2005; Adankon and Cheriet, 2007) have been developed for choosing the best
hyperparameter values. In 2001, Chapelle et al. (Chapelle et al., 2001) proposed for the first
time an automatic method for selecting hyperparameters for SVMs using certain criteria which
approximate the error of the leave-one-out (LOO) procedure. These criteria are called Span
bound and radius-margin bound. Duan et al. have shown in (Duan et al., 2003) that radius-
margin bound gives good prediction for L2-SVM, but its practical viability is still not very

© M.M. Adankon & M. Cheriet.

ADANKON CHERIET

Validation Error rate (%)
Validation Error rate (%)

.
0 01 02 03 04 05 06 07 08 0.9 1 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 009 01
Hyperparameter gamma=1/sigma Hyperparameter C

(a) Validation error rate for different values of (b) Validation error rate for different values of
the variance of the RBF kernel for binary the hyperparameter C for binary problem
problem

Figure 7.1: Impact of SVM hyperparameters on the classifier generalization

satisfactory for L1-SVM. Then, in 2003, Kai-Min et al. (Chung et al., 2003) proposed modified
radius-margin bound for L1-SVM.

Recently, Ayat et al. (Ayat et al., 2005) have proposed a new criterion based on the empirical
error, where an empirical estimate of the generalization error is minimized through a validation
set. This criterion is a linear function which does not require the resolution of another quadratic
problem except for SVM training.

However, certain criteria, like empirical error, cannot be applied to tuning the hyperparam-
eter C because the approximation used to compute the gradient is not tractable. In this paper,
we propose a new formulation for the L1-SVM. With this formulation, the hyperparameter C is
considered as a parameter of the kernel function. Hence, when a given criterion used to opti-
mize the hyperparameters is not tractable with C, we can use this new formulation to improve
model selection. Furthermore, the unified framework makes it possible to reduce the number of
hyperparameters in certain cases.

This chapter is organized as follows. In Section 7.2, we describe the new formulation for
the dual SVM problem, the baseline of the unified framework. In Section 7.3, we describe
the various properties of this new formulation, and, in Section 7.4, the advantage of the uni-
fied framework for model selection. In Section 7.5, we provide an application example of the
unified framework for model selection using the empirical error and radius-margin criteria. In
Section 7.6, we present the experimental results and, in the last section, we conclude the paper.

7.2. New Formulation

We first consider a binary classification problem. Let us consider a dataset {(x1,y1),.. ., (x¢,y¢)}
with x; € #¢ and y; € {—1,1}. Nonlinear SVM classifiers use the kernel trick to produce
nonlinear boundaries. The idea behind kernels is to map training data nonlinearly into a higher-
dimensional feature space via a mapping function & and to construct a separating hyperplane
which maximizes the margin. The construction of the linear decision surface in this feature
space only requires the evaluation of dot products ¢ (x;) - ¢ (x;) = k(x;,x;), where the application

152

7. UNIFIED FRAMEWORK FOR SVM MODEL SELECTION

k: % x B — R is called the kernel function (Boser et al., 1992; Scholkopf and Smola, 2002;
Cristianini and Shawe-Taylor, 2000; Shawe-Taylor and Cristianini, 2004).
The decision function given by an SVM is :

¥(x) = sign[w'e (x) +b], (7.1)

where w and b are found by resolving the following optimization problem which expresses the
maximization of the margin 1/||w|| and the minimization of the training error :

1, g
= C i 7.2
vlglbng 5V w+ ; & (7.2)
subject to : y; (W (x;)) +b] >1-& Vi=1,...0 (7.3)
&E>0 Vi=1,...,L 7.4)
The Lagrangian of the previous problem! is :
1
L= 5ww+c):§, Zaly,w¢(x,)+b Y —1+&]— ZA; (7.5)

i=1 i=1
with the Lagrange multipliers o; > 0 and A; >0 foralli=1,..., /.
When, we apply the differentiation theorem w.r.t. the Lagrangian, we obtain :

!
y(x) = sign[}_ ouyik(xi,x) +], (7.6)
i=1
with o solution of :
¢ 1 &
maximize : W(a) = Z — = Z o5 0Lyiy jk(xi,x) 7.7

i=1 1 J=1
‘
subject to: Y ayi=0 and 0<0;<C,i=1,..,L.
i=1
In the feature space, the optimal separating hyperplane for the SVM is defined by :

NVS
=Y ajyjk(xj,z)+b. (7.8)
j=1
In Equation (7.8) j = 1,...,NVS are the Support Vector indices corresponding to non-zero

Q;.
The new formulation we propose in this paper is defined by using the following change of
variables used in Chung et al. (2003) :

o =Ca;, Vi=1,..,/L (7.9)
The QP problem expressed by (7.7) becomes:

max W (@) = ZCocl— 5 Z C2;jyiy jk(xi,x;7) (7.10)
i,j=1
subject to : Z C&y; =0 (7.11)
i=1
o<ca; <C, i=1,....¢0 (7.12)

1. Problem (7.2) expresses the L1-SVM formulation.
We also have the L2-SVM defined by min,,; ¢ (%w’w +CYL &)

153

ADANKON CHERIET

In Equations (7.11) and (7.12), we can simplify the positive real C, and so we have :

i
Y ayi=o, (7.13)
i=1

0<a&<l1, i=1,..,LC (7.14)

Then, the constraints become independent of the hyperparameter C.
Let us consider equation (7.10) which defines the objective function of the quadratic prob-
lem for SVMs :

¢ ¢
= Y ca Z 20,0yy ik(xi,x))

i=1 —

4

‘
[Z i — Z @ 0yiy jCh(xi,x;) |-

i=1 j=

Since the real C is strictly positive, we can conclude that maximizing W w.r.t. o« = (@, ..., 0)’
is equivalent to maximizing W /C w.r.t. & = (d, ..., 0)’.
To complete the new formulation, we use :

l?(x,-,xj) :Ck(x[,xj) (715)

and we can write :

G —

MN

14
W(ﬁt)/ = Z)ﬁy; -xl7-xj) (7.16)

l\J \

i=1

We reformulate now the quadratic problem expressed in Equation (7.7) as follows:

14 !l
maximize : W, (Z Z a;o yly,k(xl, Xj) (7.17)
i=1 2,5=

l
subjectto: Y @yi=0 and 0<@; <1,i=1,../(
i=1
The preceding equation defines the new formulation where the constraints on the parameters

@ are independent of hyperparameter C which is included in the new kernel function k.
When we consider Equation (7.17), the Karush-Kuhn-Tucker conditions give:

* 0 < &; < 1if the point is on the margin
e (; = 1 if the point is misclassified w.r.t. the margin

e @; = 0 if the point is correctly classified outside the margin

154

7. UNIFIED FRAMEWORK FOR SVM MODEL SELECTION

7.3. Properties of the New Formulation
7.3.1. Hyperplane equation using the New Formulation

The separating hyperplane for the SVM that is used to define the decision boundary in a clas-
sification problem is expressed by (7.8). However, when we use the new formulation with the
changes of variables proposed in Section 7.2, we have :

l
f(Z) Z ‘xlv b
l
= Z j0iCk(xj,2) +b
and we obtain the following equation :
é ~
fz) = ZYdek(xj7Z)+b- (7.18)

Jj=1

Consequently, when we resolve the problem of (7.17) which gives &, we do not need to
compute the parameters ¢ for evaluating the equation of the separating hyperplane.

7.3.2. Properties of k

Since the hyperparameter C is strictly positive, then the function & : (x;,x;) — Ck(x;,x;) is a
Mercer kernel when the kernel & satisfies the Mercer condition. We have :

k(xi,xj) = Ck(xi,x;) = CP(x;).(x;). (7.19)

Hence, the nonlinear mapping ¢ resulting from the new formulation is given by the follow-
ing expression:

¢ x> VCP(x). (7.20)

The mapping ¢ can be expressed as a composition of two transformations as follows:

¢(x) = h[p(x)] = (ho@)(x), (7.21)

where £ is the homothety transformation with ratio VC.

We know that a homothety is the particular similarity transformation. As such, it preserves
angles and ratios of lengths. It also preserves orientation. Consequently, the kernel function k
obtained from ¢ maintains the various properties of similarity of k.

7.3.3. Kernels definition using the New Formulation

When we use the new formulation, the new kernel function k obtained from the Gaussian kernel
is expressed with the hyperparameter C as the second parameter of the kernel function.

A _ _HX—yHZ _ e lI2 2
() = Cexp(—*—50) = Cexp(—allx—3]), (122)

155

ADANKON CHERIET

where a is positive real.
We can define the following kernel to replace the Gaussian kernel, when we use the unified
framework :

k(x,y) = exp(—allx—y|* +b) (7.23)

In this new kernel, we have two parameters, the first a replace the inverse of the width while
the second kernel parameter b is equal to In(C). This latter parameter controls the sparseness of
the data in the feature space, and makes it possible to control the overlap between the classes.
When b is too large, the patterns tend to be similar if the distance ||x —y|| is small, because

k(x.y) ~ exp(b).

For certain kernel functions, the hyperparameter C does not appear, i.e. the new kernel
function k does not have an extra parameter. We can illustrate this when using the polynomial
kernel with three parameters :

k(x,y) = (ax.y+b)",

where a and b are positive reals and n the degree.

We have
k(x,y) = Claxy+b)"
= (C'")"(axy+Db)"
(V" ax.y+CYmp)".
Then,
k(x,y) = (axy+b)", (7.24)

where @ = C'/"a and b = C'/"b .
Another example of a kernel for which we do not need an extra parameter to define the new
kernel function is the KMOD kernel (Ayat et al., 2002a) :

2

4
k(x7y) =a|exp (m) —1

and

2

]NC(X7y) =d exp(| u

—) —1 7.25
o) 7

where d = Ca.

Table 7.1 shows the definition of the kernel for the unified framework corresponding to the
popular kernel functions. We do not add an extra parameter to build the new kernel function,
other than for the Gaussian and the Linear kernel.

156

7. UNIFIED FRAMEWORK FOR SVM MODEL SELECTION

Table 7.1: Common kernel definition for the unified framework

RBF (Gaussian) k(x,y) = exp(—allx —Y||2 +b)
Linear k(x,y) = ax.y
Polynomial k(x,y) = (ax.y +b)"

Laplacian k(x,y) = exp(—allx—y| +b)
Multi-quadratic k(x,y) = (alx—yl|+b)"/?
Inverse multi-quadratic k(x,y) = (allx—y[|+)~/
KMOD k(x,y) = a|exp (W) -1

7.4. Advantages of the Unified Framework for Model Selection

The various methods developed for automatic model selection for SVMs use algorithms based
on gradient descent. The criteria suggested are regarded as objective functions to be optimized.
But some of the criteria which that we cited in the introduction are not tractable with respect to
the variable C, an example of which is the empirical error (Ayat et al., 2005).

To overcome these problems, we can use the new formulation, because it is certain that
the kernel function will be derivable with respect to C. Also, the hyperparameter C is not
directly related to the constraints defining the optimization problem, and as such no longer has
an influence on the objective function convexity resulting from the selection criteria.

Another advantage of the new formulation for model selection is the reduction in a number
of hyperparameters. For example, for the polynomial kernel and KMOD, the number of kernel
parameters remains unchanged in spite of the inclusion of C. Thus, the number of hyperpa-
rameters is reduced to the number of kernel parameters. This makes easier as well the model
selection manually as automatically. The reduction of the hyperparameter number reduces the
search space and by this the optimization algorithm for model selection is accelerated and gives
more accurate results. Then, our unified framework can be applied with any model selection
criterion.

7.5. Application of the Unified Framework for Model Selection
7.5.1. The empirical error criterion

In this section, we describe the optimization of the SVM kernel parameters using the empirical
error (Ayat et al., 2002b, 2005). This criterion was first developed to tune only kernel param-
eters but with our unified framework, it is possible to tune both the kernel parameters and the
hyperparameters C, because we include C in the definition of the new kernel k.

Let us define #; = (y; + 1) /2. The empirical error is given by the following expression:

E; = ti — pil, (7.26)

where p; is the estimated posterior probability corresponding to the data example x;.
The estimated posterior probability is determined by :

R 1
bi

= 1 +exp(A.f;+B)’ (727

where f; = f(x;) and the parameters A and B are fitted after minimizing the cross-entropy error
as proposed by Platt (Platt, 2000).

157

ADANKON CHERIET

The use of the model developed by Platt to estimate this probability makes it possible to
quantify the distance from one observation to the hyperplane determined by the SVM using a
continuous and derivable function. Indeed, the probability estimate makes it possible to cali-
brate the distance f(x;) between 0 and 1 with the following properties:

* the observations of the positive class which are well classified and located away from the
margin have probabilities considered to be very close to 1;

* the observations of the negative class which are well classified and located away from the
margin have probabilities considered to be very close to 0;

* and the observations located in the margin have probabilities considered to be propor-
tional to f(x;).

Thus, with the empirical error criterion, only the misclassified observations and those lo-
cated in the margin determined by the SVM are very important, since the other observations
give almost null errors. Consequently, minimization of the empirical error involves the reduc-
tion of the support vectors (observations being in the margin). In other words, minimization
of the empirical error makes it possible to select hyperparameters defining a margin containing
fewer observations. We then construct a machine with fewer support vectors, which reduces the
complexity of the classifier. The results of the tests reported in (Ayat et al., 2002b) confirm this
property of the SVM constructed using the empirical error.

In fact, we have :

[ify=—1

i ”"‘{ =p ify=1
Then :

E; — 0O when p; = 0fory;=—1and p; = 1 fory; =1

Consequently :

E; —0if f(x;) < —1fory; = —1and f(x;) > 1 fory; =1

We note that minimization of the empirical error forces the maximum of the observations
to be classified away from the margin, which makes this criterion useful for regularizing the
maximization of the margin for SVMs.

We assume that the kernel function depends on one or several parameters, encoded within
the vector 8 = (6,...,0,). These parameters are optimized by a gradient descent minimization
algorithm (Bengio, 2000) where the objective function is E = } E; (see Algorithm 7.1). The
convergence is reached when the best fitness value is not improved after a specified number of
iterations.

The derivative of the empirical error with respect to 6 is evaluated using the validation
dataset. If we assume N to be the size of the validation dataset; then :

JE;

JE 9 [1 X 1 ¥
86:(96)<N;;Ei> “ N6 728)
ith
™ OE: OE: 3f;
00 Jf; 00’
* Computation of 3El'
| OE; _ OE: dpy
af; dpi dfi’

158

7. UNIFIED FRAMEWORK FOR SVM MODEL SELECTION

where
JE; _dti—pil [—1 ifr=1
op; adp; | +l if;=0
and 95
Di . .
= —Ap;(1—p;).
aﬁ pl(pl)
Then ‘;’2 is equal to:
JE;
=Ay;pi(1—pi). (7.29)

* Computation of %

81 NG [Ok(xj,x) . 0d~ b
f Zyj x,x)a. ae k(xj,x;) +g° (7.30)

This derivative is composed of two parts. We may include the bias b into the parameter

vector & as (@y,...,0yys,b). We then use the following approximation proposed by Chapelle
et al. (Chapelle et al., 2001).

g0~ H 5% (7.31)
where y
K Y
H:(yT 0o) (7.32)

In Equation (7.32), H represents the Hessian matrix of the SVM objective called the modi-
fied Gram Schmidt matrix. Its components K}; are equal to y;y jk(x;,x;) and Y is a vector of size
NV x 1 containing support vector labels y;.

Algorithm 7.1: SVM model selection using the empirical error criterion
Input Training set, Validation set, kernel type, learning rate n
Output Hyperplane < &, b >, optimal kernel parameters 6
Initialize the kernel parameters
while convergence is not reached do

- Train SVM with current kernel parameters

- Estimate A and B for the sigmoid

- Estimate the probability of the error

- Compute the gradient of the error

- Correct the kernel parameters according to the gradient as 8/*! = " — g—g
end while

7.5.2. The radius-margin criterion

The radius-margin criterion is a bound of the leave-one-out (LOO) error. In Vapnik (1998), it
was shown that the following bound, called radius-margin bound holds:

LOOE 0r < 4R* || w || (7.33)

159

ADANKON CHERIET

where || w || is the solution of (2) and R is the radius of the smallest sphere containing all the
samples (training points) in the feature space. In practice, the radius is the solution for the
following quadratic problem:

‘ [
R2— mﬁxZﬁilz(xi,xi) — Z ﬁiﬁj/}(xi,xj) (7.34)
i=1 ij=1
‘
subject to Zﬁ, =18>0,i=1,..4
i=1
In Chapelle and Vapnik (1999), the radius-margin criterion is minimized for the first time by
the gradient descent algorithm for finding the kernel parameter and C. The experimental results
obtained show that this criterion is a good one to use for SVM model selection. However, it
has also been shown that it only performs for the L2-SVM (Duan et al., 2003). So, another
expression for the radius-margin criterion is proposed for the L1-SVM. In this study, we use the
modified radius-margin criterion proposed in Chung et al. (2003) which is expressed as follows:

14
RM = (R*+A/C)(||w|*+2c Y &) (7.35)
i=1

where A is a positive constant. For our unified framework, we set C = 1.
The computation of the gradient of the RM is given by:

IRM _ O(R’+4) 2 ey QWP +280 &) o
50 = g9 Wl +2CZ;§Z)+ T (R*+A) (7.36)

Using Equation (7.34), we obtained :

8(R2+A £ ok(x,,x,

=Lh

The expression || w || +22le &; is equivalent to Zi:l o — %Zf =1 0iQjyiy jl}(x,',x ;) in dual
space. Thus, we have :

ok(xhxj) (737)

Z BiBi—55——

i,j=1

2 4 lx: x:
I w ;622 16) _ Z Gidh;y;]ak("“xf) (7.38)

Algorithm 7.2 shows in detail how to minimize the RM criterion with the gradient descent
strategy.

7.6. Experiments and Results

As mentioned early on in this paper, our method was designed to be independent of the type of
model selection criterion and kernel function. In this section, we conduct an experiment with
our unified framework and two model selection criteria, and test two different kernel functions.
We also show the impact of kernel choice.

160

7. UNIFIED FRAMEWORK FOR SVM MODEL SELECTION

Algorithm 7.2: SVM model selection using modified radius-margin criterion

Input Training set, kernel type, learning rate n
Output Hyperplane < &,b >, optimal kernel parameters 6
Initialize the kernel parameters
while convergence is not reached do
- Train SVM with current kernel parameters
- Found the radius by solving (7.34)
- Compute the gradient of RM
- Correct the kernel parameters according to the gradient as 8/*! = ' —n ‘%‘4
end while

7.6.1. Datasets and Experimental Setup

We used the following Challenge Benchmark datasets: ADA, GINA, HIVA, NOVA and SYLVA.
Each dataset is partitioned into three subsets for training, validation and test, describing the
binary classification problem. Table 7.2 provides more information about the five datasets. We
kept all the datasets intact without performing any preprocessing on the feature values.

Table 7.2: Description of the Challenge Benchmark datasets

Datasets ADA | GINA | HIVA | NOVA | SYLVA
Features Number 48 970 1617 | 16969 216
Training samples 4147 | 3153 3845 1754 13086

Validation samples | 415 315 384 175 1308
Test samples 41471 | 31532 | 38449 | 17537 | 130858
Positive percent 24.8 49.2 3.5 28.5 6.2

We used Joachims’ algorithm, called SVMlight to train the SVMs, and we adjusted the
bias by minimizing the balanced error on the validation set. We defined the modified RBF
kernel as the user kernel in the file kernel.h with two parameters. Since the definition of the
polynomial kernel for the unified framework remains unchanged, we used the same one as
defined in SVMlight. We fixed the degree of the polynomial kernel to 3, while the parameters a
and b were tuned using the given criterion.

For model selection, we used the empirical error and radius-margin criteria described in
Section 7.5. The empirical error was estimated on the validation set while the radius-margin
was computed on the training set. Technically, we minimize each criterion by using gradient
descent algorithm. However, sometimes our problem is not convex, in which case, we use many
starting points to overcome it. We can also use the simple function fiminsearch implemented in
Matlab with different starting points.

7.6.2. Results and Discussion

Tables 7.3, 7.4 and 7.5 present the results obtained using of each of the two model selection
criterion with either the polynomial or the RBF kernel and the various datasets.

We note that the performance of the classifier built depends on the type of kernel used. It
should also be noted that the RBF kernel does not perform for all the datasets, and the polyno-
mial kernel gives good results on some of them. For example, in the case of the ADA dataset,
the polynomial kernel performs better than the RBF kernel. This confirms that the kernel type

161

ADANKON CHERIET

Table 7.3: Performance of our method using the empirical error criterion with the polynomial

kernel
Datasets Hyperparameters Balanced Error
(In(a),In(d)) Training | Validation | Test

ADA (—10.4756,—0.9891) 0.172 0.1868 0.1821
GINA | (—14.0872,—0.7335) 0 0.0319 0.0581
HIVA (6.3600,1.2200) 0 0.2676 0.3226
NOVA (—7.3730,1.0154) 0.0054 0.036 0.0538

SYLVA | (—15.3893,—7.107°) | 0.0073 0.0115 0.0225

Table 7.4: Performance of our method using the empirical error criterion with the RBF kernel

Datasets Hyperparameters Balanced Error
(In(a),In(d)) Training | Validation | Test
ADA (—13.0529,-92.0120) | 0.2433 0.2491 0.256
GINA (—15.5310,1.1393) 0 0.0352 0.0574

HIVA (—4.0321,0.0399) 0.0023 0.2618 0.2959
NOVA (—5.1427,-0.1427) 0.0032 0.042 0.0574
SYLVA | (—15.4850,—0.7109) 0.0095 0.0127 0.0189

Table 7.5: Performance of our method using the radius-margin criterion with the RBF kernel

Datasets Hyperparameters Balanced Error
(In(a),In(d)) Training | Validation | Test
ADA (—10.5620,—107.8668) 0.221 0.2756 0.2546
GINA (—15.2356,2.8698) 0 0.0414 0.0581
HIVA (—0.9344,2.1061) 0 0.3929 0.4634
NOVA (—3.4891,2.5964) 0 0.088 0.101
SYLVA (—12.9651,2.5168) 0.000 0.0135 0.0244

162

7. UNIFIED FRAMEWORK FOR SVM MODEL SELECTION

is specific to the problem 2. Figure 7.2 shows the balanced error obtained on a test set for the
two types of kernels when we used the empirical error criterion.

With the SVM, as with other kernel classifiers, the choice of kernel corresponds to choos-
ing a function space for learning. The kernel determines the functional form of all possible
solutions. Thus, the choice of kernel is very important in the construction of a good machine.
So, in order to obtain a good performance from the SVM classifier, we need first to design or
choose a type of kernel and then optimize the SVM’s hyperparameters to improve the classifier’s
generalization capacity.

035 T T T T T
I Polynomial
[IRBF

0.3 I bl
-
)

m —

2 025} A
1)
=

g 0.2 i
u
(<]
B

K 0.15F b
-]
)
g

g o1 1
]
m

N lﬂ lﬂ A

. I

ADA GINA HIVA NOVA SYLVA

Datasets

Figure 7.2: Comparison of the kernel performances for empirical error criterion

In Table 7.6, we report other results on the same Benchmark obtained from the Challenge
Website and from the referenced papers. First, we compare our result with the summary results
obtained from all entries reported by the Challenge Organizers in Guyon et al. (August 2007).
Since we did our test on “Agnostic Learning” datasets, we plot the comparison figure with the
MIN AL BER and the MEDIAN AL BER. For each dataset, our framework method performs
better than the latter and worse than the former. The best entries in this category were obtained
by Roman Lutz, who used boosting techniques (Lutz, July 2006) and Gavin Cawley who used
Least Squares SVM (Cawley, July 2006; Cawley and Talbot, August 2007). Second, the com-
parison with other methods based on SVM shows the performance of our framework. Figure 7.4
illustrates how our method performs in comparison with other SVM classifiers built by using
various techniques : Wei Chu and Chapelle had the best entries with the SVM classifier dur-
ing the first challenge (Performance Prediction Challenge) and Franc Vojtech was an individual
dataset winner with the HIVA dataset during the second challenge. Our results, obtained by
empirical error minimization, are similar to those obtained by the classical grid search method

2. We confirm the well-known result (the choice of the kernel is important) by our experimental results in order to
point out the usefulness of different types of kernels. Because, the RBF kernel is used most of the time, at the
expense of the others; but, the RBF kernel is based on the distance and is not dependent on the direction like
polynomial kernel.

163

ADANKON CHERIET

Table 7.6: Performance of other methods on Challenge Benchmark : Min AL BER is the best

BER on test and Median AL BER represents the median for all entries reported in
Guyon et al. (August 2007); Chu (2006) used SVM/GPC with feature normalized to
have variance=1 and feature pruning on GINA and HIVA; Olivier Chapelle used L2-
SVM RBF kernel with feature normalized to have variance=1 and model selection
done by minimizing the leave-one-out error; Franc Vojtech used also the RBF SVM
with hyperparameters tuned using LOO BER.

Datasets Balanced Error
Min AL BER | Median AL BER | Wei Chu | O. Chapelle | F. Vojtech
ADA 0.166 0.195 0.1899 0.184 0.2037
GINA 0.033 0.068 0.0381 0.068 0.0552
HIVA 0.271 0.305 0.2905 0.2918 0.2827
NOVA 0.046 0.081 0.048 0.0737 0.0877
SYLVA 0.006 0.014 0.01 0.0137 0.0205

(Chu, 2006), the latter being quite costly in terms of computing time and becoming intractable
when there are more than two hyperparameters.

0.35 ‘ ‘
I Our results
I Median AL BER
0.3F [__IMinALBER |H
-~
Q —
(/)]
4 0.25 g
V]
3]
g 0.2F i
£l
o
h —_—
et
R 0.15f g
°
[F]
Q
g o1f 1
]
m
0.05F i
o Hm - |
ADA GINA HIVA NOVA SYLVA

Datasets

Figure 7.3: Comparison with the results of all entries

7.7. Conclusion

In this chapter, we have described a unified framework for SVM model selection. This frame-
work makes it possible to define a new form of kernel function which includes the hyperparam-

164

7. UNIFIED FRAMEWORK FOR SVM MODEL SELECTION

0.35
I Our results
03r - I Wei Chu .

%] [Olivier Chapelle
9 0.25f [] Vojtech franc |
o
3
§ o2f =]
Ed —
o
>
R 0.15F |
°
[
g
g 01r i
s
]

0.05} |

0
ADA GINA HIVA NOVA SYLVA

Datasets

Figure 7.4: Comparison of our results with those of the other techniques using the SVM, ours
having been obtained using the empirical error criterion with a polynomial kernel
for ADA and an RBF kernel for the others.

eter C that controls the amount of overlap. Also, when we use certain kernel functions, such as
polynomial, KMOD, Laplacian, etc., the number of hyperparameters is reduced. Consequently,
with this framework, model selection for SVMs becomes easy, and is equivalent to tuning the
parameters of the newly defined kernel. We applied our model selection method using the em-
pirical error and radius-margin criteria, and obtained promising results on the Challenge dataset.
As pointed out in the literature and confirmed in the Experiments and Results section, the choice
of kernel function is very important in all kernel machines, and especially in the SVM. Thus,
the question of how to choose the best kernel function for a given dataset is as important as
how to optimize the kernel parameters. So, it is not enough to choose any kernel, optimize its
parameters and wait for the designed classifier to perform well. The complete way to build an
SVM classifier for a given problem is to first choose an appropriate kernel function and then
carefully tune its parameters. This procedure will enable good performance. From there, the
important issue may become how to choose an appropriate kernel function for the given data.
Finding a way to do this will be an interesting direction for our future work.

Acknowledgments

We would like to thank Isabelle Guyon for her help during our experiments on the Challenge
datasets, the anonymous reviewers for their helpful comments and the NSERC of Canada for
the financial support.

165

ADANKON CHERIET

References

Mathias M. Adankon and Mohamed Cheriet. Optimizing resources in model selection for sup-
port vector machines. Pattern Recognition, in Computer Science, 40(3):953-963, 2007.

N. E. Ayat, M. Cheriet, and C. Y. Suen. Kmod-a two parameter svm kernel for pattern recogni-
tion. International Conference on Pattern Recognition, 2002a.

N. E. Ayat, M. Cheriet, and C. Y. Suen. Empirical error based optimization of svm kernels:
application to digit image recognition. International Workshop on Handwriting Recognition,
pages 292-297, 2002b.

N. E. Ayat, M. Cheriet, and C.Y. Suen. Automatic model selection for the optimization of the
svm kernels. Pattern Recognition, in Computer Science, 38(10):1733—-1745, 2005.

Y. Bengio. Gradient-based optimization of hyper-parameters. Neural Computation, 12(8):
1889-1900, 2000.

Bernhard E. Boser, Isabelle Guyon, and Vladimir Vapnik. A training algorithm for optimal
margin classifiers. In Computational Learing Theory, pages 144—152, 1992.

Gavin Cawley. Leave-one-out cross-validation based model selection criteria for weighted Is-
svms. In proceedings IJCNN 2006, Vancouver, Canada, July 2006.

Gavin Cawley and Nicola Talbot. Agnostic learning versus prior knowledge in the design of
kernel machines. In proceedings IJCNN 2007, Orlando, Florida, August 2007.

O. Chapelle and V. Vapnik. Model selection for support vector machines. Advances in Neural
Information Processing Systems, 1999.

O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee. Choosing multiple parameters for
support vector machines. Machine Learning, 2001.

Wei Chu. Model selection: An empirical study on two kernel classifiers. In proceedings IJCNN
2006, Vancouver, Canada, 2006.

K.-M. Chung, W.-C. Kao, L.-L. Wang C.-L. Sun, and C.-J. Lin. Radius margin bounds for
support vector machines with the rbf kernel. Neural Computation, 15:2643-2681, 2003.

Nello Cristianini and John Shawe-Taylor. An Introduction to Support Vector Machines. Cam-
bridge University Press, 2000.

K. Duan, S. Keerthi, and A. N. Poo. Evaluation of simple performance measures for tuning svm
hyperparameters. Neurocomputing, 51:41-59, 2003.

Carl Gold and Peter Sollich. Fast bayesian support vector machine parameter tuning with the
nystrom method. In IJNN’05, pages 2820-2825, 2005.

Isabelle Guyon, Amir Saffari, Gideon Dror, and Gavin Cawley. Agnostic learning vs. prior
knowledge challenge. In proceedings IICNN 2007, Orlando, Florida, August 2007.

T. S. Jaakkola and D. Haussler. Probabilistic kernel regression models. Workshop in Conference
on Artificial Intelligence and Statistics, 1999.

T. Joachims. Estimating the generalization performance of a svm efficiently. International
Conference on Machine Learning, pages 431-438, 2000.

166

7. UNIFIED FRAMEWORK FOR SVM MODEL SELECTION

Roman Lutz. Logitboost with trees applied to the weci 2006 performance prediction challenge
datasets. In proceedings IJCNN 2006, Vancouver, Canada, July 2006.

M. Opper and O. Winther. Gaussian processes and svm: Mean field and leave-one-out. In A.J.
Smola, P.L. Bartlett, B. Scholkopf, and D. Schuurmans, editors, Advances in Large Margin
Classifiers, pages 311-326. MIT Press, Cambridge, 2000.

Manfred Opper and Ole Winther. Mean field methods for classification with gaussian processes.
In the 1998 conference on Advances in neural information processing systems I, pages 309—
315. MIT Press, 1999.

J. Platt. Probabilistic outputs for support vector machines and comparison to regularized like-
lihood methods. In A.J. Smola, P. Bartlett, B. Schoelkopf, and D. Schuurmans, editors,
Advances in Large Margin Classiers, pages 61-74. 2000.

B. Scholkopf and A. J. Smola. Learning with Kernels. MIT Press, Cambridge, MA, 2002.

John Shawe-Taylor and Nello Cristianini. Kernel Methods for Pattern Analysis. Cambridge
University Press, 2004.

V. Vapnik and O. Chapelle. Bounds on error expectation for support vector machines. Neural
Computation, 12(9), 2000.

V. N. Vapnik. Estimation of Dependences based on Empirical Data. Springer Verlag, Berlin,
1982.

V. N. Vapnik. Principles of risk minimization for learning theory. Adavances in Neural Infor-
mation Processing Systems 4, Morgan Kaufman, San Mateo, CA, pages 831-838, 1992.

V. N. Vapnik. Statistical learning theory. John Wiley and Sons, New York, 1998.

G. Wahba, Y. Lin, and H. Zhang. Generalized approximate cross validation for support vector
machines, or, another way to look at margin-like quantities. Technical report, Departement
of Statistics,University of Wisconsin, February 25 1999.

167

168

Chapter 8

Liknon feature selection: Behind the scenes

Erinija Pranckeviciene ERINIJA.PRANCKEVICIENE(@MF.VU.LT, @ GMAIL.COM)
Department of Human and Medical Genetics,

Vilnius University,

Santariskiu 2, LT-08661 Vilnius-21, Lithuania.

Ray Somorjai RAY.SOMORJAI@NRC-CNRC.GC.CA
Institute for Biodiagnostics,

National Research Council Canada,

435 Ellice Avenue, Winnipeg, MB, Canada.

Editor: Isabelle Guyon, Gavin Cawley, Gideon Dror and Amir Saffari

Abstract

Many real-world classification problems (biomedical among them) are represented by very
sparse and high dimensional datasets. Due to the sparsity of the data, the selection of classifi-
cation models is strongly influenced by the characteristics of the particular dataset under study.
If the class differences are not appreciable and are masked by spurious differences arising be-
cause of the peculiarities of the dataset, then the robustness/stability of the discovered feature
subset is difficult to assess. The final classification rules learned on such subsets may gener-
alize poorly. The difficulties may be partially alleviated by choosing an appropriate learning
strategy. The recent success of the linear programming support vector machine (Liknon) for
feature selection motivated us to analyze Liknon in more depth, particularly as it applies to
multivariate sparse data. The efficiency of Liknon as a feature filter arises because of its ability
to identify subspaces of the original feature space that increase class separation, controlled by
a regularization parameter related to the margin between classes. We use an approach, inspired
by the concept of transvariation intensity, for establishing a relation between the data, the reg-
ularization parameter and the margin. We discuss a computationally effective way of finding a
classification model, coupled with feature selection. Throughout the paper we contrast Liknon-
based classification model selection to the related Svmpath algorithm, which computes a full
regularization path.

Keywords: Feature selection, Linear programming, Margin, Transvariation intensity, Transvari-
ation intensity function, Liknon, Regularization parameter C, Full regularization path.

8.1. Introduction

Certain (e.g., biomedical) classification problems, characterized by very sparse and high dimen-
sional datasets, suffer from a generic difficulty: due to the sparsity, the learned classification
models are strongly influenced by the characteristics of the investigated dataset. This is mani-
fested by overfitting, caused by sample bias (Zucchini, 2000). Many feature selection strategies
and methods (Guyon et al., 2006) and comparisons have been proposed in the literature (Kudo
and Sklansky, 2000; Kohavi and John, 1997). Indeed, when the sample size is small and the di-
mensionality high, the feature selection procedure, driven by the optimization of some criterion
that ensures increasing class separation, will adapt to the training data (Ambroise and McLach-
lan, 2002). “Too much selection can do more harm than good” (Zucchini, 2000). Even if there

© E. Pranckeviciene & R. Somorjai.

PRANCKEVICIENE SOMORIJAI

exist classification models that perform well without feature selection, for the interpretability
of the results it is still important to determine the set of “markers” that provide good class dis-
crimination via feature selection, whether filter, wrapper or embedded. If the dataset is “easy”,
i.e., the class differences are not masked by the noise in the data, one would expect this to be
revealed by the validation of the feature selection procedure. Ideally, the classification error es-
timate will have low variance and the identities of discovered features will not vary appreciably
across different random splits of the training data.

Investigations both by other researchers and by us suggest that a feature selection method
based on linear programming, originally introduced by (Fung and Mangasarian, 2004), has the
desired stability properties and is robust with respect to the sample bias. For a particular ap-
plication, profiling of gene expression microarrays, for which the data dimensionality exceeds
the available number of samples by orders of magnitude, the usefulness of the linear program-
ming support vector machine named Liknon was demonstrated (Bhattacharyya et al., 2003).
The method was investigated further and used in practical tasks of face recognition (Guo and
Dyer, 2005). It was applied for classification of spectral data (Pranckeviciene et al., 2004). The
Liknon feature selection, combined with other classification rules, was among the top-ranked
methods in the Agnostic learning vs. Prior knowledge competition (Guyon et al., 2007a).

Useful insights have been gained (Cherkassky and Ma, 2006) on the role of the margin
between the classes as an effective measure of the match between data complexity and the
capacity of a learning rule. A practical capacity control of a linear rule via the structural risk
minimization principle was suggested (Guyon et al., 1992). It is known that the regularization
parameter C in kernel-based classification methods controls the tradeoff between maximizing
the margin of the classifier and minimizing the margin errors of the training data (Igel, 2005).
It is important to use an appropriate C value for an improved generalization performance of the
classifier. Usually, the value of this parameter is determined by grid search and crossvalidation.

The formulation of Liknon as a linear programming problem provides a framework for a
systematic search of C, computed from the training data. The role of the parameter in Liknon
feature selection can be summarized as follows: the non-zero weights of the Liknon discrimi-
nant, identifying important features, correspond to those individual data dimensions, for which
the absolute difference between the classes is greater than 1/C. A transvariation intensity func-
tion, inspired by the concept of transvariation intensity (Montanari, 2004) applied to the training
data, reveals how the parameter C relates quantitatively to the class separation by the margin
through the ratio of class overlap over the class difference. This relation leads to an algorithm
for the computation of C in Liknon, and a strategy for classification model selection. The clos-
est method to the Liknon-based classification model selection is the Svmpath algorithm (Hastie
et al., 2004), which computes the full regularization path for a given classification problem.
Throughout the paper we briefly sketch the similarities and differences of the two methods.

The rest of the chapter is organized as follows. In Section 8.2, both Liknon-based and
Svmpath-based feature and classification model selection are highlighted, using an artificial
dataset, for which classes separate nonlinearly. The details of the primal and dual Liknon for-
mulations are described in Section 8.3. We introduce the transvariation intensity function and
analyze it in depth in Section 8.4 in relation to the linear SVM. We derive the relationship be-
tween C and the ratio of class overlap over class difference. We illustrate experimentally, that
the Liknon and Svmpath algorithms have similar solutions with respect to this ratio. The algo-
rithm for computing C in Liknon is the topic of Section 8.5. The NIPS 2003 feature selection
(NIPS 2003 FS) (Guyon et al., 2006) and the recently organized Agnostic Learning versus Prior
knowledge (ALvsPK) (Guyon et al., 2007a) competitions provided excellent platforms for con-
trolled experiments with real-life datasets. In Section 8.6 Liknon feature selection is discussed
in the context of these two challenges. For the classification experiments, the functions from

170

8. LIKNON FEATURE SELECTION: BEHIND THE SCENES

PRTools (Duin et al., 2004) and the publicly available Liknon Matlab script (Bhattacharyya et
al., 2003) were used. The Matlab code for computing the range of C values from the training
data is listed in the Appendix. For the comparison with the Svmpath method, implemented in
R (Hastie et al., 2004), Liknon was also implemented in R.

8.2. Liknon and Svmpath based feature and classification model selection
when classes separate nonlinearly: case study on artificial Banana
dataset

In this section we give an overview of Liknon-based feature/classification model selection, con-
trasting it with a related Svmpath algorithm using a linear kernel. The efficiency of Liknon fea-
ture selection in finding ground truth features was demonstrated on the artificial dataset (Pranck-
eviciene et al., 2007), in which class separation was due to the difference in the means of two
features that separated classes linearly. Liknon feature selection is also applicable where classes
separate nonlinearly, but it would find only the “linear part” of feature relevance. The varying
margin in the embedded feature selection by Liknon facilitates “retrieving” multivariate feature
subsets separating the classes linearly. Liknon will not retrieve the features of classes made of
multiple clusters such as checkerboard or concentric classes. A nonlinear boundary between
classes should be such, that it can be approximated by linear boundary with some margin. After
the feature selection step, other classifiers can be explored with the selected features, aiming to
improve the classification performance. The approach consists of two parts: obtaining the most
prominent features via Liknon, and using them with other classifiers, or using an ensemble of
Liknon discriminants. The winning model is determined by the smallest classification error in
k-fold crossvalidation. First, we explain the general computational procedure of the Liknon fea-
ture selection and then we study an example. We also apply the related Svmpath algorithm on
the same data. To compare fairly the relative computational times of the Liknon and Svmpath
methods, the Liknon feature/classification model selection method was re-coded in R (code is
available from the first author upon request).

8.2.1. Computational procedure for Liknon-based feature selection

The computational paradigm for Liknon feature selection, using the training data, is k-fold
crossvalidation. The number of folds k, usually 5 or 10, is determined by the sample size of
the training data. In the outer loop, the data is divided into a training set Training and a
validation set Validation. During classifier development, to account for the variance in the
dataset, the Training set in the inner loop is randomly partitioned several times into two:
a balanced Training set and the remaining Monitoring set. The classifier development is per-
formed on the Training set. The Validation set is used for the assessment of the final
classification model. In every data partition/split, the number NM of Liknon discriminants is
identified, based on the Training set. The sequence of the NM increasing values of the regular-
ization parameter C guides the search for the optimal discriminant. The optimality criterion is
the balanced classification error rate (BER) of the Monitoring set, computed from the confusion
matrix confmat of the classifier:

_ TP FP 1 FP FN
confmat = (FN TN) » BER=;3(rpirp) T wrrmy)
where TP is the number of true positives, FP is the number of false positives, FN is the number

of false negatives and TN is the number of true negatives. Increasing the number of features in
the discriminant leads to a gradual adaptation to the Training set - overfitting, as evidenced by

171

PRANCKEVICIENE SOMORIJAI

the rapidly decreasing training error. The Monitoring set is used to monitor the adaptation and
find the best discriminant with the minimum monitoring BER of the particular data split.

1-fold Liknon discriminant selection
M random M optimal
splits into: feature 0.2}
subsets ola
Training UNION =
set \ & o016l
Feature Q 014k
. Monitoring profile % g
Training set 1 T o12b
set 5 :
@ = 0.1F H Optimal discriminant
w“ & w L]
Sc B = 2 oosf §
3 EE %g Q K e Training BER
== <8 © 006 —— Monitoring BER
K-fold =] T & g .
f=£ £3 0.04f ;
Validation | ‘y* o.02} B
set 0| . e o O SRTR e
Liknon discriminant Validation Balanced 0 05 4 15 >
selection Error Rate C value

Figure 8.1: Computational scheme of Liknon-based feature/classification model selection. The
left panel shows the steps in the crossvalidation procedure. The right panel shows
the selection of an optimal Liknon discriminant using the monitoring set.

Every discriminant is associated with a feature subset. The number of important features is
different for different discriminants. For small sample sizes for the training and monitoring sets,
noisy features will occur in the model. A feature profile is created during the development, by
counting the frequency of inclusion of each feature into the optimal discriminant. In the feature
profile, peaking occurs for important features. Feature profiles are very important both for
interpretation and for exploratory data analysis. The parameters of the presented computational
procedure are the number of splits M in the inner loop and the number of Liknon discriminants
NM. We denote the Validation set size as V=V1+V2, the balanced Training as T=T1+T2
and the remaining Monitoring as M=M1+M2.

The overall scheme of the procedure is presented in Figure 8.1. The sequence of the steps
in crossvalidation is shown in the left panel. In the right panel, the process of the selection
of the optimal Liknon discriminant is illustrated on an artificial data set. The total number
of optimization operations in the outlined procedure is K * M « NM, where M is the number
of resamplings, NM is the number of Liknon optimizations (C values explored) and K is the
number of folds.

8.2.2. Identification of useful features

We study Liknon and Svmpath using the noise-augmented Banana dataset, for which the classes
separate nonlinearly. The dataset dimensionality is D = 100, the sample size is Nj +N, =210+
190. Features 29 and 30 separate the two classes nonlinearly. The remaining 98 features are
overlapping, normally distributed N (0, 1). The class distribution in features containing structure
and no structure is presented in Figure 8.2.

The Liknon- and Svmpath- based feature/classification model selection is performed in 5-
fold crossvalidation with a single random split in the inner loop. The best solutions of both
methods are determined by the minimum monitoring BER. The sizes of the data subdivision
in folds are T1+T2=84+76, M1+M2=83+86, V1+V2=43+39, and the number of the tested
Liknon models is NM=50. The computations for Liknon were continued until a stable solution

172

8. LIKNON FEATURE SELECTION: BEHIND THE SCENES

- Class distribution in noisy features

al + + Class1
* + Class 2
5

% ot *

4 + t

*+ * + +

e + T

sk 4 + 4 +
kS *J&% H *Jr*%*% ;ﬁ*;Jr e

L h ¥
| * ¥ ¥ +ﬁ+¢% &ﬁ‘mﬁ#++# * +

+ %
S
e,

Feature 2

-2 -1 0 1 2 3
Feature 1

- Class distribution in features with a structure

8 +
+ Class1 P
6H + Class2 +,

4
+ L= 4
o+ o
4 b
; WE §+¢++++
2 +¢*++++++t+ + +++¢* N
+ oo+ +
) + It X
Q2 o o A *fgﬁ a+
2 AL e s *
2 -2 B el Ay
© e Fe O
il « tatr F % +*, *
—4r T 4+ %M*
+ 4 + R R R F3
¥ * 4+ H *
-8 * B . * *4%* N
* %sﬁ* bl * ek,
ok E L kg 4 s
-8 el wrFx *
+ %ﬁ% Ty wxk
** 4 *w@f **1”4*
—10F EE T

-12

Feature 30

Figure 8.2: Class distribution in the Banana dataset augmented with noise. The right panel
shows the nonlinear structure in features 29 and 30. The left panel shows a typical
class distribution for the noisy features 1 and 2.

was reached. The feature profiles, identified in every fold, are presented in Figure 8.3 as heat
maps, Liknon profiles are on the right, and Svmpath are on the left. The color-coded values of
the weights of discriminants may be interpreted as indicators of feature importance. The ground
truth features 29 and 30 have large weight in all folds for both algorithms.

Svmpath feature profiles

Fold

40 60
Feature number

Liknen feature profiles

Fold
5]

40 60
Feature number

Figure 8.3: Feature profiles identified in 5 folds: Liknon on the right, Svmpath on the left.

The performances of Liknon and Svmpath methods are summarized in Table 8.1. We report
the best monitoring BER, validation BER, and the validation BER of a 3nn classifier, trained
using the selected features. The most important features in the Svmpath solution were those,
for which the absolute value of the weight was above some threshold. Several threshold values,
based on a visual examination of the Svmpath feature profiles, were explored. Time, spent by
both procedures implemented in R for the computation of the best model, was estimated on a

Windows-based 1.20 GHz 256 RAM PC.

Svmpath and Liknon are similar in terms of performance and Liknon’s computational edge
is not significant statistically. The difference is in their utility for feature selection. No large

173

PRANCKEVICIENE SOMORIJAI

Table 8.1: Comparison of the performances of Svmpath and Liknon.

Fold 1 2 3 4 5
Svmpath

Monitoring BER 0.1271 0.1331 0.0888 0.0860 0.1397

Validation BER 0.1699 0.0826 0.1583 0.099 0.0489

Time (s) 15.99 17.5 16.5 18 16.99

Threshold=0.05

3nn BER 0.0128 0.000 0.0128 0.0128 0.0385

features 3 5 4 2 23

Threshold=0.035

3nn BER 0.0244 0.000 0.0489 0.0244 0.0489

features 8 14 6 9 38

Liknon

Monitoring BER 0.1085 0.1266 0.0942 0.099 0.1463

Validation BER 0.1454 0.0850 0.1595 0.099 0.0620

Time (s) 6.37 12.64 14.47 9.31 8.71

3nn BER 0.0128 0.000 0.0361 0.0128 0.0244

features 6 23 3 2 9

differences are observed in monitoring and validation BER’s of the best solutions of Liknon
and Svmpath. None of the methods can be claimed superior in this example. The nonlinear 3nn
classifier, trained on the selected feature subsets of both Liknon and Svmpath, clearly performs
better in all folds on the validation sets, compared to the linear classifiers, derived from Liknon
and Svmpath. Note, that the ground truth features 29 and 30 are identified in the solutions
of both approaches. From the feature selection point of view, Liknon is more advantageous.
Relevant features in the Liknon solution are provided by non zero weights, unlike in Svmpath.
Table 8.1 shows, that the final feature subset and consequently the classification result is very
sensitive to the threshold value. If the weights of the relevant features are not very distinct,
choosing the threshold would present a problem, if one were to use the Svmpath solution for
feature selection. Computations for Liknon with a single split in the inner loop take less time
than for Svmpath. More splits in Liknon would increase the time, but still within an acceptable
range. The perfect classification of the validation set in fold 2 occurs due to an accidental, split-
induced data configuration. With real data, one should be cautious about a single optimistic
result, which may occur just because of the overly favorable distribution of classes.

The Banana example offered several useful insights. The identified feature subsets pro-
vide information, pertinent to classification in various data “projections” in feature and sample
spaces. Different classifiers perform differently in these “projections”, depending on how well
the feature subset represents the nature of the class separation, and the capability of the indi-
vidual classifier to handle the complexity of the classification problem in the “projection”. The
monitoring and validation BERs of folds can be analyzed for ranking feature profiles. Liknon
generates a feature profile that is optimal for linear separation. Nevertheless, we can use this
feature profile as input to another classifier, realizing a nonlinear rule and gain insight into the
nonlinearity of the data, yet still keeping the overall architecture simple. By processing many
splits in the inner loop, we generate different feature subsets. These subsets can be accumulated
into a general feature profile for another classifier, or used in the ensemble of Liknon discrim-

174

8. LIKNON FEATURE SELECTION: BEHIND THE SCENES

inants as was done in ALvsPK challenge (Pranckeviciene et al., 2007). The justification for
using this method in nonlinear separation cases still needs to be formalized and experiments
need to be carried out in order to compare it with other methods, aiming to reveal possible com-
putational or statistical advantages. In the following section the mathematical formulation of
Liknon is outlined.

8.3. Liknon formulation

Liknon implements a linear rule for two-class classification:
ys = sign(x,w! 4+wp) (8.1)

where x; = [x!, ... xP] are D-dimensional samples, y = [y1, ..., yn] is the vector of class labels,
assuming values +1 for the positive class and —1 for the negative class, s indexes the sample
number and N = N 4+ N, is the total number of samples in the two classes. The transpose is
denoted by T. The * denotes the optimal solution and the &s are slack variables. The weight
vector w is obtained by solving the optimization problem:

argmin

* * *\ N
(W' 8= gy (ol +CE &) (8.2)
S.t.:
ys (Tswl +wo) +&>1, >0, s=1,...,N .

The L norm is ||w]||; = Z?:l |wg|. The formulation (8.2) is the same as for the linear SVM,
except for the L; norm of the regularization term. The solution w* is sparse. Because of
sparsity, it is used for feature selection. Features, important for classification, are identified
by large weights w}? of the vector w*. The regularization parameter C controls the level of
sparseness. Formulation (8.2) is cast into a linear programming (LP) optimization problem, and
w™* is obtained using an LP solver. The primal and dual LP optimization problems are related.
In the primal optimization problem, the regularization parameter C appears in the cost function.
In the dual it appears in the constraints.

8.3.1. The primal minimization problem

In order to present the minimization problem (8.2) in a form suitable for a general linear pro-
gram solver, the variables in the objective function should be positive. Thus, every wy variable
is modeled by two non-negative variables uy and v, a common practice in LP of changing the
negative variables into positive ones (Arthanari and Dodge, 1981, page 32):

Wg=ur—Vvy, |Wf| =ur+vy . (8.3)

The pair of variables uy, vy, simultaneously satisfying conditions (8.3) is unique, given that
only three choices are possible for the value of wy: (i) up =0, vy =0, and wy = 0; (i)
up =0, vy #0, and wy = —vy; (iii) uy #0, vy =0, and wy = uy. The problem in (8.2) is
reformulated in a form suitable for LP, by changing the variable wy into the combination of v
and uy according to (8.3). The original formulation (8.2), after the change of variables, becomes

175

PRANCKEVICIENE SOMORIJAI

(Bhattacharyya et al., 2003):

* * Lk % £x " argmin
(ul7'~~auD7vla"-7vagl7-..a€N): (ulv.“’éN) (Zl‘szl(“f+vf)+czlsv=1§s),
s.t.:
Z?:1Mfyst*Z?:ﬂfys)C(ersuo*ysVOJrésZ1, & >0, ur>0, vy>0,
>0, vw>0 f=1,....D,s=1,...,N . (8.4)

The constant C in (8.4) is the regularization parameter.

8.3.2. Duality of linear programming

The primal and dual problems of Linear Programming are related (Papadimitriou and Steiglitz,
1982):

minimize Jyin () = cx, s.t.: Axz>b, x>0 . (8.5)

maximize Jnux (2) = bz, st.: ATz<e, 2>0. (8.6)

In (8.5) and (8.6), and z denote the variables of primal and dual, c is a vector of costs and b
is a vector of constraints of the primal, Ji, and Jy.x denote the objective functions, A is a data
matrix. The Liknon primal (8.4) and dual are related through the following data matrix A:

y]x% —ylx? Yy =V 1 ... 0
A= : : S . (8.7)

ny}\, —nyﬁ yw —yw 0 ... 1
The costs ¢ and the constraints b of (8.5) correspond to the costs and constraints of Liknon’s
primal minimization problem (8.4):

c=[11,...,155,0,0,Cy,...,Cy] and b=[ly,...,1y5]7 .
The variables of primal (8.5) and dual (8.6) correspond to the Liknon variables:
ZB:[ul,...,MD,V],...,VD,MO,VO,&],...,&N] and z:[zlv"'va] .

For consistency with SVM terminology, for Liknon dual variables we use « instead of z.

8.3.3. The dual maximization problem

The Liknon dual is obtained straightforwardly from the primal. The costs ¢ of the primal (8.5)
become the constraints of the dual (8.6). Similarly, the constraints of the primal become the
costs for the dual. Using the data matrix (8.7) of Liknon, its dual maximization problem (8.6)
is formulated as follows:

N «\ __ argmax N
(o,) = (g o) (B)
S.t.:
tyid o+ dyvdoy <1, yiog+...4+ywoy =0, 0<a<C,
s=1,....,N, f=1,....D . (8.8)

The Liknon dual variables o are positive real numbers.

176

8. LIKNON FEATURE SELECTION: BEHIND THE SCENES

8.3.4. Optimality conditions

The optimal solutions of the primal and dual satisfy the optimality conditions for every feature
f=1,....D:

w (D vl —1) =0, v (B yedas +1) =0, & (@ -C)=0. 9

For every sample s = 1,..., N, the optimality conditions are:

D
o (Zysx{(u;i—v;?)—|—ys(u6—v8)+§s*—1) =0 . (8.10)
f=1

It is important to note that the binding constraints determine the non-zero variables of the op-
timal solutions. Therefore, the non-zero components wy of w in (8.1), corresponding to the
selected features, are determined solely by the constraints that become binding for u; and v in
(8.9).

A theoretical basis for understanding the algorithm for computing the range of C values
from the training data relies on the concept of transvariation intensity.

8.4. Transvariation intensity and margin

Based on the concept of transvariation suggested by Gini and explained by Montanari, several
class/group separation measures are defined (Montanari, 2004): transvariation area, transvari-
ation probability and the class separation measure based on the transvariation intensity. The
transvariation probability was used successfully in classification of high-dimensional data in
low-dimensional projected feature spaces (Somorjai et al., 2007). We propose a modification of
the transvariation intensity, to be used in our study.

8.4.1. Univariate class separation measure, based on transvariation intensity

The two classes, mapped onto a line and represented by x;, i=1,...,N; andx;, j=1,...,N,
transvary around their corresponding mean values m; and m; if the sign of any of the N1N,
differences x; —x; is opposite to the sign of m; —m; , where N; and N, are the number of
samples in the two classes and the indices i and j are used to distinguish the samples x; and x;
of the two classes. Such pair is called a transvariation and the absolute difference |x; —x;| is
its intensity. The class separation measure, based on the transvariation intensity, is defined as:

N N
Zziélzjil lxi — x;

Lt 02 | —m) = (xj — mo)|

(8.11)

ltran =

The denominator in (8.11), divided by N1 N, , is the Gini mean difference. We will be using the
expression of the denominator in (8.11), called the transvariation intensity maximum (Monta-
nari, 2004). For the purposes of our study the sign is important. As an extension, in place of m;
and my, we can take any two points, p; from class 1 and p, from class 2, or even the medians.
With respect to the two arbitrary points p; and p,, we can measure how well the signed interval
p1 — p2 orders other points x; and x; of classes 1 and 2, respectively. A reference ordering on
the line places the class 2 points x; to the left, towards —oo and the class 1 points x; to the right,
towards +co. Let the pair of points (p;, p») be the reference pair. For an arbitrary single pair
(xi,x;), we compute, with respect to the reference pair (p1, p»), the appropriate single term in
the signed transvariation intensity maximum of (8.11):

tij(p1,p2) = (xi = p1) = (xj — p2) = (xi —x;j) — (p1 — p2) -

177

PRANCKEVICIENE SOMORIJAI

If the class 2 points x; are located to the left of p, and the class 1 points x; occur to the right of
p1, then the pair (x;,x;) is ordered by the pair (p1,p2) and ;;(p1, p2) is positive. If the points
(xj,xj) are on the wrong sides of p; and p,, then the #;;(p1,p2) is negative. If the margin
between the classes is defined by p; and p,, then the value #;;(p1, p2) is the extent by which
the margin orders the pair of points (x;,x;). The margin is a segment on the line at a specific
location, determined by the p; on the left and p, on the right. In the context of classification,
the ordering may either be complete (the classes separate) or partial (there is class overlap). A
complete ordering gives maximal classification accuracy. However, for the same classification
accuracy, several partial orderings may exist. In margin-based classification p» < p;. The value
1i;(p1, p2) shows the amount by which the margin separates the class points.

8.4.2. Size of margin errors

In the following, s = [x!,...,xP] are D-dimensional samples, the vector y = [yy,...,yy] com-
prises the class labels, assuming values 41 for the positive class and —1 for the negative
class. The indices i and j refer to samples from the positive and negative classes, respectively.
N = N; + N, is the total number of samples in the two classes. We consider the balanced case,
N; = N,. w is a linear discriminant, onto which all multivariate points are projected. The dual
variables of SVM and Liknon are denoted by ¢, assuming real, non-negative values. Let us
consider the linear two-class classification rule (8.1):

Vs = sign(:vsz +wp) .

In margin-based classifiers, such as the Linear Support Vector Machine (SVM), the projected
class points have to satisfy the margin requirements. Margin in SVM is specified by two posi-
tions: —1 for class 2 and +1 for class 1. Some points, when projected onto the discriminant,
may fail to satisfy the margin requirement by an amount &, the slack variable:

il?,"wT-i-W() =1 —55, ijT+w0 =-1 +§j .
The difference between the projections and the margin is:

(xi—x)w' — (1= (=1))=—(&+¢;) .

The value of —(&; 4+ &;) relates to #;;(p1, p2), discussed in Section 8.4.1. It indicates quantita-
tively how the margin [—1 , +1] separates the projected points. If both &; and &; are positive,
meaning that the projected points fall on the wrong side of the margin, then the value —(&;+&;)
is negative.

In SVM, the margin errors are defined (Scholkopf et al., 2000) as points with positive
slack variables & > 0, &; > 0. The value of the slack variable can be interpreted as the size
of the margin error. In SVM, negative values of the slack variables are not considered. If
the projected pair of points falls outside the margin (i.e., classified correctly), then the margin
error is zero. The negative-valued slack variables would provide information on how well the
margin separated the projected class points, and the value of —(&; + &;) would be positive.
Suppose we allowed a “negative size” and counted all slacks & < 0 and & > 0 negative and
non-negative. In this case, the size of the total margin error indicated the extent by which the
margin, specified by the pair p; = 1 and pp = —1 in SVM, separated the classes, when projected
onto the discriminant w. We can compute the size of the total margin error by summing up all
projected points x; of class 1 and x; of class 2 and taking the difference:

N Ny N N Ny
(xi— Y x)w' =S (1= (=) ==(&+). &) - (8.12)
i=1 Jj=1 i=1 Jj=1

178

8. LIKNON FEATURE SELECTION: BEHIND THE SCENES

The value &,y = —(Zﬁ\il &+ ZZ}ZI &;) in (8.12) is quantitatively related to the class separation
by the margin in the following way. If there are many points on the wrong side of the margin
(bad class separation), then the size of the total margin error tends to be positive since & > 0
for those points, and subsequently &,;,; is negative. When the margin separates the majority of
the points, the size of the total margin error tends to be negative, but &, positive. For classes
perfectly separated by the margin, &, is strictly positive.

We explained the concept of the total margin error size, using the SVM margin [—1 , +1].
However, any segment can play the role of margin. For some fixed w, the varying margin po-
sitions py and p, produce varying &,,;. Equation (8.12) represents a linear equation in two
variables: the margin, given by (p; — p2) and the size of the total margin error, given by
—&uor- There is a direct link of (8.12) to the transvariation intensity function, introduced in
Section 8.4.3. The transvariation intensity function represents the quantity —&,;.;.

8.4.3. Transvariation intensity function

We introduce the transvariation intensity function as the signed transvariation intensity maxi-
mum (the denominator in (8.11)) of the classes with respect to the arbitrary pair of D-dimensional
points, specifying two locations p;, and pj, in the D-dimensional space. For balanced classes
Ny =) the D-dimensional vectorial expression of the transvariation intensity function
in the 0r1g1nal data space is:

2 M M

Nj
ZZ pn '—sz))Z(Zwi Zﬂﬁ, p,l pjz) . (8.13)
i=1

11/

The left side of the equality represents the differences between the data points and the selected
locations p;, and pj,. In the linear Support Vector Machine, the optimal discriminant w is
determined by a linear combination of the scaled data points:

N N,
w=)Y ozi—) az; . (8.14)
i=1 j=1

By scaling the differences of the left side of (8.13), the transvariation intensity function Ty, is
expressed in the scaled data space as:

M M N 1%
Z Z o(x —Piy) (Tj—Dpj)) = (Z o — Z o)) — L (piy _pjz)‘
1 1j= i=1
(8.15)
In the formulation of SVM (Shawe-Taylor and Christianini, 2004), the constraint Z{il o —

N
27i1 o; = 0 allows for factoring out the multiplier # from the left hand side of expression

(8.15). The same constraint arises in the Liknon dual formulation (8.8). The vectors T;, and Ty,
become scalars r = T,wT and 7o, = Ty,w? when the classes are projected onto the discriminant
vector w. Let us project the right-hand side of (8.13) and (8.15) onto the discriminant w given
by (8.14):

1
Tow' = (Y @i - Za:, ((piy —pjp)w") (8.16)

and in the scaled space:

T _ ol , ,_Nz o T_Z]sv=1o‘s N T
Taw —(E oG E ojrj)w —==—(p; —pj)w") . (8.17)
. &~

179

PRANCKEVICIENE SOMORIJAI

The dot product d = (p;, — pj,)w” in (8.16) and (8.17) specifies the margin. For fixed dis-
criminant w, the differences between the projected class points d,, = ():N1 1T —):7;1 zj)w’
and d,,, = (Z?L oG — levil a;jz;)w’ are constant. The transvariation intensity functions
(8.16) and (8.17) become linear equations in two variables: #(d) = d,, + (§)d and t,(d) =
dyq + (ZS L%)d, if the pair of data points p; and p;, varies. In the projection, the transvari-
ation intensity function indicates how the size of the total margin error (&, described in

Section 8.4.2) varies with the margin, specified by the different pairs of the projected points of
the two classes.

8.4.4. Ordering the classes on the discriminant

The projected class points on the discriminant are ordered: class 2 tends to occupy the line
segment towards —eo and class 1 towards +oo. #(d) allows the comparison of the discriminants
for fixed d. Larger positive values of #(d) correspond to margins that separate the two classes
better. The transvariation intensity function #(d) equals to zero at d; (), the difference between
the class centroids on the discriminant w:

2Nl

Ny
Z@ Y z)w” . (8.18)
j=1

ta(d) equals to zero at d,), which is the difference between the centers of mass of the class
points on the wrong sides of the margin on w (in SVM the margin is [—1, +1]):

2
Zi\,ﬂ O

The expression w in (8.14), when used in (8.19), gives:

dyy(0) = (ww’). (8.19)

dig(0) = TN

(Y ai(ziw") Z%mw : (8.20)
The points outside the margin have zero ¢ coefficients. The remaining points are the ones that
determine the class overlap on w, by the amount d; o) (8.20). In the following, we will use a
when referring to the difference between classes:

Nq Ny
Y-y) . (8:21)
i=1 j=1

The left panel of Figure 8.4 illustrates the linear SVM boundary that separates class 1 (squares)
from class 2 (crosses), and the margins. The top panel on the right shows the partial class order-
ing on the discriminant w. The right-bottom panel shows the transvariation intensity functions ¢
and 7 of the class ordering shown on the right-top panel. The transvariation intensity functions
illustrate the class separation with respect to the distances between the projected class points.
The distances/margins that separate classes better, are characterized by positive values of the
transvariation intensity functions. In the top-right panel, the centers of classes and the centers
of the overlapping points are marked by stars. The segments - d; (¢ and d, (o) - are indicated by
horizontal lines. The arrows from these lines lead to the bottom panel, where the transvariation
intensity functions are depicted. The arrows show the positions of the critical segments d; (o) and
d;(0) in the bottom-right plot. In this example, the classes overlap. The points best separating
the classes are swapped, hence the “margin” is negative and corresponds to the largest value of
t and tg.

180

8. LIKNON FEATURE SELECTION: BEHIND THE SCENES

Classes projected on discriminant w

Linear SVM, C =1 1
: TR
x 10 191 ;2 76,5 24 3 1 5 2
15 1 10 of x x %x &k m *@O0% O o o
I I
1 H
X 12
o [= I w DX 9
v 05 A : i
=1 2 H -
" o:3 : o
e 0 o1 : @20
* o4 : £
-0.5 : : 4
o s e Of
X 1 E
-1 : I
: §-20
15) L . ¥) ¢ 14 s
-1 0 1 2 3 &40
= =1 0 1 2 3 4 5 6
Feature 1 o Margin: distances between pairs of projected data

Figure 8.4: Illustration of the concepts related to the transvariation intensity functions. The
left panel shows the class separation boundary (solid line) and the margins (dotted
lines). The right-top panel shows the ordering of the projected class points (num-
bered) on the SVM discriminant. The right-bottom panel shows the transvariation
functions ¢ and ¢, computed for the class ordering of the right-top panel. The as-
terisks (*) on r and circles (0) on 7y indicate the actual distances (p;, — p jz)wT
between the points on the right-top panel.

8.4.5. Regularization parameter C

The class overlap (8.20) is always less than the difference between the class centroids (8.18) on

the discriminant w:)

Ziv:1 O

The coefficients o < C, s =1,...,N are constrained by C in the original SVM formulation.

(ww’) < %(awT) : (8.22)

N
Rearranging (8.22) and noting that for o < C, the mean value # is also less than C, we

have: ’ N
v
ww) T o L g I o (8.23)
(awT) N lall cos(w™a)

[[wll

The ratio in (8.23) explains how the regularization parameter C relates to the class separation. C
bounds the ratio of ||w|| over ||a||cos(w”a). ||w|| is the length of the normal to the separation
boundary, related to the margin between the classes in the original space as m The expres-

sion a,, = ||al|| cos(w™a) means a projection of the class difference (8.21) onto the normal w,
showing the alignment of the two vectors w and a. An increase in class separation is associated
with the increase of ||w|| and the decrease of a,,. Thus, the increasing ratio indicates better
separation of the classes, projected onto the solved discriminant w.

Both Svmpath and Liknon produce a sequence of solutions. The sequence of the solutions
improving class separation proceeds through the stages of under-fitting, optimal and over-fitting
with respect to the classification performance on the independent validation set. These stages

can be visualized using the monitoring BER of every solution. For visualization we use a loga-
rithmic transformation of the ratio w, Ir= lglo(H%”). Figure 8.5 illustrates the performance

(monitoring BER) of the sequence of the solutions of the full regularization path and Liknon

181

PRANCKEVICIENE SOMORIJAI

Fold 2: solutions of Svmpath and Liknon Fold 5: solutions of Svmpath and Liknon
0.22 T T T T T T T 0.22
. - g
o undefitting O\Ieﬂlﬂlng:W R
g 0.2f optimal T 02f 4
X) *
- ¢ 8
2 o8 w "y 1 L oasr Semme e
H - e b Y o BN e e,
g LTI -) T . TON . ., o
£ 016 * A 0 a8 & @ 0161 Tt z L8 e eieee,
g L E e OO £ T W (3 O 4l
= W W RE -, A N - undeditting he iy 3 MM R .
014 v o omee, S oaap 9 - overfitting
6 ‘s optimal
012 . L S o012 . L . ! . . .
-38 -36 -3.4 -3.2 -3 -28 -2.6 -2.4 -2.2 = "5 -3.6 -3.4 -3.2 -3 -28 -2.6 -2.4 -2.2
Ir Ir
-2 T T T T T T T T T -2 T T T T T T T T T
PSR S o
et IR TITTIT T
25 PP 1 SasF et PO SR G 1
s et
&° + Svmpath Lenen® *- Svmpath
= 3 L @ Liknon 1 = 3 .l...-Q @ Liknon 1
.._..' Svmpath best A Svmpath best
-5 Liknon best 4 _asle” Liknon best]
-4 ; L : - ") L . .
0 005 ©01 015 02 025 03 035 04 045 05) 005 01 015 02 026 03 035 04 045 05
Cvalue Cvalue

Figure 8.5: Relationship between the performance, the /r and regularization parameter C for the
sequence of the solutions of the full regularization path and Liknon. We illustrate
the solutions in the folds 2 and 5 of the Banana example. The best solutions are

indicated by diamonds. The top panel shows the monitoring BER of every solution
[loll

versus [r =1go (1=

). The bottom panel shows the plot of Ir versus C.

versus the /r in folds 2 and 5 of the artificial Banana example of Section 8.2. Plots of [r versus C
for every solution are shown in the left-bottom (fold 2) and the right-bottom (fold 5) panels. In
the Svmpath method, C corresponds to the parameter 1/A (Hastie et al., 2004). The solutions,
producing minimum monitoring BER are indicated by diamonds. The values of the /r of the op-
timal solutions of both Liknon and Svmpath are similar and occur in the range of [—3.2,—2.8].
The increasing [r starts saturating at about —2.8, where the monitoring BER starts growing.
The C values, associated with the optimal solutions of Svmpath and Liknon are not close, but
the character of the dependance between the /r and C is similar for both methods. It is possible
to obtain several Liknon solutions and use them for approximating the range of the optimal /r
for Svmpath. The details are beyond the scope of this chapter. The explained concepts and
relation (8.23) provide the basis for the derivation of the constructive algorithm in Liknon for C
computation.

8.5. Liknon feature selection

Liknon simultaneously identifies a subset of useful features and a linear discriminant. Discrim-
inants of increasing complexity in terms of large/non-zero weights are associated with small
margins between classes. The margin can be decreased by increasing the value of the regular-
ization parameter C. Here we outline the algorithm for the computation of C for Liknon.

8.5.1. The standard discriminant, given by the solution of the Liknon dual

The optimal solution (*) a* = [a], .. ., o] of the dual (8.8) satisfies all constraints and the opti-
mality conditions (8.9) and (8.10). Geometrically, it also determines the direction that discrim-
inates the classes, obtained from a linear combination of the data points. According to the op-
timality conditions, all coordinates of the discriminant (henceforth called the standard discrim-

182

8. LIKNON FEATURE SELECTION: BEHIND THE SCENES

inant) have unit length. For a set of m selected individual features f = (fi,...,fm), m <D,
corresponding to the binding constraints, the set of equations

Ni Ny
o — 21 ok — Zl ol =+1 (8.24)
i= Jj=

is satisfied. Therefore, the solution of the Liknon dual identifies the standard discriminant in
the m-dimensional subspace of the selected features f :

Ny

Ny
e= Z o —
i=1 j=

Ocjacj, and e=[£l;...+1,], (8.25)
1

which corresponds to (8.14) and can be interpreted as a “preimage” of the w, normal to the
optimal Liknon hyperplane. The discriminant e has constant length \/m, determined by the
dimensionality of the identified subspace.

8.5.2. Given vs. desired: margin control

The Liknon-selected feature subset of dimensionality m identifies some subspace. In this sub-
space we have a - the difference between the class vectors and the standard discriminant e,
given by the solution of the Liknon dual. The distance ae” between the classes projected onto
e depends on the number of non-zero elements of the standard discriminant/number of selected
features. The ratio of class overlap to the distance between classes, (8.23), in Liknon gives:

(ee”) Z?’:lo‘s
wer) < N <€ (8.26)

Thus, we can explain and visualize how the value of the parameter C controls the class separa-
tion by the distance, and influences the selection of the subspaces:

T
1

(ae)>—.

m C

The distance between the classes on the standard discriminant, determined by the solution of

Liknon at a specific value of C, will be greater than é We don’t know in advance the standard

discriminant, and apply (8.26) to the individual features to determine C.

8.5.3. Selection of C

Projection of the values of individual features f; onto their respective elements of the standard
discriminant x/*e/k is merely a multiplication of x/* by 1 or —1. The difference dﬁ- = (xif" -

x?")efk of the feature values in the two classes specifies the margin. a/k is an element of (8.21).
The transvariation intensity functions ¢ and 7, can be written as:

N
th(alt) = aleeli — (N)ali | t1a(dl) = efeele — (B %)alk . (8.27)

According to (8.18) and (8.19), and noting that e/se/k = 1, the margins/segments for which ¢/
and 7, attain zero are:

difi o) = ylake), dy)= ﬁ : (8.28)

183

PRANCKEVICIENE SOMORIJAI

Relation (8.26) for an individual feature gives:

1 < ZISV=1 Os
(afkefk) N

(8.29)

The sign of a/ke/k can be ignored, because it merely indicates swapped classes. C influences
the selection of the individual features by bounding the class difference:
f N N, 1
afj =1 5t - Ll > 5 (830)
]:

i=1

The individual features, with a difference between classes greater than l, are candidates to be
included in the Liknon discriminant. By arranging class differences of the individual features
in descending order, we obtain the relationship |af1’}mx| >...> |aff1'1in|. Our first approach to
selecting C was setting the parameter equal to the inverse of every member of the sequence,
. < f; , and solving a sequence of Liknon models (primal) with the sequence of

la foax] la g |

C values so determined. However, if the number of features is large, as in microarray data, the
computations become prohibitive. An algorithm for selecting fewer C values is necessary. Our
second approach was to compute a histogram and select the C using the modes of the histogram.

(A limitation of the histogram approach is the selection of optimal bin.)

8.5.4. Algorithm for computing C

The algorithm for computing a subset of C values is based on the transvariation intensity
functions F;4,s of the individual features. The F.4,s are modeled by the linear equations
tle = |a/k| — (§)d , with slopes % and intercepts |a/k|. The variable d accounts for the

N N
distances (xl.f" —x;" Jefc . The standard F a5, fq =1— (M)d has slope # and

intercept 1. In general, the F;, 4y of the features that separate classes better are larger and they
attain zero at larger d. The Fj,,s for which distances/margins separate classes better have pos-
itive values. Given the features, the increase in class separation as a function of all features for
all distances d can be determined by summing the positive parts of the ¢/t . We call this mea-
sure t;,.,. It increases piecewise linearly as the distance d decreases. The set of NM (number of
models) values of #;,,,; is used for the determination of the set of distances d;, s=1,...,NM ,
assuming the class differences |a*| = (¥)d,. The C; value associated with the d, is computed
using (8.30), as Cs; = Nidr. Setting the C value to C; means that we constrained the absolute

class difference of the selected features to be greater than Cis The smaller the value of d, the
larger Cs, the more features are included in the Liknon discriminant.

Figure 8.6 illustrates the idea of the outlined algorithm for an artificial dataset with D = 10
features and N = 100 samples. Two features are discriminatory, the rest are fully overlapping
N(0, 1)-distributed features. The F;,,,,, values of the discriminatory features are larger and attain
zero at a larger d.

There are segments where t,,, changes slowly. The more functions become positive and
add to the total, the more t;,,,; changes. The potentially interesting segments occur where the
F,qns concentrate. A Matlab code for computing the range of C values is listed in the Appendix.

184

8. LIKNON FEATURE SELECTION: BEHIND THE SCENES

400

3001

200}

100

-100f

Transvariation intensity function value

Distance d

Figure 8.6: Computation of C using t;,. The transvariation intensity functions /¢ are shown
by the dotted lines. The dashed line depicts #,,;. The diamonds indicate the posi-
tions and values of the t,,,,; for which the distance d; is determined.

8.6. Liknon feature and classification model selection on the benchmark
datasets

Here we present a realistic single-run assessment of Liknon-based feature selection with respect
to other feature selection methods in the NIPS 2003 FS challenge. We also present our results
for the ALvsPK competition. In the ALvsPK challenge, the Liknon-based classification model
selection strategy was among the top-ranked methods.

8.6.1. Liknon feature selection applied to the NIPS 2003 FS benchmark datasets

Information on the NIPS 2003 FS benchmark is on the website www.nipsfsc.ecs.soton.
ac.uk and in publications (Guyon et al., 2006, 2007b). In the benchmark, the ground truth for
features - useful or probe - is available. Probe is a “fake” feature purposefully inserted into the
dataset. We tested Liknon’s utility as a filter and a wrapper in a single run, including univariate
feature prefiltering. The class difference (8.21) provides information about the class separa-
tion. In prefiltering we rank the individual features by the decreasing absolute value of |a/¥|
computed for every feature and discarding a percentage of low-|a/k| value features. Liknon is
solved for the remainder. The ranking of the features by (8.21) to the ranking by difference in
means can be compared by the fraction of the disagreeing ranks. The percentage of disagreeing
ranks of the features ordered by (8.21) and by the difference between the means of the NIPS
2003 FS training data is: ARCENE - 66.90%; DEXTER - 24.61%; DOROTHEA - 59.48%;
GISETTE - 3.28%; MADELON - 5.20%. The percentage of the discarded features and C were
determined in several repetitions of 5-fold crossvalidation, with a single split in the inner loop.
The determined parameters were used in a final single Liknon run on the Training set.
For DOROTHEA and GISETTE, a smaller, random, balanced training sample was taken. For
the Liknon wrapper, the same discriminant was used as the final classifier. For the filter, the
Liknon identified feature subset was input to 3-nearest-neighbor (3nn) and subspace (subsp)

185

http://www.nipsfsc.ecs.soton.ac.uk/
http://www.nipsfsc.ecs.soton.ac.uk/

PRANCKEVICIENE SOMORIJAI

classifiers. The final model - 3nn or subsp - was the one with the smaller Validation BER.
Table 8.2 summarizes the experimental situation.

Table 8.2: Experimental setup for the NIPS 2003 FS benchmark.

Dataset ARCENE GISETTE DEXTER DOROTHEA MADELON

Data origin mass handwritten text drug difficult
spectra digits discovery artificial

Dimensionality 10000 5000 20000 100000 500

Total 30 50 50.3 50 96

probes(%)

Train 44 + 56 3000 + 3000 150+ 150 78 + 722 1000 + 1000

Validation 44 + 56 500 + 500 150 + 150 34 + 316 300 + 300

Test 310+390 3250 +3250 1000+ 1000 78 + 722 600 + 600

Discarded(%) 86 95 75 99 98

C 0.0058 0.00066 0.0035 0.2369 0.016

Classifier 3nn 3nn subsp subsp 3nn

Table 8.3 presents the performance of the Liknon wrapper and filter with respect to the
methods in the NIPS 2003 FS benchmark that performed feature selection. Mean and median
test BERs of the latter allow ranking the Liknon-based method with respect to other methods.
We also present the best entries, published recently (Guyon et al., 2007b). Both Liknon filter
and wrapper compare favorably with the average performance of the benchmark methods, but
are worse than the recent best entries. Our results indicate better performance of Liknon as a
filter than as a wrapper. Liknon features, used with 3nn and subsp classifiers performed better
on all datasets, except for DEXTER.

Table 8.3: Performance comparison. Test BERs

Dataset Mean | Median | Liknon filter | Liknon wrapper | Best recent entry
ARCENE 0.2396 | 0.2087 0.1711 0.1962 0.1048
DEXTER 0.1170 | 0.0690 0.0820 0.0820 0.0325
DOROTHEA | 0.2054 | 0.1661 0.1961 0.2011 0.0930
GISETTE 0.0823 | 0.0246 0.0402 0.0742 0.0111
MADELON | 0.1922 | 0.1245 0.1133 0.3789 0.0622

Liknon was robust in detecting the ground truth. Our fraction of features and probes and
those of the best recent entries are listed in Table 8.4. The fraction of features Fy.,; is the ratio of
the number of the selected features to the total number of features. The fraction of probes Fj,ope
is the ratio of the probes in the selected subset to the total number of selected features. The
Liknon feature subsets contain fewer features and probes than the best recent entries. Useful
features were consistently identified in crossvalidation and in the feature subset obtained in the
final training.

The presented computational experiment highlights the potential of a simple single Liknon
application to the data. First, by univariate feature filtering, using class difference (8.21) as the
criterion, most of the probes were discarded. Second, an even smaller feature subset, optimal
for linear separation, was obtained by solving Liknon. It is known, that some NIPS 2003 FS

186

8. LIKNON FEATURE SELECTION: BEHIND THE SCENES

Table 8.4: Fraction of features Fy,,; and probes Fj ope

Dataset Our Ffeqr | Our Fypope | Bestrecent Frp; | Best recent Fyope
ARCENE 0.0041 0.00 0.14 0.04
DEXTER 0.0079 0.095 0.23 0.55
DOROTHEA | 7 x (10‘5) 0.00 0.01 0.03
GISETTE 0.0112 0.0179 0.20 0.00
MADELON 0.02 0.00 0.04 0.00

benchmark datasets have nonlinear character. Linear classifiers such as Liknon are not opti-
mal in such scenario. The poorer performance of the Liknon wrapper compared to the filter
corroborates this fact. If the number of features is larger than the number of samples, then the
number of non-zero weights in the Liknon discriminant is bounded by the number of samples,
guaranteed by the nature of linear programming formulation and binding constraints. The small
number of features, identified in a single Liknon run, might not be sufficient to fully capture
most of the information about class separation. The feature profile, accumulated in many Li-
knon runs on many data splits, may overcome this limitation. Such strategy was used in the
ALvsPK competition and it ranked Liknon among the top-ranked methods.

8.6.2. Liknon versus Svmpath on the NIPS2003 feature selection benchmark datasets

In this subsection the Liknon filter is contrasted with the related method of S. Rosset and J. Zhu
(Rosset and Zhu, 2006) on NIPS2003 FS benchmark datasets. The method included a univari-
ate filtering by the t-statistic and computation of the principal components (PCA) as features
after prefiltering for the ARCENE and DOROTHEA datasets; Then, a regularized optimization
scheme using various combinations of a loss function L and a penalty J was applied as follows.

* ARCENE: L was the Huberized hinge loss, and J was the L;-norm penalty (linear support
vector machine).

* DEXTER: L was the Huberized hinge loss, and J was the Lj-norm penalty (L; norm
support vector machine).

* DOROTHEA: L was the Huberized hinge loss; J was the Lj-norm penalty (L; norm
support vector machine).

* GISETTE: L was the exponential loss; J was the L;-norm penalty.

* MADELON: L was the hinge loss, and J was the L,-norm penalty (radial basis kernel
support vector machine).

All hyper-parameters (including the number of features) were selected using 5-fold cross-
validation. Liknon filter was applied to all datasets, using the same unified scheme explained
in the previous subsection. The test BERs, area under the curve, AUC, number of features and
probes of both approaches are summarized and contrasted in Table 8.5. These results are also
available on the website www.nipsfsc.ecs.soton.ac.uk.

The method of S.Rosset and J.Zhu, applied to DEXTER and DOROTHEA, is comparable
to the Liknon filter, since it also implements a linear SVM with L;-norm penalty. If we compare
the performances by BER and AUC, then the results of S.Rosset and J.Zhu are better on these
datasets. If we compare the size and purity of the feature subsets in DEXTER and DOROTHEA,

187

http://www.nipsfsc.ecs.soton.ac.uk/

PRANCKEVICIENE SOMORIJAI

Table 8.5: Results of S.Rosset and J.Zhu compared to Liknon-based feature/classification
model selection in the NIPS2003 feature selection benchmark.

Method Saharon Rosset and Ji Zhu Liknon filter

Dataset BER AUC | Features(Probes) | BER AUC | Features(Probes)
ARCENE 0.1962 | 0.8038 3000(171) 0.1711 | 0.8908 41(0)
DEXTER 0.0690 | 0.9628 112(50) 0.0820 | 0.9511 158(15)
DOROTHEA | 0.1569 | 0.8451 5207(4009) 0.1996 | 0.8053 7(0)
GISETTE 0.0134 | 0.9826 1500(0) 0.0402 | 0.9791 56(1)
MADELON | 0.0906 | 0.9094 21(2) 0.1133 | 0.9369 10(0)

then the Liknon filter is better. In the NIPS2003 FS challenge, several methods performed better
on the feature sets containing many probes. For datasets with limited number of samples, e.g.,
DEXTER, many fake features transform the class separation character and we actually have a
different classification problem. On this feature-augmented problem some methods do better
than on the original problem without probes. In general, a fair comparison is only possible if
we had the reference BERs of several methods - linear and nonlinear - using a) only relevant
features and b) all features. Such experiment is beyond the scope of this chapter.

8.6.3. Numerical experiments on the datasets of Agnostic Learning vs. Prior Knowledge
competition

The Liknon-based classification model participated in the agnostic track of the ALvsPK chal-
lenge as a “black box”, using five datasets ADA, GINA, HIVA, NOVA and SYLVA. 10-fold
crossvalidation with 31 splits in the inner loop and without feature prefiltering was used to ob-
tain an ensemble (ens) of 31 Liknon discriminants, and the profile of the identified relevant
features. From the profile, a subset of features occurring more frequently than some thresh-
old, (the thresholds were 10%,15%,20%,...,95%,100%), was selected and used in training
the following classifiers from PRTools (Duin et al., 2004): fisher linear discriminant, logistic
linear classifier, quadratic classifier, subspace classifier, and 1- and 3-nearest-neighbor classi-
fiers. On four of the five datasets, the ensembles of Liknon discriminants performed better than
other rules. The dimensionality of the datasets, the sizes of the subdivisions of training data
(explained in Section 8.2), the optimal threshold for the feature profile, the number of the tested
Liknon models NM, and the winning classifier are summarized in Table 8.6.

Our results in the ALvsPK competition are presented in Table 8.7. We report our balanced
test error rate (BER), the area under the receiver operating curve (AUC), and the same infor-
mation for the winning entries. The ensemble of Liknon discriminants was superior for ADA,
HIVA, NOVA and SYLVA. For GINA, the 3-nearest-neighbor rule, trained on the most promi-
nent features, performed best. In Section 8.2, we analyzed a dataset, for which two features
separate the classes nonlinearly. Similarly, in GINA, which is too complex for a linear classi-
fier, Liknon identified features that represented the nature of class separation sufficiently well
for a nonlinear rule. For SYLVA, among the individual rules, the quadratic discriminant per-
formed comparably to the ensemble. The histogram-based approach of C selection worked best
for HIVA. For the remaining datasets, the C selection algorithm presented in Section 8.5.4 gave
the top-ranked results. All details of our results in the ALvsPK challenge have already been
published elsewhere (Pranckeviciene et al., 2007).

188

8. LIKNON FEATURE SELECTION: BEHIND THE SCENES

Table 8.6: Setup and parameters of the ALvsPK challenge datasets

Dataset ADA GINA HIVA NOVA SYLVA
Data origin marketing handwritten drug text ecology
digits discovery
Dimensionality 48 970 1617 16969 216
Threshold 55% 50% 20% 80% 20%
Training 600+600 3504350 100+100 400+400 400+400
Monitoring 2487+419 1237+1184 3572434 842+94 11758+397
Validation 343+113 1764171 408+15 138455 1351+89
NM 5 8 20 25 10
Winning classifier ens 3nn ens ens ens

In Table 8.7, for GINA, NOVA and SYLVA, our AUC is slightly better than those of the best
entries. This arises because AUC accounts for the full range of operating points, whereas BER
is based on a single confusion matrix and represents a single operating point of the classifier
on the ROC curve. A larger value of AUC suggests, that the classifier may have improved
classification performance when the prevalence (proportions) of the test samples in the two
classes is different from the proportion given in the challenge datasets.

Table 8.7: Results on the ALvsPK challenge datasets: our method and the best entry in the
agnostic track

Dataset | Our Test BER | Our Test AUC | Best Test BER | Best Test AUC
ADA 0.1818 0.8702 0.1660 0.9168
GINA 0.0533 0.9740 0.0339 0.9668
HIVA 0.2939 0.7589 0.2827 0.7707
NOVA 0.0725 0.9814 0.0456 0.9552
SYLVA 0.0190 0.9949 0.0062 0.9938

8.7. Discussion and Conclusions

Inspired by the work of Montanari (Montanari, 2004), we introduced a novel and key concept,
the transvariation intensity function. It characterizes the univariate separation of two classes
as a linear function of the distances between points from the classes. For the original and
scaled data, projected onto some discriminant, it specifies the two distances important for class
separation: the size of the class difference (8.18) and the size of class overlap (8.20). Their ratio
elucidates the role of the regularization parameter as the controller of the class overlap in SVM
and Liknon. The relationship between the regularization parameter C, the class difference and
the class overlap provided a better understanding of how Liknon works, important in practical
applications of the method. In Liknon, the class difference on the standard discriminant and
individual selected features is constrained from below by 1/C. By increasing the parameter
C, we control the class overlap in individual features, allowing more features to be included

189

PRANCKEVICIENE SOMORIJAI

into the optimal Liknon discriminant. Based on the total transvariation intensity function of the
individual features, we proposed an algorithm for computing C values.

We demonstrated the efficiency of Liknon, combined with univariate feature filtering, in
identifying smaller feature subsets of the ground truth features. Because of the properties of the
linear programming method of Liknon, the number of non-zero components (selected features)
in the solution of the primal w is bounded by the number of samples in the dataset. Liknon’s
limited, single-run performance, when compared to the best recent entries for the NIPS 2003
FS datasets, indicates that either the number of selected features in a single split is not suffi-
cient for fully representing the nature of the class separation, or that the linear classifier cannot
handle the complexity of the classification problem. As possible strategies, we suggest using
an ensemble of Liknon discriminants trained on feature subsets of different sizes, or employing
Liknon features as inputs to nonlinear classification rules. In the ALvsPK challenge, results
based on these strategies were among those of the top-ranked methods. The main advantage of
Liknon is its ability to identify stable features in high-dimensional, small sample size datasets.
A possible disadvantage is the considerable computational load of processing many data splits
in the inner crossvalidation loop.

Related to our work is the full regularization path algorithm (Hastie et al., 2004; Rosset
and Zhu, 2006). It uses loss functions with quadratic terms and L;-norm penalty. It allows
computation of derivatives in order to obtain the sequence of solutions w. The algorithm does
not calculate the regularization parameter explicitly. Liknon has different formulation in terms
of the loss function. Loss in Liknon is linear and the partial derivatives with respect to w would
be constant. The linearity of Liknon enables formulating it as a linear programming problem
and solving for w using the LP optimization method. Using such formulation we can derive how
to compute the regularization parameter, but we can’t compute the weights of the discriminant
directly. Solving Liknon with a sequence of Cs and using a monitoring set to select the optimal
solution w is similar to the procedure for the regularization path approach, but Liknon uses a
linear loss and an L; penalty. These two algorithms obtain the sequence of the solutions in
different ways.

We carried out numerical experiments on the artificial Banana example to compare the per-
formances of the two methods. We also contrasted the Liknon filter with the relevant entry of
the NIPS2003 FS challenge, the regularization path method used by S.Rosset and J. Zhu; it per-
formed better than the Liknon filter. However, from the point of view of the purity and size of
the selected feature subsets, Liknon was better. The regularization path method is more flexible
than Liknon in learning nonlinear structures through the use of various loss functions. Liknon is
“conservative” in adequately capturing the complexity of class separation, identifying only the
subsets of interacting features that are optimal for linear class separation. Liknon-embedded
feature selection is suited for problems for which user is interested in finding several impor-
tant original features, the class differences arise due to the differences in class means, there are
many correlated features and finally, the number of features is much larger than the number of
the training samples.

Acknowledgments

We thank the reviewers and editors for constructive comments that helped us improve the
manuscript. The first author thanks the organizers of Agnostic Learning vs. Prior Knowledge
challenge for their effort in providing an excellent platform to test learning methods. The group
of Prof. R.P.W. Duin is also acknowledged for making PRTools publicly available.

190

8. LIKNON FEATURE SELECTION: BEHIND THE SCENES

Appendix.

The Matlab function for computation of a sequence of NM values of C is presented in this ap-
pendix. The code implements the algorithm presented in Section 8.5.4. Given a data matrix X
and a vector of class labels Y, the vector a of class difference is computed. A grid of d val-
ues is constructed out of the vector a. Linear transvariation functions for every feature j are
computed as Ftrans=[abs (a (j)) - (N/2) «d]. Ttotal is obtained by summing up the
positive parts of the transvariation functions Ftrans. The logarithm of Ttotal is used to
obtain an equally spaced grid. Using such a grid, the sequence ds is obtained by linear interpo-
lation. Using the sequence ds, the corresponding C values are computedas C=[2./ (Nxds)].
A large C=100 is also included in the sequence.

function [c]=computeC (X, Y, NM)

%

% Output: c - sequence of C values

% Input: X - data matrix, Y - class labels, NM - number of C values

Y0

N = size(X,1); Na = 100;

il = find(Y==1); 12 = find(Y==-1);
a = sum(X(1il, :))—-sum(X(i2, :));

da = (2/N) *abs(a);
d = unique([da[0:max(da)/Na:max(da)]ll);
Ttotal = zeros(l,length(d));
for j = l:length(a)
Ftrans = [abs(a(]j))—-(N/2)*d];

m = [Ftrans>0];
Ttotal = Ttotal+Ftrans.x*m;
end;
tm = max (Ttotal);tt = abs(Ttotal-tm);zeroi = find(tt==0);
if ~isempty(zeroi); Ttotal (zeroi) = []; tt(zeroi) = []; d(zeroi)

tlog = log(tt); [val,ind] = unique(tloqg);
tlog = tlog(ind); d = d(ind);

tl = min(tlog); t2 = max(tlogqg);

ti = [tl+(t2-tl)/NM: (t2-tl)/NM:t2];

ds = interpl(tlog,d,ti,’linear’);

c = sort ([2./(Nxds) 100]);

ts = tm-exp(ti);

plot (d,Ttotal,’k’,ds,ts, kd-");

return;

References

C.Ambroise and G.J.McLachlan. Selection bias in gene extraction on the basis of microarray
gene-expression data. PNAS, 99(10), pages 6562-6566, 2002.

T.S. Arthanari and Y. Dodge. Mathematical programming in statistics. John Willey and Sons,
New York, 1981.

C.Bhattacharyya, L.R.Grate, A.Rizki, D. Radisky, F.J. Molina, M.I. Jordan, M.J. Bissell and
L.S. Mian. Simultaneous relevant feature identification and classification in high-dimensional

191

PRANCKEVICIENE SOMORIJAI

spaces: application to molecular profiling data. Signal Processing, 83(4), pages 729-743,
2003.

V.Cherkassky and Y.Ma, Margin-based Learning and Popper’s Philosophy of Inductive Learn-
ing. In M. Basu and T.K. Ho, editors. Data complexity in pattern recognition.. 2006.

R.P.W.Duin, P.Juszczak, P.Paclik, E.Pekalska, D.de Ridder, and D.M.J.Tax. PRTools4 A Matlab
toolbox for pattern recognition, February, 2004.

G.Fung and O.Mangasarian. A feature selection Newton method for support vector machine
classification. Computational Optimization and Applications, 28, pages 185-202, 2004.

G.D.Guo and C.Dyer. Learning from examples in the small sample case: face expression recog-
nition. IEEE Trans. on System, Man and Cybernetics - Part B, 35(3), pages 477488, 2005.

I.Guyon, V.Vapnik, B.Boser, L.Bottou, and S.Solla. Capacity control in linear classifiers for pat-
tern recognition. Proceedings of the 11th IAPR International Conference on Pattern Recog-
nition, IEEE, 2, pages 385-388, 1992.

I. Guyon, S. Gunn, M. Nikravesh, and L. Zadeh, editors. Feature extraction, foundations and
applications. Physica-Verlag, Springer, 2006.

I.Guyon, A.Safari, G.Dror, and G.Cawley. Agnostic learning vs. prior knowledge challenge.
Proccedings of International Joint Conference on Neural Networks IJCNN2007, INNS/IEEE,
Orlando Florida, pages 829-834, 2007a.

I.Guyon, J.Li, T.Mader, P.A.Pletsher, G.Schneider, and M.Uhr. Competitive baseline methods
set new standards for the NIPS 2003 feature selection benchmark. Pattern recognition letters,
28, pages 1438-1444, 2007b.

T.Hastie, S.Rosset, R.Tibshirani, and J.Zhu. The entire regularization path for the support vector
machine. Journal of Machine Learning Research, 5, pages 1391-1415, 2004.

C.Igel. Multi-objective model selection for support vector machines. In C.A. Coello Coello, A.
Hernandez Aguirre, and E. Zitzler, editors. Evolutionary Multi-criterion Optimization, LNCS
3410, pages 534-546, 2005.

R.Kohavi and G.H.John. Wrappers for feature subset selection. Artificial intelligence, 97(1-2),
pages 273-324, 1997.

M.Kudo and J.Sklansky. Comparison of algorithms that select features for pattern classifiers.
Pattern recognition, 33(1), pages 25-41, 2000.

A.Montanari. Linear discriminant analysis and transvariation. Journal of Classification, 21,
pages 71-88, 2004.

C.H. Papadimitriou and K. Steiglitz. Combinatorial optimization Algorithms and Complexity.
Prentice-Hall, Englewood Cliffs, New Jersey, 1982.

E.Pranckeviciene, R.Somorjai, R.Baumgartner, and M.Jeon. Identification of signatures in
biomedical spectra using domain knowledge. Al in Medicine, 35(3), pages 215-226, 2005.

E.Pranckeviciene, R.Somorjai, and M.N.Tran. Feature/model selection by the Linear Program-
ming SVM combined with State-of-art classifiers: what can we learn about the data. Proc-
cedings of International Joint Conference on Neural Networks IJCNN2007, INNS/IEEE, Or-
lando, Florida, pages 1627-1632, 2007.

192

8. LIKNON FEATURE SELECTION: BEHIND THE SCENES

S.Rosset and J.Zhu. Sparse, flexible and efficient modelling using L; regularization. In I. Guyon,
S. Gunn, M. Nikravesh, and L. Zadeh, editors. Feature extraction, foundations and applica-
tions, pages 379-398, 2006.

J.Shawe-Taylor and N.Chistianini. Kernel methods for Pattern Analysis. Cambridge University
Press, 2004.

B.Scholkopf, R.C.Williamson, and P.Bartlet. New Support Vector Algorithms. Neural Compu-
tation, 12, pages 1207-1245, 2000.

R.L.Somorjai, B.Dolenko, and M.Mandelzweig. Direct classification of high-dimensional data
in low-dimensional feature spaces- comparison of several classification methodologies. Jour-
nal of Biomedical Informatics, 40, pages 131-138, 2007.

W.Zucchini. An introduction to model selection. Journal of mathematical psychology, 44, pages
41-61, 2000.

193

194

Journal of Machine Learning Research 9(Oct):2377-2400, 2008 Submitted 8/07; Revised 6/08; Published 10/08

Chapter 9

Model Selection in Kernel Based Regression using the
Influence Function

Michiel Debruyne MICHIEL.DEBRUYNE @ DEXIA.COM
Mia Hubert MIA.HUBERT @ WIS.KULEUVEN.BE
Department of Mathematics - LStat

K.U.Leuven

Celestijnenlaan 200B, B-3001 Leuven, Belgium

Johan A. K. Suykens JOHAN.SUYKENS @ESAT.KULEUVEN.BE
ESAT-SCD/SISTA

K.U.Leuven

Kasteelpark Arenberg 10, B-3001 Leuven, Belgium

Editor: Isabelle Guyon

Abstract

Recent results about the robustness of kernel methods involve the analysis of influence func-
tions. By definition the influence function is closely related to leave-one-out criteria. In sta-
tistical learning, the latter is often used to assess the generalization of a method. In statistics,
the influence function is used in a similar way to analyze the statistical efficiency of a method.
Links between both worlds are explored. The influence function is related to the first term
of a Taylor expansion. Higher order influence functions are calculated. A recursive relation
between these terms is found characterizing the full Taylor expansion. It is shown how to
evaluate influence functions at a specific sample distribution to obtain an approximation of the
leave-one-out error. A specific implementation is proposed using a L; loss in the selection of
the hyperparameters and a Huber loss in the estimation procedure. The parameter in the Huber
loss controlling the degree of robustness is optimized as well. The resulting procedure gives
good results, even when outliers are present in the data.

Keywords: kernel based regression, robustness, stability, influence function, model selection

9.1. Introduction

Quantifying the effect of small distributional changes on the resulting estimator is a crucial anal-
ysis on many levels. A simple example is leave-one-out which changes the sample distribution
slightly by deleting one observation. This leave-one-out error plays a vital role for example in
model selection (Wahba, 1990) and in assessing the generalization ability (Poggio et al. 2004
through the concept of stability). Most of these analyses however are restricted to the sample
distribution and the addition/deletion of some data points from this sample.

In the field of robust statistics the influence function was introduced in order to analyze the
effects of outliers on an estimator. This influence function is defined for continuous distribu-
tions that are slightly perturbed by adding a small amount of probability mass at a certain place.
In Section 9.2 some general aspects about the influence function are gathered. Recent results
about influence functions in kernel methods include those of Christmann and Steinwart (2004,
2007) for classification and regression. In Section 9.3 these results are stated and their impor-
tance is summarized. A new theoretical result concerning higher order influence functions is

© 2008 M. Debruyne, M. Hubert & J.A.K. Suykens. Reprinted with permission for JMLR

DEBRUYNE HUBERT SUYKENS

presented. In Section 9.4 we show how to evaluate the resulting expressions at sample dis-
tributions. Moreover we apply these influence functions in a Taylor expansion approximating
the leave-one-out error. In Section 9.5 we use the approximation with influence functions to
select the hyperparameters. A specific implementation is proposed to obtain robustness with a
Huber loss function in the estimation step and a L; loss in the model selection step. The de-
gree of robustness is controlled by a parameter that can be chosen in a data driven way as well.
Everything is illustrated on a toy example and some experiments in Section 9.6.

9.2. The Influence Function

In statistics it is often assumed that a sample of data points is observed, all generated inde-
pendently from the same distribution and some underlying process, but sometimes this is not
sufficient. In many applications gathering the observations is quite complex, and many errors
or subtle changes can occur when obtaining data. Robust statistics is a branch of statistics that
deals with the detection and neutralization of such outlying observations. Roughly speaking a
method is called robust if it produces similar results as the majority of observations indicates,
no matter how a minority of other observations is placed. A crucial analysis in robust statis-
tics is the behavior of a functional 7', not only at the distribution of interest P, but in an entire
neighborhood of distributions around P. The influence function measures this behavior. In this
section we recall its definition and discuss some links with other concepts.

9.2.1. Definition

The pioneering work of Hampel et al. (1986) and Huber (1981) considers distributions P, ; =
(1 —€)P+ €A, where A; denotes the Dirac distribution in the point z € 2" x %/, representing
the contaminated part of the data. For having a robust T, T(P; ;) should not be too far away
from T (P) for any possible z and any small €. The limiting case of € | 0 is comprised in the
concept of the influence function.

Definition 9.1 Let P be a distribution. Let T be a functional T : P — T (P). Then the influence
function of T at P in the point z is defined as

IF(z;T,P) = lim M
=0 €

The influence function measures the effect on the estimator 7 when adding an infinitesimally
small amount of contamination at the point z. Therefore it is a measure of the robustness of T'.
Of particular importance is the supremum over z. If this is unbounded, then an infinitesimally
small amount of contamination can cause arbitrary large changes. For robust estimators, the
supremum of its influence function should be bounded. Then small amounts of contamination
cannot completely change the estimate and a certain degree of robustness is indeed present.
The simplest example is the estimation of the location of a univariate distribution with density
f symmetric around 0. The influence function of the mean at z € R then equals the function
z and is clearly unbounded. If the median of the underlying distribution is uniquely defined,
that is if f(0) > 0, then the influence function of the median equals sign(z)/(2f(0)) which is
bounded. The median is thus more robust than the mean.

9.2.2. Asymptotic Variance and Stability

From Definition 9.1 one can see that the influence function is a first order derivative of T (P ;)
at € = 0. Higher order influence functions can be defined too:

196

9. MODEL SELECTION IN KERNEL BASED REGRESSION USING THE INFLUENCE FUNCTION

Definition 9.2 Let P be a distribution. Let T be a functional T : P — T (P). Then the k-th order
influence function of T at P in the point z is defined as

0
IF(z;T,P) = %T(Ps;ﬂe:o.

If all influence functions exist then the following Taylor expansion holds:

2
£
T(Pes) =T(P)+elF(zT,P)+ S IR (5T, P) + ... ©.1)

characterizing the estimate at a contaminated distribution in terms of the estimate at the original
distribution and the influence functions.
Actually this is a special case of a more general Von Mises expansion (take Q = P ;):

7(0) = T(P) +/IF(x; T,P)d(Q—P)(x) + ...

Now take Q equal to a sample distribution P, of a sample {z;} of size n generated i.i.d. from P.
Then

T(P)—T(P)= /IF(z;T,P)dP,,(z) +...

l n
=—Y IF(z:T,P)+....
niz

=

The first term on the right hand side is now a sum of 7 i.i.d. random variables. If the remain-
ing terms are asymptotically negligible, the central limit theorem thus immediately shows that
V(T (P,) —T(P)) is asymptotically normal with mean 0 and variance

ASV(T,P) = /IFz(z;T,P)dP(z).

Since the asymptotic efficiency of an estimator is proportional to the reciprocal of the asymp-
totic variance, the integrated squared influence function should be as small as possible to
achieve high efficiency. Consider again the estimation of the center of a univariate distribu-
tion with density f. At a standard normal distribution the asymptotic variance of the mean
equals [z?dP(z) = 1, and that of the median equals [(sign(z)/(2£(0)))?dP(z) = 1.571. Thus
the mean is more efficient than the median at a normal distribution. However, at a Cauchy dis-
tribution for instance, this is completely different: the ASV of the median equals 2.47, but for
the mean it is infinite since the second moment of a Cauchy distribution does not exist. Thus to
estimate the center of a Cauchy, the median is a much better choice than the mean.

An interesting parallel can be drawn towards the concept of stability in learning theory.
Several measures of stability were recently proposed in the literature. The leave-one-out error
often plays a vital role, for example in hypothesis stability (Bousquet and Elisseeff, 2001),
partial stability (Kutin and Niyogi, 2002) and CV,,,-stability (Poggio et al., 2004). The basic
idea is that the result of a learning map 7 on a full sample should not be very different from
the result obtained when removing only one observation. More precisely, let P be a distribution
onaset Z x% and T : P — T(P) with T(P): 2 — % :x — T(P)(x). Let P, denote the
empirical distribution of a sample without the ith observation z; = (x;,y;) € 2 x %. Poggio
et al. (2004) call the map T CV,,,-stable for a loss function L : # — R™ if

lim sup [L(y; — T(P)(x;)) —L(yi — T(P,) (xi))| = 0 9.2)

197

DEBRUYNE HUBERT SUYKENS

for n — oo. This means intuitively that the prediction at a point x; should not be too different
whether or not this point is actually used constructing the predictor. If the difference is too
large there is no stability, since in that case adding only one point can yield a large change
in the result. Under mild conditions it is shown that CV,,,-stability is required to achieve
good predictions. Let L be the absolute value loss and consider once again the simple case of
estimating the location of a univariate distribution. Thus P, is just a univariate sample of n real
numbers {yi,...,y,}. Then the left hand side of (9.2) equals

lim sup |T(R,)—T(P")|

n
n=ie1,..n}

Let y(;) denote the ith order statistic. Consider 7' the median. Assuming that n is odd and
yi < Y(ng1) (the cases y; > Ying1) and equality can easily be checked as well), we have that

_i 1 1
|Med(P,) —Med(P,")| = ‘)’(";1)) (}’(%) +)’(";3)>‘ = Eb’(m) —)’(§)|-

If the median of the underlying distribution P is unique, then both Vgt and Y(ny3) converge to
this number and CV/,, stability is obtained. However, when taking the mean for 7', we have that

=
[y

Yoyl=l Ly
/ n(n—1) = o

1
n = n—1 -
J#i JF

j=

The first term in this sum equals the sample mean of P, divided by n and thus converges to 0
if the mean of the underlying distribution exists. The second term converges to 0 if

lim sup — =0.

This means that the largest absolute value of n points sampled from the underlying distribution
should not grow too large. For a normal distribution for instance this is satisfied since the largest
observation only grows logarithmically: for example the largest of 1000 points generated from
a normal distribution only has a very small probability to exceed 5. This is due to the exponen-
tially decreasing density function. For heavy tailed distribution it can be different. A Cauchy
density for instance only decreases at the rate of the reciprocal function and sup;c ¢y [vil is

of the order O(n). Thus for a normal distribution the mean is CVy,, stable, but for a Cauchy
distribution it is not.

In summary note that both the concepts of influence function and asymptotic variance on
one hand and CVy,, stability on the other hand yield the same conclusions: using the sample
median as an estimator is ok as long as the median of the underlying distribution is unique.
Then one has CV,, stability and a finite asymptotic variance. Using the sample mean is ok
for a normal distribution, but not for a Cauchy distribution (no CV,, stability and an infinite
asymptotic variance).

A rigorous treatment of asymptotic variances and regularity conditions can be found in
Boos and Serfling (1980) and Fernholz (1983). In any event, it is an interesting link between
perturbation analysis through the influence function and variance/efficiency in statistics on one
hand, and between leave-one-out and stability/generalization in learning theory on the other
hand.

198

9. MODEL SELECTION IN KERNEL BASED REGRESSION USING THE INFLUENCE FUNCTION

9.2.3. A Strategy for Fast Approximation of the Leave-one-out Error

In leave-one-out crossvalidation T (P,) is computed for every i. This means that the algo-
rithm under consideration has to be executed n times, which can be computationally intensive.
If the influence functions of T can be calculated, the following strategy might provide a fast
alternative. First note that

—1 -1

Pr?i:(l_(ﬁ))Pn+m

Thus, taking Pe; = P, ', € = —1/(n— 1) and P = P,, Equation (9.1) gives

A;

it

=

i —1 | IFj(zi;T,PB,)
T(Pn)—T(Pn)+j;(n_1)f I (9.3)

The right hand side now only depends on the full sample P,. In practice one can cut off the
series after a number of steps ignoring the remainder term, or if possible one can try to estimate
the remainder term.

The first goal of this paper is to apply this idea in the context of kernel based regression.
Christmann and Steinwart (2007) computed the first order influence function. We will compute
higher order terms in (9.1) and use these results to approximate the leave-one-out estimator

applying (9.3).

9.3. Kernel Based Regression

In this section we recall some definitions on kernel based regression. We discuss the influence
function and provide a theorem on higher order terms.

9.3.1. Definition

Let 2", % be non-empty sets. Denote P a distribution on 2" x % C R? x R. Suppose we
have a sample of n observations (x;,y;) € Z X % generated i.i.d. from P. Then P, denotes the
corresponding finite sample distribution. A functional 7" is a map that maps any distribution P
onto T(P). A finite sample approximation is given by T, := T (P,).

Definition 9.3 A function K : 2" x Z" — R is called a kernel on 2 if there exists a R-Hilbert
space 3¢ and a map ® : X — I such that for all x,x' € 2~ we have

K(x’xl) = <CI>(x),<I>(x/)> :
We call ® a feature map and 7 a feature space of K.

Frequently used kernels include the linear kernel K (x;,x;) = xix;, polynomial kernel of degree
p for which K (x;,x;) = (7 +x!x;)? with T > 0 and RBF kernel K (x;,x;) = exp(—||x; —x;||3/0?)
with bandwidth ¢ > 0. By the reproducing property of 7 we can evaluate any f € J# at the
point x € 2" as the inner product of f with the feature map: f(x) = (f, P(x)).

Definition 9.4 Let K be a kernel function with corresponding feature space ¢ and let L : R —
R* be a twice differentiable convex loss function. Then the functional fax :P— frx(P)=
faxp €I is defined by

frxpi=argminEpL(Y — f(X))+ 4| f|%
fext

where A > 0 is a regularization parameter.

199

DEBRUYNE HUBERT SUYKENS

The functional f3 x maps a distribution P onto the function f}, x p that minimizes the regularized
risk. When the sample distribution P, is used, one has that

1y
fax.p =argmin= Y L(yi— f(xi)) + A | f||%- (9.4)
fesr iz

Such estimators have been studied in detail, see for example Wahba (1990), Tikhonov and
Arsenin (1977) or Evgeniou et al. (2000). In a broader framework (including for example
classification, PCA, CCA etc.) primal-dual optimization methodology involving least squares
kernel estimators were studied by Suykens et al. (2002b). Possible loss functions include

» the least squares loss: L(r) = 2.

* Vapnik’s e-insensitive loss: L(r) = max{|r| — €,0}, with special case the L loss if € = 0.

* the logistic loss: L(r) = —log(4A(r)[1 — A(r)]) with A(r) = 1/(1+e~"). Note that this
is not the same loss function as used in logistic regression.

* Huber loss with parameter b > 0: L(r) = r* if |r| < b and L(r) = 2b|r| — b* if |r| > b.
Note that the least squares loss corresponds to the limit case b — oo.

9.3.2. Influence Function

The following proposition was proven in Christmann and Steinwart (2007).

Proposition 9.5 Let 77 be a RKHS of a bounded continuous kernel K on X~ with feature map
O : X — . Furthermore, let P be a distribution on &~ x % with finite second moment. Then
the influence function of f g exists for all 7 := (2x,2y) € 2" x % and we have

IF (% fig,P)= =S A faxp) +L (zy— frkp(z:)S ' ®(z)
where S : A — A is defined by S(f) =2Af +Ep [L" (Y — fo x p(X))(@(X), f)P(X)].

Thus if the kernel is bounded and the first derivative of the loss function is bounded, then
the influence function is bounded as well. Thus L; type loss functions for instance lead to
robust estimators. The logistic loss as well since the derivative of this loss function equals
L'(r)=2—1/(1+€~") which is bounded by 2. For the Huber loss L'(r) is bounded by 2b. This
shows that the parameter b controls the amount of robustness: if b is very large than the influence
function can become very large too. For a small » the influence function remains small. For a
least squares loss function on the other hand, the influence function is unbounded (L'(r) = 2r):
the effect of the smallest amount of contamination can be arbitrary large. Therefore it is said
that the least squares estimator is not robust.

9.3.3. Higher Order Influence Functions

For the second order influence function as in Definition 9.2 the following theorem is proven in
the Appendix.

Theorem 9.6 Let P be a distribution on & x % with finite second moment. Let L be a convex
loss function that is three times differentiable. Then the second order influence function of f; g

200

9. MODEL SELECTION IN KERNEL BASED REGRESSION USING THE INFLUENCE FUNCTION

exists for all 7 := (zx,2y) € 2" X % and we have

IF(z fo k. P) =S~ <2]EP[IF(Z;f/l,K7P)(X)L”(Y — k(X)) @(X)]
+Ep[(IF (2 £, P)(X))*L" (Y — fa k. p(X))]

—2[1F<z;fl,K,P><zx>L”<zy—fl,K<zx>><b<zx>])

where S : A — A is defined by S(f) =2Af +Ep [L"(Y — 1k p(X))(D(X), f)P(X)].

When the loss function is infinitely differentiable, all higher order terms can in theory be calcu-
lated, but the number of terms grows rapidly since all derivatives of L come into play. However,
in the special case that all derivatives higher than three are 0, a relatively simple recursive rela-
tion exists.

Theorem 9.7 Let P be a distribution on 2" x % with finite second moment. Let L be a convex
loss function such that the third derivative is 0. Then the (k+ 1)th order influence function of
fa x exists for all 2 := (zx,2y) € 2" X ¥ and we have

I (5 frgoP) = (K 1)S™ (mmc Frae PYEVL (Y — fi (X)) 0(X)
B fo P)L (2 — fx,K<zx>>cI><zx>}>

where S : A — A is defined by S(f) =2Af +Ep [L"(Y — fo k. p(X))(P(X), f)P(X)].

9.4. Finite Sample Expressions

Since the Taylor expansion in (9.1) is now fully characterized for any distribution P and any z,
we can use this to assess the influence of individual points in a sample with sample distribution
P,. Applying Equation (9.3) with the KBR estimator f} x p, from (9.4) we have that

f}L7K7P,;i(x)= fa K.P, (x:) 9.5)

i IFj(ZiQfl,Kan)(xi).

n— 1 J!
Let us see how the right hand side can be evaluated in practice.

9.4.1. Least Squares Loss

First consider taking the least squares loss in (9.4). Denote € the n x n kernel matrix with i, j-th
entry equal to K(x;,x;). Let I, be the n x n identity matrix and denote S, = Q/n+ Al,. The
value of f; g p atapointx € 2" is given by

1y , -
Srkp, () =) 0iK(xi,x) with S I I (9.6)
= Qn Yn

201

DEBRUYNE HUBERT SUYKENS

which is a classical result going back to Tikhonov and Arsenin (1977). This also means that the
vector of predictions in the n sample points simply equals

f)L,K,P,, (xl) Y1
: =H| : ©7)
Ja k. (xn) Yn

with the matrix H = %S; 'Q, sometimes referred to as the smoother matrix.
To compute the first order influence function at the sample the expression in Proposition 9.5
should be evaluated at P,. The operator S at P, maps by definition any f € .7 onto

1, () = 20f + B2/ (X)0(X) =201+ > 3" fx))(x)
=1

and thus
Sp, (f)(x1) fxr)) K(xi,x1) ... K(xi,x) f(x1)
S R I Rl I s
Sp, (f)(xn) f(xn) K(xnaxl) K(xmxn) f(—xn)
fx1)
=28,
f(xn)

which means that the matrix 2S5, is the finite sample version of the operator S at the sample P,.
From Proposition 9.5 it is now clear that

IF (233 fp. k0 Pa) (x1) K(x;,x1) fak.p,(x1)
: =5, (()’i_fl,K,Pn(xi)) : -2 :
IF(Zi;fLK;Pn)(xn) K(x,-,x,,) f?L,K,Pn(xn)
9.8)

In order to evaluate the influence function at sample point z; at a sample distribution 7,, we only
need the full sample fit f3 x p, and the matrix S, ! which is already obtained when computing
fa.x p, (cf. Equation (9.6)). From Theorem 9.7 one sees similarly that the higher order terms
can be computed recursively as

IFe1(zi5 fo > Po) (1) o IF (zi5 fa k- Ba) (x1)
: =(k+1)s," = : 9.9)
IFk+1(Zi§fk,KaPn)(xn) IFk(ZiQf)L,KaPn)(xn)
K(xj,x1)
— (k+ DIF(zi fo k0 Pa) (30)S, :
K(xj,x,)
Define [IFM] the matrix containing IF;(z;; f x,Pn)(x;) at entry i, j. Then (9.9) is equivalent

to
[IFM/H,d = (k—|— 1) (H [IFMk] —nHe [IFMk])

with e denoting the entrywise matrix product (also known as the Hadamard product). Or equiv-
alently
IFMia) = (k+1) (H(IFM;] « M(1—n))) (9.10)

202

9. MODEL SELECTION IN KERNEL BASED REGRESSION USING THE INFLUENCE FUNCTION
with M the matrix containing 1/(1 —n) at the off-diagonal and 1 at the diagonal. A first idea is
now to approximate the series in (9.5) by cutting it off at some step k:

k
Frkpri () = fa kg, (%) Z l—n/ 'IFM] 9.11)

However using (9.10) we can do a bit better. Expression (9.5) becomes

1 1
foxpyi(xi) = faxp,(xi) + —n [IFMy]ii+ E[H(IFMI o M)

+7 [H(H(IFMy o M)oM)];;+...

—n
In every term there is a multiplication with H and an entrywise multiplication with M. The latter
means that all diagonal elements remain unchanged but the non-diagonal elements are divided
by 1 —n. So after a few steps the non-diagonal elements will converge to 0 quite fast. It makes
sense to set the non-diagonal elements O retaining only the diagonal elements:

Frkp i) = fakp,(x jZl -y [IFM;);;+ kk, ZH’ IF My
=f kzl Ny [[FM"}"‘i (9.12)
= (x;) jlii ' .
A By ~ l—n/' AT T =)k 1—H;,
since H;; is always smaller than 1.
9.4.2. Huber Loss
For the Huber loss function with parameter 5 > 0 we have that
2 if b.
L =14" L, Il <
2b|r| —b* if |r] > b.
and thus
L) = 2r . ?f|r|<b , () = 2 ?f\r|<b.
2bsign(r) if|r| > b 0 if|r|>b

Note that the derivatives in |r| = b do not exist, but in practice the probability that a residual
exactly equals b is 0, so we further ignore this possibility. The following equation holds:

l n
fA’K7Pn(X):;i:Zl(X[K(.Xi,X) with ZXOC]—L —fZOt, (xi,x;)) (9.13)

Thus a set of possibly non-linear equations has to be solved in &. Once the solution for the full
sample is found, an approximation of the leave-one-out error is obtained in a similar way as for
least squares. Proposition 9.5 for P, gives the first order influence function.

IF (zi3 fo k. Ba) (x1) K(x;,x1) fak.p,(x1)
: =s,! (L'(yi — fak.p (%)) :) :)

IF (252 fr o Po) () K(x,%) Fr, ()

203

DEBRUYNE HUBERT SUYKENS

with Sy = 2A1, + Qe B/n and B the matrix containing L"(y; — f3 x p, (Xi) at every entry in the
ith column. Let H, = SEIQ /n e B. Starting from Theorem 9.7 one finds analogously as (9.10)
the following recursion to compute higher order terms.

UFMyi1] = (k+1) (Hp([[F M) e M(1 —n))).
Finally one can use these matrices to approximate the leave-one-out estimator as

= 1 1 UFMy;i

f)L7K7f>,l—i(xi) ~ f)L,K,P,, (xi) +j:21 m[IFMj]iJ + (1 7n)kk! = [Hb]i,i

(9.14)

in the same way as in (9.12)

9.4.3. Reweighted KBR

In Equation (9.14) the full sample estimator fj x p, is of course needed. For a general loss
function L one has to solve Equation (9.13) to find f; g p. A fast way to do so is to use
reweighted KBR with a least squares loss. Let

W) =20 9.15)

Then we can rewrite (9.13) as

=

2A fo kp,(X) = L'(yi— faxp,(x)K(xix) V1<k<n.

S|= S|

(ngE

2W (i — fak,p, (X)) (i — fa kb, (i)) K (i, k)

Denoting w; = W (y; — f3 k p,(x;)) this means that
1 & 1 &

)*fl,K,Pn (xk) = 0 Z WiyiK(-xi7'xk) T Wif/l,K,P,, (-xi)K(xiaxk) Vi<k<n.
i=1 i=1

Let I, denote the n x n diagonal matrix with w; at entry i,i. Then

-1 V1
—<2+MW) % : (9.16)

S x.p,(Xn) Yn

fakp,(x1)

and thus f3 g p, can be written as a reweighted least squares estimator with additional weights
w; compared to Equations (9.6) and (9.7). Of course these weights still depend on the un-
known f) g p,, s0 (9.16) only implicitly defines f) g p,. It does suggest the following iterative
reweighting algorithm. '

1. Start with simple least squares computing (9.7). Denote the solution f)?‘ K.P,
2. Atstep k+ 1 compute weights w;x = W (yi — f§ x.p, (i)

k-+1
f+

3. Solve (9.16) using the weights w; ;. Let the solution be f} X P

204

9. MODEL SELECTION IN KERNEL BASED REGRESSION USING THE INFLUENCE FUNCTION

In Suykens et al. (2002a) it is shown that this algorithm usually converges in very few steps.
In Debruyne et al. (2010) the robustness of such stepwise reweighting algorithm is analyzed
by calculating stepwise influence functions. It is shown that the influence function is stepwise
reduced under certain conditions on the weight function.

For the Huber loss with parameter b Equation (9.15) means that the corresponding weight
function equals W (r) = 1 if || < b and W(r) = b/|r| if |r| > b. This gives a clear interpretation
of this loss function: all observations with error smaller than b remain unchanged, but the ones
with error larger than b are downweighted compared to the least squares loss. This also explains
the gain in robustness. One can expect better robustness as b decreases.

It would be possible to compute higher order terms of such k—step estimators as well.
Then one could explicitly use these terms to approximate the leave-one-out error of the k—step
reweighted estimator. In this paper however we use the reweighting only to compute the full
sample estimator fj g p, and we assume that it is fully converged to the solution of (9.13). For
the model selection (9.14) is then used.

9.5. Model Selection

Once the approximation of f; , i is obtained, one can proceed with model selection using the
leave-one-out principle. In the next paragraphs we propose a specific implementation taking
into account performance as well as robustness.

9.5.1. Definition

The traditional leave-one-out criterion is given by
LOO(4,K)):v ~ Frxpi (%) 9.17)

with V an appropriate loss function. The values of A and of possible kernel parameters for
which this criterion is minimal, are then selected to train the model. The idea we investigate is
to replace the explicit leave-one-out by the approximation in (9.12) for least squares and (9.14)
for the Huber loss.

Definition 9.8 The k-th order influence function criterion at a regularization parameter A > 0
and kernel K for Huber loss KBR with parameter b is defined as

C;CF(A'vab) =

-

S|

i=1

o 1 [TFMy]ii
v (y,»—fx,m(m) “ X oy M - [Hh]iJ)

For KBR with a least squares loss we write

) - 1 IFMyii
Cir(A, K,) ZV <)’1 Tk p, (%) Z l—n jj ! IFM;l;i— (1—n)*k!' 1 —[H];; |

since a least squares loss is a limit case of the Huber loss as b — oo.

Several choices need to be made in practice. For k taking five steps seems to work very well
in the experiments. If we refer to the criterion with this specific choice k = 5 we write CISF.
For V one typically chooses the squared loss or the absolute value corresponding to the mean
squared error and the mean absolute error. Note that V does not need to be the same as the loss

205

DEBRUYNE HUBERT SUYKENS

function used to compute f3 g p, (the latter is always denoted by L). Recall that a loss function
L with bounded first derivative L’ is needed to perform robust fitting. It is important to note
that this result following from Proposition 9.5 holds for a fixed choice of A and the kernel K.
However, if these parameters are selected in a data driven way, outliers in the data might have
a large effect on the selection of the parameters. Even if a robust estimator is used, the result
could be quite bad if wrong choices are made for the parameters due to the outliers. It is thus
important to use a robust loss function V as well. Therefore we set V equal to the absolute value
loss function unless we explicitly state differently. In Section 9.6.1 an illustration is given on
what can go wrong if a least squares loss is chosen for V instead of the absolute value.

9.5.2. Optimizing b

With k and V now specified, the criterion C15F can be used to select optimal hyperparameters
for a KBR estimator with L the Huber loss with parameter b. Now the final question remains
how to choose b. In Section 9.4.3 it was argued that b controls the robustness of the estimator
since all observations with error smaller than b are downweighted compared to the least squares
estimator. Thus we want to choose b small enough such that outlying observations receive
sufficiently small weight, but also large enough such that the good non outlying observations
are not downweighted too much. A priori it is quite difficult to find such a good choice for b,
since this will depend on the scale of the errors.

However, one can also treat b as an extra parameter that is part of the optimization, con-
sequently minimizing CISF for A, K and b simultaneously. The practical implementation we
propose is as follows:

1. Let A be a set of reasonable values for the regularization parameter A and let J¢" be a set
of possible choices for the kernel K (for instance a grid of reasonable bandwidths if one
considers the RBF kernel).

2. Start with L the least squares loss. Find good choices for A and K by minimizing
C3r(A,K, o) for all A € A and K € #". Compute the residuals r; with respect to the
least squares fit with these optimal A and K.

3. Compute a robust estimate of the scale of these residuals. We take the Median Absolute

Deviation (MAD):

1
Gerr = MAD(ry,...,1) = mmedian(\n —median(r;)|) (9.18)

with ®~1(0.75) the 0.75 quantile of a standard normal distribution.

4. Once the scale of the errors is estimated in the previous way, reasonable choices of b can
be constructed, for example {1,2,3} X G,,. This means that we compare downweighting
observations further away than 1, 2, 3 standard deviations. We also want to compare to
the least squares fit and thus set

B = {6erra 26erra 3c,\ferra °°}~

5. Minimize CISF (A,K,b)overall L € A, K € # and b € . The optimal values of b, A
and K can then be used to construct the final fit.

206

9. MODEL SELECTION IN KERNEL BASED REGRESSION USING THE INFLUENCE FUNCTION

9.5.3. Generalized Cross Validation

The criterion C,5F uses influence functions to approximate the leave-one-out error. Other ap-
proximations have been proposed in the literature. In this section we very briefly mention some
results that are described for example by Wahba (1990) in the context of spline regression. The
following result can be proven.

Let B, be the sample P, with observation (x;,y;) replaced by (x;, f;_ k.p-i(Xi)). Suppose the
following conditions are satisfied for any sample P,:

(i) fLK,ﬁn—i(Xi) = fl,K,Pn’"(xi)‘ (9.19)

Jaxp,(x1).)
(ii) There exists a matrix H such that : =H| @ |. (9.20)

Jak.p,(%n) Yn
Then

)= faxp,(xi) —Hiyi

f)L,K,P{i(xi = —H.. (9.21)
i

For KBR with the least squares loss condition (22) is indeed satisfied (cf. Equation (9.7)), but
condition (9.19) is not, although it holds approximately. Then (9.21) can still be used as an
approximation of the leave-one-out estimator. The corresponding model selection criterion is
given by
L& (Vi fake, (i)
CV(?L,K)—niZ%V< o H,) (9.22)

We call this approximation CV. Sometimes a further approximation is made replacing every
H;; by trace(H)/n. This is called Generalized Cross Validation (GCV, Wahba, 1990). Note that
the diagonal elements of the hatmatrix H play an important role in the approximation with the
influence function too (9.12). Both penalize small values on the diagonal of H.

For KBR with a general loss function one does not have a linear equation of the form of (22),
and thus it is more difficult to apply this approximation. We shall thus use CV for comparison
in the experiments only in the case of least squares.

9.6. Empirical Results

We illustrate the results on a toy example and a small simulation study.

9.6.1. Toy Example

As a toy example 50 data points were generated with x; uniformly distributed on the interval
[2,11] and y; = sin(x;) + e; with ¢; Gaussian distributed noise with standard deviation 0.2. We
start with kernel based regression with a least squares loss and a Gaussian kernel. The data are
shown in Figure 9.1(a) as well as the resulting fit with A = 0.001 and ¢ = 2.

The first order influence function at [5,0.5] is depicted in Figure 9.1(b) as the solid line. This
reflects the asymptotic change in the fit when a point would be added to the data in Figure 9.1(a)
at the position (5,0.5). Obviously this influence is the largest at the x-position where we put
the outlier, that is, x = 5. Furthermore we see that the influence is local, since it decreases as
we look further away from x = 5. At x = 8 for instance the influence function is almost 0.
When we change z from [5,0.5] to [5, 1], the influence function changes too. It still has the
same oscillating behavior, but the peaks are now higher. This reflects the non-robustness of

207

DEBRUYNE HUBERT SUYKENS

Figure 9.1: (@) Data and least squares fit. (b) Influence functions at [5,0.5] with o = 1, at [5, 1]
witho =1and 0 =2.

the least squares estimator: if we would continue raising the point z, then IF(z; fj x) would
become larger and larger, since it is an unbounded function of z. When it comes down to model
selection, it is interesting to check the effect of the hyperparameters in play. When we change
the bandwidth o from 1 to 2, the peaks in the resulting influence function in Figure 9.1 are less
sharp and less high. This reflects the loss in stability when small bandwidths are chosen: then
the fit is more sensitive to small changes in the data and thus less stable.

Consider now the approximation of the leave-one-out error using the influence functions.
We still use the same data as in the previous paragraph. The dashed lines in Figure 9.2(a)
show the approximations using (9.11), that is simply cutting off the expansion after a number
of steps, at fixed A = 0.001 as a function of the bandwidth 6. We observe convergence from
the training error towards the leave-one-out error as the number of terms included is increased.
Unfortunately the convergence rate depends on the value of ¢: convergence is quite slow at
small values of . This is no surprise looking at (9.12). There we approximated the remainder
term by a quantity depending on (1 — H,-ﬁ,-)’]. When o is small, the diagonal elements of H
become close to 1. In that case the deleted remainder term can indeed be quite large. Never-
theless, this approach can still be useful if some care is taken not to consider values of A and
o that are too small. However, the criterion C,SF from Definition 9.8 using the approximation
in (9.12) is clearly superior. We see that the remainder term is now adequately estimated and
a good approximation is obtained at any o. The resulting curve is undistinguishable from the
exact leave-one-out error. The mean absolute difference is 3.2 107>, the maximal difference
is 1.8 10~*. The CV approximation also yields a good result being indistinguishable from the
exact leave-one-out error on the plot as well. The mean absolute difference is 4.1 10~* and the
maximal difference equals 1.8 1073, Thus CISF is closer to the true leave-one-out error than CV,
although the difference is irrelevant when it comes down to selecting a good ©.

Figure 9.2 also shows plots for the leave-one-out error and its various approximations at (b)
A =0.005 as a function of ¢, (¢) o0 = 1 as a function of A, (d) 6 = 2 as a function of A. In these
cases as well it is observed that the cutoff strategy yields decent results if a sufficient number
of terms is taken into account and if one does not look at values of A and o that are extremely
small. The best strategy is to take the remainder term into account using the criterion C¥. from
Definition 9.8.

208

9. MODEL SELECTION IN KERNEL BASED REGRESSION USING THE INFLUENCE FUNCTION

0.26 [

Cp~LOO=CV

02§
01811y . -
0.16k2

014+ 1 térfirs - -

< ini 0121
0l . Training error]

/] L L ' L L L L
05 1 15 2 25 3 35

014 0.126
0.124f
0.135
0.122§
~
0.13f 042k
0425 0.118}
0.116}]
RELS -
0 0.114F -
0115} - 0a12p e -
RN 0.11¢ .o i
L I - Training error
________ Training error 0-108¢ .
e SRR L e R .
05 1 15 2 25 3 35 05 1 15 2 25 3 35
A x10° A x107
(c) (d)

Figure 9.2: Comparison of training error (dotted line), approximations using (9.11) (dashed
lines), the proposed criterion C}‘F with k = 5 (solid line), the exact leave-one-out
error and the CV approximation (both collapsing with C}‘F on these plots). Situation
(a): as a function of o at A = 0.001, (b) as a function of ¢ at A = 0.005, (¢) as a
function of A at ¢ = 1, (d) as a function of A at o = 2.

209

DEBRUYNE HUBERT SUYKENS

15

Figure 9.3: Data with outlier at (4,5). The parameters A = 0.001 and ¢ = 2 are fixed. Dashed:
KBR with least squares loss function. Solid: KBR with Huber loss function (b =
0.2).

In Figure 9.3 we illustrate robustness. An (extreme) outlier was added at position (4,5) (not
visible on the plot). This outlier leads to a bad fit when LS-KBR is used with A =0.001 and 6 =
2 (dashed line). When a Huber loss function is used with » = 0.2 a better fit is obtained that still
nicely predicts the majority of observations. This behavior can be explained by Proposition 9.5.
The least squares loss has an unbounded first derivative and thus the influence of outliers can
be arbitrary large. The Huber loss has a bounded first derivative and thus the influence of
outliers is bounded as well. However, note that in this example as well as in Proposition 9.5
the hyperparameters A and o are assumed to have fixed values. In practice one wants to choose
these parameters in a data driven way.

Figure 9.4(a) shows the optimization of ¢ at A = 0.001 for KBR with L the Huber loss with
b = 0.2. In the upper panel the least squares loss is used for V' in the model selection criteria.
Both exact leave-one-out and CISF indicate that a value of ¢ ~ 3.6 should be optimal. This
results in the dashed fit in Figure 9.4(b). In the lower panel of Figure 9.4 the L; loss is used
for V in the model selection criteria. Both exact leave-one-out and C3, indicate that a value of
0 =~ 2.3 should be optimal. This results in the solid fit in Figure 9.4(b). We clearly see that,
although in both cases a robust estimation procedure is used (Huber loss for L), the outlier can
still be quite influential through the model selection. To obtain full protection against outliers,
both the estimation and the model selection step require robustness, for example by selecting
both L and V in a robust way.

Finally let us investigate the role of the parameter b used in the Huber loss function. We
now use C5 with V the L; loss.

When we apply C, ISF to the clean data without the outlier, we observe in Figure 9.5(a) that the
choice of b does not play an important role. This is quite expected: since there are no outliers,
there is no reason why least squares (b = o0) would not perform well. On the contrary, if we use
a small b such as b = 0.1 we get a slightly worse result. Again this is not a surprise, since with
small b we will downweight a lot of points that are actually perfectly ok.

210

9. MODEL SELECTION IN KERNEL BASED REGRESSION USING THE INFLUENCE FUNCTION

V Least Squares

1.42

14r
1.381
1.36
1.341

0.39
0.381
037}
0.36
035

[X
(@))

Figure 9.4: (a) Optimization of ¢ at A = 0.001. Upper: using least squares loss V in the model
selection. Lower: using L; loss V in the model selection. For the estimation the
loss function L is always the Huber loss with b = 0.2. (b) Resulting fits. Dashed
line: ¢ = 3.6 (optimal choice using V least squares). Solid line: ¢ = 2.3 (optimal
choice using L loss for V.)

"l \——\I/
0551 4

b=oo

05F

0.11

0.1

Figure 9.5: C; at A = 0.001 as a function of o for several values of b for (a) the clean data
without the outlier, (b) the data with the outlier.

211

DEBRUYNE HUBERT SUYKENS

The same plot for the data containing the outlier yields a different view in Figure 9.5(b).
The values of 7 are much higher for least squares than for the Huber loss with smaller b.
Thus it is automatically detected that a least squares loss is not the appropriate choice, which is
a correct assessment since the outlier will have a large effect (cf. the dashed line in Figure 9.3).
The criterion CISF indicates a choice b = 0.2, which leads to a better result indeed (cf. the solid
line in Figure 9.3)

9.6.2. Other Examples

This part presents the results of a small simulation study. We consider some well known set-
tings.

* Friedman 1 (d = 10): y(x) = 10sin(mx1x2) +20(x3 — 1/2)% + 10x4 + 5x5 + ¥.1% 0.x;. The
covariates are generated uniformly in the hypercube in R

* Friedman 2 (d = 4): y(x) = 555 (63 + (xax3 — (x2x4)72)) /2, with 0 < x; < 100, 20 <
x2/(2m) <280,0 <x3 < 1,1 <xq <l

— 72 . .
¢ Friedman 3 (d = 4): y(x) = tan_l(w), with the same range for the covariates
as in Friedman 2. For each of the Friedman data sets 100 observations were generated
with Gaussian noise and 200 noise free test data were generated.

* Boston Housing Data from the UCI machine learning depository with 506 instances and
13 covariates. Each split 450 observations were used for training and the remaining 56
for testing.

e Ozonedatafrom ftp://ftp.stat.berkeley.edu/pub/users/breiman/ with
202 instances and 12 covariates. Each split 150 observations were used for training and
the remaining 52 for testing.

* Servo data from the UCI machine learning depository with 167 instances and 4 covariates.
Each split 140 observations were used for training and the remaining 27 for testing.

For the real data sets (Boston, Ozone and Servo), new contaminated data set were constructed
as well by adding large noise to 10 training points, making these 10 points outliers.

The hyperparameters A and ¢ are optimized over the following grid of hyperparameterval-
ues:

« 1 €{50,10,5,3,1,0.8,0.5,0.3,0.1,0.08,0.05,0.01,0.005} x 103 .

* For each data set 500 distances were calculated between two randomly chosen obser-
vations. Let d;) be the ith largest distance. Then the following grid of values for o is
considered:

o € {3d(1),d(1),d(50)-d(100)-4(150)> d(200) d(250)d(300) d(350) » A (400) (350) - A (500) » 2 500) }-

In each replicate the Mean Squared Error of the test data is computed. For every data set
the average MSE over 20 replicates is shown in Table 9.1 (upper table). A two-sided paired
Wilcoxon rank test is used to check statistical significance: values in italic are significantly
different from the smallest value at significance level 0.05. If underlined significance holds
even at significance level 107, Standard errors are shown as well (lower table). First we
consider the least squares loss for L with the criterion CISF(),, G,0) (Definition 9.8), with exact
leave-one-out (9.17) and with CV (9.22). These are the first 3 columns in Table 9.1. We see that

212

ftp://ftp.stat.berkeley.edu/pub/users/breiman/

9. MODEL SELECTION IN KERNEL BASED REGRESSION USING THE INFLUENCE FUNCTION

the difference between these 3 criteria is very small. This means that both CV and C3y provide
good approximations of the leave-one-out error.

Secondly, we considered each time the residuals of the least squares fit with optimal A
and o according to C7x(A,K,). An estimate 6,,, of the scale of the residuals is computed
as the MAD of these residuals (9.18). Then we applied KBR with a Huber loss and parameter
b =36,;,. The resulting MSE with this loss and A and ¢ minimizing CISF (A,0,36,,) is given in
column 4 in Table 9.1. Similar results are obtained for b = 26,,, in column 5 and with b = 6,
in column 6. For the data sets without contamination we see that using a Huber loss instead of
least squares gives similar results except for the Boston housing data, Friedman 1 and especially
Friedman 2. For those data sets a small value of b is inappropriate. This might be explained
by the relationship between the loss function and the error distribution. For a Gaussian error
distribution least squares is often an optimal choice (cf. maximum likelihood theory). Since the
errors in the Friedman data are explicitly generated as Gaussian, this might explain why least
squares outperforms the Huber loss. For real data sets, the errors might not be exactly Gaussian,
and thus other loss function can perform at least equally well as least squares. For the data sets
containing the outliers the situation changes of course. Now least squares is not a good option
because of its lack of robustness. Clearly the outliers have a large and bad effect on the quality
of the predictions. This is not the case when the Huber loss function is chosen. Then the effect
of the outliers is reduced. Choosing b = 36,,, already leads to a large improvement. Decreasing
b leads to even better results (note that the p-values are smaller than 10~* for any significant
pairwise comparison).

Finally we also consider optimizing b. We apply the algorithm outlined in Section 9.5.2.
Corresponding MSE’s are given in the last column of Table 9.1. For the Friedman 1 and Fried-
man 2 data sets for instance this procedure indeed detects that least squares is an appropriate
loss function and automatically avoids choosing b too small. For the contaminated data sets the
procedure detects that least squares is not appropriate and that changing to a Huber loss with a
small b is beneficial, which is indeed a correct choice yielding smaller MSE’s. In fact, only for
the Friedman 2 data, the automatic choice of b is significantly worse than the optimal choice
(p-value=0.03), whereas the benefits at the contaminated data are large (all p-values < 1074,

9.7. Conclusion

Heuristic links between the concept of the influence function and concepts as leave-one-out
cross validation and stability were considered in Section 9.2, indicating some interesting appli-
cations of the influence function and the leave-one-out error in previous literature. New results
include the calculation of higher order influence functions and a recursive relation between sub-
sequent terms. It is shown that these theoretical results can be applied in practice to approximate
the leave-one-out estimator. Experiments indicate that the quality of this approximation is quite
good. The approximation is used in a model selection criterion to select the regularization and
kernel parameters.

We discussed the importance of robustness in the model selection step. A specific procedure
is suggested using an L; loss in the model selection criterion and a Huber loss in the estimation.
Due to an iterative reweighting algorithm to compute such a Huber loss estimator and due to
the fast approximation of the leave-one-out error, everything can be computed fast starting from
the least squares framework. With an a priori choice of the parameter b in the Huber loss this
leads to better robustness if b is chosen small enough. If b is chosen too small on the other hand
this might result in worse predictions. However, this parameter can be selected in a data driven
way as well. Experiments suggest that this often yields a good trade-off between the robustness
of choosing a small b and the sometimes better predictive capacity of least squares.

213

DEBRUYNE HUBERT SUYKENS

Table 9.1: Simulation results. Upper: Mean Squared Errors. Lower: standard errors. Friedman
1 (F1), Friedman 2 (F2), Friedman 3 (F3), Boston Housing (B), Ozone (O), Servo
(S), Boston Housing with outliers (B+0), Ozone with outliers (O+0) and Servo with
outliers (S+o0). Italic values are significantly different from the smallest value in
the row with p-value in between 0.05 and 0.001 using a paired Wilcoxon rank test;
underlined values are significant with p-value < 1074,

214

b = o (=LS) b=736 | b=26,r | b= Gy || (b= optimized)
LOO CV Gy Cir Cir Cir Cir
F1 1.63 1.63 1.63 1.66 1.70 1.82 1.67
F2 1.30 1.30 1.30 1.42 1.71 3.02 1.39
F3 242 242 2.42 2.42 2.42 2.37 2.38
B 10.58 10.58 10.58 10.82 11.30 12.21 10.79
O 1391 1392 1391 13.76 13.73 13.91 13.94
S 0.40 0.40 0.40 0.43 0.41 0.41 0.40
B+o | 37.54 37.54 37.54 14.60 13.73 12.68 12.78
O+o0 | 78.78 178.78 178.77 21.20 18.85 16.74 16.74
S+o | 1.60 1.60 1.60 0.61 0.54 0.46 0.46
b = = (=LS) b=38., | b=2Ge | b= 06, || (b= optimized)
LOO CV G Cor Cor Cor Cor
F1 0.09 0.09 0.09 0.09 0.10 0.08 0.09
F2 0.14 0.14 0.15 0.16 0.20 0.36 0.15
F3 0.03 0.03 0.03 0.03 0.03 0.05 0.05
B 1.39 139 1.39 1.40 1.46 1.51 1.39
O 086 086 0.87 0.78 0.78 0.75 0.81
S 005 0.05 0.05 0.09 0.08 0.09 0.09
B+o | 291 291 291 1.12 1.09 1.02 1.04
O+o0 | 344 344 344 1.01 0.97 1.03 1.03
S+o | 0.16 0.16 0.16 0.07 0.07 0.08 0.08

9. MODEL SELECTION IN KERNEL BASED REGRESSION USING THE INFLUENCE FUNCTION

Acknowledgments

JS acknowledges support from K.U. Leuven, GOA-Ambiorics, CoE EF/05/006, FWO G.0499.04,
FWO G.0211.05, FWO G.0302.07, IUAP P5/22.

MH acknowledges support from FWO G.0499.04, the GOA/07/04-project of the Research Fund
KULeuven, and the IAP research network nr. P6/03 of the Federal Science Policy, Belgium.

Appendix A.
Proof of Theorem 9.6

Let P be a distribution, z € 2" x % and P, ; = (1 — €)P + €A, with A, the Dirac distribution in
z. We start from the representer theorem of DeVito et al. (2004) (a generalization of (9.13)):

2 fa ke, =B [L'(Y = fr i p.. (X)) P(X)].

By definition of P ; and since [Ex_g(X) = g(z) for any function g:

2Afp kb, = (1= €)EP[L'(Y — f3 kb, (X)) P(X)] + €L (2y — fo & .. (22)) P(2x)-

Taking the first derivative on both sides with respect to € yields

d 0
21&]&,1(4[@)Z =(1—- “a')IEP[—%J(/I.K,Pe,Z x)L"(y — fakpe. (X)) P(X)]

—Ep[L'(Y = fo k pe, X)) PX)] + L' (2y — f.k 1., () P(2x)

0
- E(Q*Ele,l(,z)&z (Zx))L”(Zy - f)L,K,PE,z (22))@(2x)-

The second derivative equals

2] 0
22 %f)uuﬂ&z =—Ep[- %fl,K,Pg,z (X)L"(Y = fo k. p,..(X))P(X)]

(1= €ER e o COLY ik (X)) RX)]

(1= OBl fuin COL Y~ e (X))~ 2 o (X)) @Y
BRI Y ~ k(X0 m o (X)) @Y

2 kL ko, (2R

—¢€ %f 2K Pe (2L (2y = [k Py (22))P(20)

a " a
- ngx,K,Pg_Z (ze)L" (zy = fa kP (20)) (— %fl,K,Pg_z (22))®@(2x)

1 a
—L'(zy = fak pe.(2x) gf 2K Py (20) P (2x)-

215

DEBRUYNE HUBERT SUYKENS
Simplifying yields
ke =2ER s o O Y — fo g (X)) BLX)] ©0.23
(1 BP0 frkrn O (Y~ fo e, (X)X
0= 8 o 00) 70 o 00)2(3)

0
- 2%&,&&‘2 (2L (2y = fr kP (20)) P (22)

d
- «‘J%f/l,K,P&Z (z0)L" (zy = fa ke (20))P(2x)

9 2
+& ((%fx,K,P“ (Zx)> L" (zy = fr ke (20) P ()

Evaluating at € = 0 and bringing all terms containing aize fa.kp., to the left hand side of the
equation yields

0 0
22 %JC/I,K,P&Z le—o0+ IEP[%JCLK,P&Z (X)|e=oL" (Y — fr x.p(X))P(X)]

= 2B5 2 ik (X)lecoL (Y — fo e p () 0(X)]

2
+El(Gk Je-o(X)) L7 = i p(X)

0
—ngA,K,P(Zx) le=oL" (zy — f2 k.p(2x))@(2x).

Since by definition %fl’[{_’})&z le=0 is IF (z; f3 k,P) and aizef,l?,(’p“ le=0 is IF2(z; f3 k, P) we have
that '

S(IFy(z: fa k- P)) = 2Ep[IF (z: f k., P) (X)L" (Y — fo k p(X))P(X)]

+Ep[(IF (2 ok P) (X)) L" (Y — fix p(X))
—2UF (2 f k. P) (@)L (23 — fr ik p(20)) D (2)

with the operator S defined by S: f — A f +EpL"(Y — fj x p(X))f(X)®(X). Christmann and
Steinwart (2007) prove that S is an invertible operator and thus Theorem 9.6 follows.

Proof of Theorem 9.7
First we proof the following for all 2 < k € N:

0 0
22 aTgf/l,K(Ps.z) =(1- E)EP[_T/CSfA,K,PE‘Z (X)L"(Y - TP, (X)) D(X)] (9.24)
0
+ kEP[ﬁfA,K,PE_Z (X)L"(y — fakp., (X)) P(X)]
0
—kL" (zy = fak.p.. (22)) ﬂf 4K P, (22) P (2x)

d
€L (2~ frk e (20) 3z frs ()220,

216

9. MODEL SELECTION IN KERNEL BASED REGRESSION USING THE INFLUENCE FUNCTION

Note that for k = 2 this immediately follows from (9.23). For general k we give a proof by
induction. We assume that (9.24) holds for k and we then prove that it automatically holds for
k41 as well. Taking the derivatives of both sides in (9.24) we find

0 0
lmfA,K(Ps,z) =(1- S)EP[_W]CX,K,PE‘Z (X)L"(Y = fok.p.. (X)) D(X)]

Ebl e fran COLY — fo e, (X)X

PR 0 ik (LY — i e, (X)) (X))

d
- kaik‘c:f}u,lf,Pg‘z (ZX)LH(Zy - fA,K,Pg,Z (ZX>)CI)(ZX>
d
- EmfA,K,PE,Z (Zx)LN (Zy - f/l,K,P&Z (2x))P(22)
d

- %fA,K,P&Z (Zx)LN (Zy - K Pe (Zx))P ()

from which it follows that (9.24) holds for £+ 1 indeed. Evaluating this expression in € =0
yields:

J J "
A mfl,K(Pe,z) le=0 + EP[mfA,K.PS,Z (X)[e=oL" (Y — f1 kP, (X)) P(X)]
0
= (k+ 1)IF‘JP[%JCA,ICJD&Z (X)[e=oL" (Y — frxp, (X)) P(X)]

a "
—(k+ 1)%fl,K,Pg,z le=0(zx)L (Zy - f)L,K,Pg,Z (2x))D(22)-

Thus
S(IFe1(z fax,P)) = (k+1) (EP[IFk(Z;fk,KaP)(X)LH(Y — fax(X))P(X)]

— [IF(z5 fa k0 P) (2x)L" (29 — f/l,K(ZX))(D(ZX)]) :

Since S is an invertible operator the result in Theorem 9.7 follows.

References

D.D. Boos and R.J. Serfling. A note on differentials and the CLT and LIL for statistical func-
tions. Annals of Statistics, 8:618-624, 1980.

O. Bousquet and A. Elisseeff. Stability and generalization. Journal of Machine Learning Re-
search, 2:499-526, 2001.

A. Christmann and I. Steinwart. On robust properties of convex risk minimization methods for
pattern recognition. Journal of Machine Learning Research, 5:1007-1034, 2004.

A. Christmann and I. Steinwart. Consistency and robustness of kernel based regression.
Bernoulli, 13:799-819, 2007.

M. Debruyne, A. Christmann, M. Hubert, and J.A.K. Suykens. Robustness and stability of
reweighted kernel based regression. Journal of Multivariate Analysis, 101:447-463, 2010.

217

DEBRUYNE HUBERT SUYKENS

E. DeVito, L. Rosasco, A. Caponnetto, M. Piana, and A. Verri. Some properties of regularized
kernel methods. Journal of Machine Learning Research, 5:1363-1390, 2004.

T. Evgeniou, M. Pontil, and T. Poggio. Regularization networks and support vector machines.
Advances in Computational Mathematics, 13:1-50, 2000.

L.T. Fernholz. Von Mises Calculus for Statistical Functionals. Lecture Notes in statistics 19,
Springer, New York, 1983.

FER. Hampel, E.M. Ronchetti, PJ. Rousseeuw, and W.A. Stahel. Robust Statistics: The Ap-
proach Based on Influence Functions. Wiley, New York, 1986.

P.J. Huber. Robust Statistics. Wiley, New York, 1981.

S. Kutin and P. Niyogi. Almost everywhere algorithmic stability and generalization error. In
A. Daruich and N. Friedman, editors, Proceedings of Uncertainty in Al. Morgan Kaufmann,
Edmonton, 2002.

T. Poggio, R. Rifkin, S. Mukherjee, and P. Niyogi. General conditions for predictivity in learn-
ing theory. Nature, 428:419-422, 2004.

J.A.K. Suykens, J. De Brabanter, L. Lukas, and J. Vandewalle. Weighted least squares sup-
port vector machines : Robustness and sparse approximation. Neurocomputing, 48:85-105,
2002a.

J.A K. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor, and J. Vandewalle. Least Squares
Support Vector Machines. World Scientific, Singapore, 2002b.

A.N. Tikhonov and V.Y. Arsenin. Solutions of Ill Posed Problems. W.H. Winston, Washington
D.C., 1977.

G. Wahba. Spline Models for Observational Data. CBMS-NSF Regional Conference Series in
Applied Mathematics, SIAM, 1990.

218

Part IV
Ensemble Methods

Overview

Ensemble methods, to a large extent, circumvent the problem of hyperparameter selection, by
averaging the predictions of many models. In recent challenges we have organized, ensem-
ble methods always demonstrated excellent performances. The overall winner of both the
performance prediction challenge and the ALvsPK challenge (agnostic track), Roman Lutz,
uses a serial ensemble called Logitboost (see Fact sheet in Appendix B), a gradient-based
shallow tree-classifier “boosting” method, performing logistic regression. Boosting methods
are serial ensembles incorporating progressively classifiers, which reduce the residual error by
focusing on remaining misclassified examples. In contrast, “bagging” methods yield parallel
ensembles, all members of the ensemble being trained independently on a bootstrap sample
of the training data, drawn at random with replacement. In Chapter 10, Corine Dahinden re-
ports results obtained with Random Forest, an parallel ensemble method based on “bagging”
tree classifiers, which obtained fourth place overall in the performance prediction challenge. In
Chapter 11, Eugene Tuv, Alexander Borisov, George Runger, and Kari Torkkola propose a
combination of parallel and serial ensembles based on gradient tree boosting and on bagging
feature selection. The authors obtained eighth place in the performance prediction challenge
and second place in the ALvsPK challenge (agnostic track). In Chapter 12, Vladimir Nikulin
explores the methods of boosting and bagging with other predictors than decision trees,
including least-square kernel methods and naive Bayes and performs a rather extensive method
comparison. His methods allowed him to win first place in the ALvsPK challenge (prior knowl-
edge track).

221

222

Chapter 10

An Improved Random Forests Approach with Application to
the Performance Prediction Challenge Datasets

Corinne Dahinden DAHINDEN @ STAT.MATH.ETHZ.CH
Seminar fiir Statistik
CH-8092 Ziirich, Switzerland

Editor: Isabelle Guyon

Abstract

Random Forests is a popular ensemble technique developed by Breiman (2001) which yields
exceptional performance. These excellent results are achieved with little need to fine-tune
parameters. The method is computationally effective, does not overfit, is robust to noise and
can also be applied when the number of variables is much larger than the number of samples.
We propose a slightly modified Random Forests scheme, with cross-validation as a means for
tuning parameters and estimating error-rates. This simple and computationally very efficient
approach was found to yield better predictive performance on the WCCI 2006 Performance
Prediction Challenge datasets than many algorithms of much higher complexity.

Keywords: Random Forests, Ensemble Methods

10.1. Introduction

During the last couple of years, an overwhelming variety of new classification algorithms have
been developed. It was, and still is a rapidly evolving field, as the constant influx of new appli-
cations creates a need for novel prediction approaches. Many of these methods focus on special
cases, as for example in Bioinformatics, where the small m - large n phenomenon, i.e. many
features but few samples, drew a lot of attention. Just for this particular application, dozens
of algorithms are praised to perform well, but the existence of so many possible classifiers also
makes it hard to keep track and choose the best one. That said, neither is there a widely accepted
consensus on a method that performs well on a wide range of problems from different appli-
cations. Of course we cannot expect a single algorithm to work optimally on all conceivable
applications and moreover, tuning and tailoring classifiers for a special task at hand is difficult,
and mostly requires laborious human interaction. Nevertheless, we regard it as desirable to have
an algorithm with relatively few hyperparameters, a minimal requirement of human input, good
predictive performance on a wide array of datasets from different fields and low computational
cost.

As far as predictive performance is concerned, in recent years, a number of works have re-
ported that ensembles of base learners exhibit substantial performance improvement over single
base learners. The resulting classifiers, referred to as ensemble classifiers, are the aggregation
of classifiers whose individual decisions are combined by weighted or unweighted voting to
classify new samples. Bagging (Breiman, 1996) and Boosting (Freund and Schapire, 1996) are
well-known and popular representatives of this methodology.

© C. Dahinden.

DAHINDEN

While examining the datasets for the WCCI 2006 Performance Prediction Challenge, we
tried a number of different algorithms and observed that ensemble techniques outperformed
other methods by far.

It might be surprising that our final decision fell on a relatively simple algorithm, namely
Random Forests (Breiman, 2001) with small adaptations. This method performs very well, if
not best, on all five datasets of the Challenge which were our test datasets. Random Forests has
shown its success on many applications, and was a very strong competitor in the NIPS 2003
Challenge as well (Saffari, 2006).

10.2. Algorithm

We put our main focus on finding a classifier with good predictive power in the first instance
and estimated the prediction performance simply by cross-validation.

Predictive power is measured in terms of the balanced error rate (BER) which is the average
of the error rates in each class. The datasets under consideration have binary response variables
i € {—1,1},k € {1,...,m} and the response vector is denoted by Y. The input variables are
stored in a matrix X € R™*". The rows consist of the m samples x; € R" and the columns of
the n different variables. A new observation to be classified is denoted by « € R”. We apply
Random Forests, an ensemble method, that combines the output from multiple base learners to
improve the performance by using their weighted outcome to predict new data. It can easily
handle large numbers of input variables and provides an importance measure for each variable,
making it also suitable for variable selection.

10.2.1. Classification and Regression Trees — CART

Random Forests are made up of an ensemble of decision trees. A prominent method for fit-
ting trees is CART, an acronym for Classification and Regression Tree (Breiman et al., 1984).
Trees are iteratively built by recursively partitioning the data into regions Ry, ..., Ry, so-called
nodes. The procedure is graphically displayed on the basis of a two-dimensional feature space
in Figures 10.1 and 10.2 below. The decision which node R; is further split at which variable
Jj depends on the value of a specific splitting criteria, a so-called impurity measure. For clas-
sification, CART uses the Gini-index as impurity measure. For binary response variables, the
Gini-index at a node R; is calculated by the following expression:

IG(’): ﬁti(l_ﬁti)7

o

I
-

1

where py; is the probability of class i estimated from the samples in node ¢, e.g. if the node
R; represents a region with N; observations, p;; = N% Yoer ! (yi = i) is the estimation of this
probability. At each step in the algorithm, the node R; is split at the variable j and split point s
into a pair of half-planes, so-called subnodes R, = {« € R;|x; < s} and Rig = {x € R¢|x; > s}.
The variable j and the split point s are chosen to maximize the decrease in Gini-index. The
decrease in the Gini-index due to a split on variable j and node ¢ is

Alg(xj,t) = I6(t) — pil(tL) — pirlG(tR).

To prevent the decision tree from overfitting the data, the growth of the tree has to be halted at
a predefined stopping criterion or alternatively, the tree can be grown to maximum depth and
then pruned. To illustrate the procedure, we assume a two-dimensional feature space. First,
the feature space is divided into two rectangles R; and R; at the split point s; (see left side of

224

10. AN IMPROVED RANDOM FORESTS APPROACH

Figure 10.1). The feature space is then recursively partitioned into a set of rectangles R; ...R5
(see right side of Figure 10.1). The final model can be graphically represented in a tree repre-
sentation such as can be seen in Figure 10.2.

R,
754
MN R1 R2 v R1 R3
mN R4
R,
Sx S 83

Figure 10.1: Left: The first split is performed at variable x; at split point s; and the feature
space is divided into two rectangles R; and R,. Right: Recursive partition of
feature space in a set of rectangles.

X
1> S1
X2>82 X1>S3
X2>S4
RR, R,
R, R,

Figure 10.2: Tree representation of the final CART model.

For classifying a new observation, the input vector is put down the tree. This means that
we check to which rectangle R; the new observation belongs to (see e.g. Figure 10.2). Within
that rectangle the classification is performed by majority voting. This means that the most
frequent label within that rectangle is assigned to the new observation. A more comprehensive
description on how to build classification trees is given in Breiman et al. (1984).

10.2.2. Random Forests

Random Forests grows a number of such classification trees. Each tree is grown as follows:

1. A tree of maximal depth is grown on a bootstrap sample of size s of the training set. This
means that we sample s observations with replacement from the training set and fit a tree
using this so-called bootstrap sample. No pruning is performed.

225

DAHINDEN

2. A number s which is much smaller than the total number of variables s < n (typically
\/n) is specified, such that at each node, s variables are sampled at random out of the n.
The best split on these variables is used to split the node into two subnodes.

The final classification is given by majority voting of the ensemble of trees in the forest. In
contrast to bagging, an additional layer of randomness is included in step 2 of the algorithm
above. Instead of just constructing trees of different bootstrap samples, step 2 changes the way
the individual trees are constructed, namely at each node the splitting variable is not chosen
among all variables but the best possible split among a random subset of variables is performed.

For our calculations we used the statistical software R (see R Development Core Team,
2007) and the package randomForest by Liaw and Wiener (2002). There are basically two
tuning parameters to adjust for in the Random Forests function in R: The number of trees to
grow and the number of possible splitting variables which are sampled at each node. However,
as is mentioned in Liaw and Wiener (2002), we have also observed that the sensitivity to those
is minimal and the default values are a good choice.

10.2.3. Adaptation of Random Forests

Our experience based on the application of Random Forests to the Performance Prediction Chal-
lenge datasets is that the method performs very well using the R implementation with default
values. It has also been shown on other datasets that Random Forests is superior to compared
classifiers (see for example Breiman, 2001). However, especially for very unbalanced datasets,
there is some potential for improvement, as we noticed while working on the Challenge datasets
and was also observed by others (see for example Dudoit and Fridlyand, 2002). Although Ran-
dom Forests has options to balance the error rates in unbalanced settings, that is either the
introduction of additional class weighting parameters or sampling techniques such as down-
sampling the majority class or over-sampling the minority class, the corresponding outputs did
not fully satisfy us. To improve the performance, we use a slight adaptation of the above algo-
rithm described below.

Random Forests assigns probabilities p; to observations. These are the probabilities that the
observation belongs the class i. These probabilities are calculated by the fraction of votes for
the corresponding class in the training data. Since the BER is used as performance measure,
erroneous prediction in the minority class is penalized harder than a misclassification in the
majority class. Therefore the cutoff is lower than 0.5, so that doubtful samples are more likely
assigned to the class with fewer observations. Theoretically, for unbiased probability estimates,
it is optimal to set the cutoff equal to the proportion of samples in the minority class, e.g. for the
Ada dataset, a sample is classified as +1 if p; > 0.248, where 0.248 is the fraction of samples
belonging to the minority class. For reasonably balanced datasets, like Ada with a fraction of 1/4
belonging to the minority class, this works very well with standard Random Forests. However,
our experience is that for very unbalanced settings, it proves beneficial to assign an observation
to the minority class already at a lower cutoff than this proportion. We optimize this cutoff by
cross-validation (see Figure 10.3). This adaptation improves the cross-validated balanced error
rate for unbalanced datasets considerably, while the impact for balanced datasets is low (see
Figure 10.4 and Tables 10.1 and 10.2). The reason why this cutoff optimization is necessary
might be that Random Forests leads to biased probability estimates in very unbalanced settings.
To estimate the accuracy, 10-fold cross-validation is performed. One could also use the out-of-
bag samples (those which are left out while fitting the tree) to perform the cutoff-optimization
and then do cross-validation using the optimized cutoff. To estimate the performance prediction,
which was also part of the Challenge’s scope, we used this cross-validated estimation of the
error rate.

226

Hiva Dataset

0 J
< 4 |
© [Cutoff proportional to classes
| --- Optimized cutoff
o .
3 4 |
S I
« |
a 3 :
(=} "
S .
@ o '
o "

0.0 0.2 0.4 0.6 0.8

Cutoff

BER

0.15

0.10

0.05

10. AN IMPROVED RANDOM FORESTS APPROACH

Sylva Dataset

—— Cutoff proportional to classes
--- Optimized cutoff

0.0

0.2 0.4 0.6 0.8

Cutoff

Figure 10.3: Cross-Validated BER in dependence of the cutoff value for imbalanced datasets.

Ada Dataset

o
&
© —— Cutoff prop. to classes
--- Optimized cutoff
w0
c N4
w (=}
)
o
& 4
S

0.0 0.2 0.4 0.6 0.8

Cutoff

BER

0.5

0.4

0.3

0.2

0.1

0.0

Gina Dataset

—— Cutoff prop. to classes
--- Optimized cutoff

Cutoff

Figure 10.4: Cross-Validated BER in dependence of the cutoff value for balanced datasets.

227

DAHINDEN

10.3. Results

The results of the application of the standard Random Forests procedure without cutoff-adaptation
are summarized in Table 10.1. Table 10.2 yields the results with cutoff-adaptation. Cutoff stands
for the estimated optimal cutoff, calculated by cross-validation. In a second cross-validation
step on the training set, the estimation for the error rate CV BER is calculated with the cutoff
delivered by the first cross-validation. In addition, for the Nova dataset which originally in-
cludes 16969 features and 1754 samples, we reduced the feature dimensionality to 400 by just
using the first 400 principal components. For the other datasets, no preprocessing was needed.
We used 4000 trees for all datasets. As far as computing time is concerned, it took approx-
imately 2 minutes to fit the Random Forests model to the Ada dataset with 48 features and
4147 observations and 2 hours to fit the forest to the Hiva dataset with 1617 features and 3845
observations. The calculations were made on a dual core AMD Opteron 2.6 GHz with 32 GB
RAM.

Table 10.1: Results without

cutoff-adaptation. Table 10.2: Results with cutoff-adaptation.
Dataset (6\Y BER on Dataset Theoretical | Estimated | CV BER on
BER test set Cutoff Cutoff BER test set
Ada 0.174 0.191 Ada 0.248 0.20 0.165 0.180
Gina 0.056 0.049 Gina 0.492 0.46 0.049 0.041
Hiva 0.272 0.291 Hiva 0.035 0.13 0.270 0.299
Nova 0.083 0.084 Nova 0.285 0.34 0.053 0.053
Sylva | 0.0191 | 0.0250 Sylva 0.062 0.19 0.0065 | 0.0054

One can clearly see the improvement of the cross-validated error rate, if the cutoff is opti-
mized. In addition, the balanced error rate on the test set is listed. The number of samples in
the test set is approximately ten times the sample size of the training set.

In addition, in Table 10.3 our results are directly compared to the Challenge’s best entries.
We clearly see that the adapted Random Forests procedure works fairly well on all dataset.
Even though it has no top ranking entry, its performance seems to be good for a wide range of
problems without further individual dataset adaptations.

10.4. Conclusions

Our research in the course of the WCCI 2006 Performance Prediction Challenge, left us with
the experience that Random Forests seems to keep up even with the most sophisticated algo-
rithms, as far as the predictive performance is concerned. Applying plain standard Random
Forests to the five WCCI 2006 Performance Prediction Challenge datasets leads to very com-
petitive prediction results. However, we suggest a novel extension where the cutoff parameter
is tuned by cross-validation, instead of just using a fixed threshold that is proportional to the
fraction of samples in the minority class. The tuning is done by cross-validation and can be
fully automated. We have shown that this leads to a considerable performance improvement on
the Challenge datasets, especially for very unbalanced data. In addition, Random Forests only
requires small computing efforts, can deal with many input variables and only needs a minimum
of human interaction in the fitting process to perform well.

228

10. AN IMPROVED RANDOM FORESTS APPROACH

Table 10.3: Comparison of our best entries with the Challenge’s best entries.

Our best entry
Dataset | Test Test BER guess Test score
AUC BER guess error rank

Ada 0.8200 0.1800 0.1650 0.0150 | 0.1950 (16)
Gina 0.9587 0.0413 0.0490 0.0077 0.0490 (17)
Hiva 0.7009 0.2994 0.2700 0.0294 | 0.3284 (32)
Nova 0.9470 0.0530 0.0530 0.0000 | 0.0530 (15)
Sylva 0.9946 0.0054 0.0065 0.0011 0.0065 (3)
Overall 0.8842 0.1158 0.1087 0.0106 16.6

The Challenge’s best entry

Dataset | Test Test BER guess Test score
AUC BER guess error rank
Ada 0.9149 0.1723 0.1650 0.0073 0.1793 (1)
Gina 0.9712 0.0288 0.0305 0.0017 0.0302(1)
Hiva 0.7671 0.2757 0.2692 0.0065 0.2797 (1)
Nova 0.9914 0.0445 0.0436 0.0009 0.0448 (1)
Sylva 0.9991 0.0061 0.0060 0.0001 0.0062 (1)
Overall 0.8910 0.1090 0.1040 0.0079 6.2
Acknowledgments

I would like to thank Professor Peter Biithlmann for the encouragement and the helpful com-
ments.

References
Leo Breiman. Bagging predictors. Machine Learning, 24(2):123-140, 1996.
Leo Breiman. Random forests. Machine Learning, 45(1):5-32, 2001.

Leo Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regression
Trees. Statistics/Probability Series. Wadsworth Publishing Company, Belmont, California,
U.S.A., 1984.

Sandrine Dudoit and Jane Fridlyand. Statistical Analysis of Gene Expression Microarray Data,
chapter Classification in microarray experiments. CRC Press, 2002.

Yoav Freund and Robert E. Schapire. Experiments with a new boosting algorithm. In Interna-
tional Conference on Machine Learning, pages 148—156, 1996.

Andy Liaw and Matthew Wiener. Classification and regression by randomforest. R News, 2(3):
18-22,2002. URL http://CRAN.R-project.org/doc/Rnews/.

R Development Core Team. R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria, 2007. URL http://www.
R-project.org. ISBN 3-900051-07-0.

229

http://CRAN.R-project.org/doc/Rnews/
http://www.R-project.org
http://www.R-project.org

DAHINDEN
Amir Saffari. Variable Selection using Correlation and Single Variable Classifier Methods:

Applications, chapter Feature Extraction: Foundations and Applications, pages 343-358.
Springer-Verlag, 2006.

230

Journal of Machine Learning Research 10(Jul):1341-1366, 2009 Submitted 5/08; Revised 3/09; Published 6/09

Chapter 11

Feature Selection with Ensembles, Artificial Variables, and
Redundancy Elimination

Eugene Tuv EUGENE.TUV @INTEL.COM
Intel, Logic Technology Development
Chandler, AZ, USA

Alexander Borisov ALEXANDER.BORISOV @INTEL.COM
Intel, Logic Technology Development
N.Novgorod, Russia

George Runger RUNGER @ ASU.EDU
Arizona State University
Tempe, AZ, USA

Kari Torkkola KARITO @ AMAZON.COM
Amazon.com
Seattle, WA, USA

Editor: Isabelle Guyon and Amir Reza Saffari

Abstract

Predictive models benefit from a compact, non-redundant subset of features that improves inter-
pretability and generalization. Modern data sets are wide, dirty, mixed with both numerical and
categorical predictors, and may contain interactive effects that require complex models. This is
a challenge for filters, wrappers, and embedded feature selection methods. We describe details
of an algorithm using tree-based ensembles to generate a compact subset of non-redundant fea-
tures. Parallel and serial ensembles of trees are combined into a mixed method that can uncover
masking and detect features of secondary effect. Simulated and actual examples illustrate the
effectiveness of the approach.

Keywords: trees, resampling, importance, masking, residuals

11.1. Introduction

Large data sets are becoming the norm and traditional methods designed for data sets with
a modest number of features will struggle in the new environment. This problem area was
described by Guyon and Elisseeff (2003) along with other publications in the same issue, and it
has increased in importance since then. Additional comments and examples have been provided
by Liu and Yu (2005) in a recent survey article.

11.1.1. Feature Selection

There are three major categories of feature selection methods. Filter methods score variables,
typically individually, and eliminate some before a model is constructed. The filter needs to be
generated carefully to relate well to the requirements of the modeling task. In particular, the
filter may not consider the value of one variable in the presence of others. For example, the
widely-used value difference metric (VDM) (Stanfill and Waltz, 1986) and its modified version

© 2009 E. Tuv, A. Borisov, G. Runger & K. Torkkola.

TuV BORISOV RUNGER TORKKOLA

(MVDM) (Cost and Salzberg, 1993) consider the conditional probability distribution of the
response at a predictor value. Such a measure is not sensitive to the effects of some predictors
in a model with others present even though interactions among predictors might be critical
for an effective subset. A sequential, subset search is sometimes implemented to improve the
performance when interactions are important, although a greedy search also has disadvantages
in the presence of interactions. Several common filter methods such as ReliefF (Robnik-Sikonja
and Kononenko, 2003), CFS (Hall, 2000), and FOCUS (Almuallin and Dietterich, 1994) were
modified with sequential search and compared by Yu and Liu (2004).

Wrapper methods form a second group of feature selection methods. The prediction ac-
curacy (or the change in accuracy) of a model directly measures the value of a feature set.
Although effective, the exponential number of possible subsets places computational limits for
the wide data sets that are the focus of this work.

Embedded methods form a third group for feature selection. These methods use all the
variables to generate a model and then analyze the model to infer the importance of the vari-
ables. Consequently, they directly link variable importance to the learner used to model the
relationship.

11.1.2. Subset Feature Selection

Fundamentally, the goal of feature selection is to model a target response (or output) variable y,
with a subset of the (important) predictor variables (inputs). This is a general goal and several
more specific objectives can be identified. Each can lead to different strategies and algorithms.
In filtering the interest is to remove irrelevant variables. Another objective is variable ranking
where the interest is in obtaining relative relevance for all input variables with respect to the
target. Finally, we might be interested in a compact, yet effective model, where the goal is to
identify the smallest subset of independent features with the most predictive power, although
a few alternative groups might be reasonable. An important concept here is the masking re-
lationships among the predictor variables. Masking occurs when one variable can effectively
represent others in a model. Along with the related issue of masking, this paper focuses on the
subset selection.

11.1.3. Contributions of this Paper

Existing tree ensembles such as random forest (Breiman, 2001) or gradient boosting trees
(Friedman, 1999) were developed primarily for predictive modeling. In addition, they can pro-
vide an importance ranking of the features, but this information has been considered an ad hoc
benefit. Random forest (RF) is a random subspace method, and is capable of efficiently ranking
features for large data sets. We exploit this property of RF, augment the original data with ar-
tificial contrast variables constructed independently from the target, and use their ranking for
removal of irrelevant variables from the original set. The tree construction method is also mod-
ified to produce a more reliable variable ranking in the presence of high cardinality variables.
A variable masking measure is then introduced that incorporates surrogate variable scores from
ensembles of trees. This forms the basis for redundancy elimination. Residual effects are cal-
culated to enable the method to detect variables of secondary importance. These elements are
integrated into an efficient algorithm for subset selection called ACE (artificial contrasts with
ensembles).

The structure of this paper is as follows. In Section 11.2 we describe previous work and out-
line directions taken in this paper. Section 11.3 describes variable importance measures defined
through tree ensembles and explains how they could be used to remove irrelevant features using
random, artificial features. Next, we introduce a masking measure and use it for redundancy

232

11. FEATURE SELECTION WITH ENSEMBLES

elimination. Section 11.4 describes the details of the ACE algorithm to generate the selected
subset, and compares ACE with its closest competitors in detail. Section 11.5 provides results
from experiments. Section 11.6 provides conclusions.

11.2. Background

This section defines the problem of finding the best subset of features, discusses previous ap-
proaches, and outlines our solution.

11.2.1. Markov Boundaries

Let F be a full set of features. A feature selection solution can be described in terms of a Markov
blanket (Koller and Sahami, 1996). Given a target feature Y, let M C F and Y ¢ M. M is said
to be a Markov blanket for Y if Y | (F — M)|M. That is, Y is conditionally independent of other
features given M. A minimal Markov blanket is referred to as Markov boundary (MB) and such
a subset might be considered a feature selection solution. However, an important issue is that
a MB need not be unique. Redundant features can replace others in a feature subset. Usually
feature redundancy is defined in terms of feature correlation (Hall, 2000). For example, two
features are redundant to each other if their values are completely correlated. In reality, it is not
so straightforward to determine feature redundancy if a feature is partially correlated to a set of
features.

Our goal is to focus on the important case with redundant features and obtain at least one
MB. In most real-life problems exactly determining the MB or measuring feature relevance is
very difficult because of a limited sample size, high time complexity, and noise in the data.
Furthermore, evaluation of the distribution of the input variables and the response always relies
on some model (linear, support vector machine, frequency tables, trees, etc.). In practice, most
algorithms just try to remove irrelevant features and then apply some heuristics that remove
“possibly" redundant variables.

11.2.2. Existing Approaches in Feature Selection

The nature of real life data sets provides strong restrictions for model fitting and feature selection
methods. First, data sets may be very large both in terms of the number of predictors and in
the number of samples (tens of thousands x tens of millions). Second, the predictors and the
response can be of mixed type (both numeric and categoric), and can contain missing values.
Lastly and also very importantly, dependency of the response on predictors can be highly non-
linear, noisy and multivariate.

This leaves most existing methods out of scope for such problems. For example, wrapper
methods (forward selection or backward elimination) are simply computationally unfeasible
when dealing with thousands of predictors. Filter methods are also useless for the minimal
subset selection problem, as they do not deal with the notion of redundancy and most of them are
inherently univariate. However, there are filters that use a “local” feature importance measure
(like RELIEF) that can be considered multivariate (Kira and Rendell, 1992), but still they do not
deal with redundancy giving just a ranked list of features instead of a selected minimal subset.

Subset evaluation filter methods such as CFS (Hall, 2000) are neither suitable because they
do not deal explicitly with redundancy, and have to iterate over many feature subsets incurring
a high time complexity. For example, the time complexity of the CFES is at least quadratic in the
number of features and linear in number of samples. Also CFS is highly sensitive to outliers as
it uses correlations between features.

233

TuV BORISOV RUNGER TORKKOLA

Many embedded methods that use a built-in feature relevance measurement, such as SVM-
RFE (Guyon et al., 2002) and linear regression with backward feature elimination are heavily
dependent on the model (linear or SVM), that can fail to fit the data well. These methods have
at least quadratic complexity in the number of samples for fitting an SVM and at least cubic
complexity in the number of features (O(nm2 +m?), where m is the number of features, and n is
number of samples) for fitting a regression model. Data sets with tens of thousands of features
or samples become very time consuming and impractical to handle. For example, SVM-RFE
involves retraining the SVM after features with smallest relevance are removed, thus incurring
at least cubic complexity in number of samples (O(max(m,n)n?)).

An issue that discourages using regression methods and methods that rely on some kind of
distance measure between observations (linear regression, SVM, Kernel-based methods, RE-
LIEF) is the difficulty of dealing with outliers in the input (predictor) space. Also, selection of
important model parameters (kernel width and type, feature relevance thresholds, etc) is non-
obvious, and the results of feature selection depend heavily on them.

Most methods return just a ranked list of features instead of an optimal subset. These meth-
ods include RELIEF, Koller’s Markov blanket based backward elimination (referred to here as
MBBE) (Koller and Sahami, 1996), and SVM-RFE. Some methods such as FCBS use a rel-
evance threshold that is not clear how to adjust (Yu and Liu, 2004). In reality, the user also
obtains a number of feature subsets corresponding to different values of parameters without a
hint of how to choose the best subset.

Many methods work with frequency tables. They can thus deal well with categorical inputs
only. For numerical inputs, they require discretization. Such methods are not always able to
deal with interacting variables and have great difficulties with multivariate dependencies on
numerical inputs. Examples of such methods are FCBS and MBBE. These two algorithms
need discretization because they use an entropy measure computed on frequency tables. If the
number of categories is large, or if we use frequency tables with more than two inputs, the
tables can be sparse and may not represent the data distribution well. Another issue for MBBE
is computational complexity. Considering all feature pairs incurs a quadratic complexity on the
number of features.

Hence we see that most methods at hand are either not applicable at all to the best subset
selection problem, or have some major problems. The most useful methods in such a setting
(that appeared to be applicable to the examples of large “real-life” data in the challenge data
sets discussed in Section 11.5.3) are methods based on backward feature elimination using an
approximate Markov blanket concept (Koller and Sahami, 1996; Yu and Liu, 2004). Our method
approximates the optimal Markov blanket redundancy elimination procedure, but without most
of the drawbacks of previous methods.

11.2.3. Towards Efficient and Approximately Optimal Feature Selection

We propose a method that uses an idea similar to those proposed by Koller and Sahami (1996)
and Yu and Liu (2004) that tries to overcome their limitations. It does not have quadratic time
complexity in the number of features, can deal with thousands of predictors, uses a model
(ensembles of trees) that can be applied to mixed variable types, thus eliminating need for
discretization of numeric inputs, does not require imputation of missing values, captures local
information (like RELIEF), is invariant to a monotone transformation of inputs, thus not very
sensitive to noise and outliers, and deals well with multivariate dependencies.

It is well known that trees and especially ensembles of trees can provide robust and accurate
models in “real-life” data settings. They handle mixed and noisy data, and are scale insensitive.

234

11. FEATURE SELECTION WITH ENSEMBLES

Ensembles of trees have high predictive power and are resistant to over-fitting (Breiman, 2001).
Our approach relies heavily on ensembles of trees.

First, we find irrelevant features that are conditionally independent of the response given
the rest of the features. It is accomplished by comparing the relevance of the original variables
with the relevance of random, artificial features (appended to the original data) constructed
from the same distribution, but independently from the response. These features are referred to
as artificial contrasts. We measure feature relevance as variable importance in random forests
with a modified robust splitting criteria. We assume that if an original variable had a relevance
score not statistically higher than that of an artificial probe (independent from the target by
construction) then it is also independent from the target, irrelevant, and should be removed. Note
that we try to remove irrelevant features by directly assessing conditional independence without
searching for a MB, the existence of which is a much stronger requirement. Although the idea
of artificial contrasts was already used by other researchers in simple filter methods with success
(Stoppiglia et al., 2003), its application to tree ensembles is novel and promising. Actually, our
approach can be considered as non-parametric because all parameters in our algorithm can be
assigned reasonable default values that work well for wide range of problems.

Then the redundant feature elimination step is performed. Redundancy between features
is measured using surrogate scores. The variable with the largest impurity reduction score
at a node is the primary splitter. If surrogate variables (ones that partition the node in same
way as the primary variable) are present, these surrogate variables are considered as “masked”.
Masking scores between all pairs of important variables are computed and evaluated using a
statistical test, and variables masked by more important variables (“approximately redundant™)
are removed iteratively.

Finally, after a set of non-redundant relevant features has been found, our method removes
the influence of the found subset with an ensemble and proceeds. Because redundancy elimi-
nation is approximate in nature this iterative approach is another advantage of our method. It
allows one to recover variables with small importance and to reduce the chance to lose important
variables during redundancy elimination.

11.3. Tree Ensembles for Feature Selection

For our embedded method, we focus on ensembles of decision trees for the following reasons.
Trees can be applied in ubiquitous scenarios so that they provide a good entry point for feature
selection for interdisciplinary, wide data sets. They apply to either a numerical or a categorical
response. They are nonlinear, simple and fast learners that handle also both numerical and
categorical predictors well. They are scale invariant and robust to missing values. A simple
decision tree also provides an embedded measure of variable importance that can be obtained
from the number and the quality of splits that are generated from a predictor variable. However,
a single tree is produced by a greedy algorithm that generates an unstable model. A small
change to the data can result in a very different model. Consequently, ensemble methods have
been used to counteract the instability of a single tree.

Supervised ensemble methods construct a set of simple models, called base learners, and
use their weighted outcome (or vote) to predict new data. That is, ensemble methods combine
outputs from multiple base learners to form a committee with improved performance. Numer-
ous empirical studies confirm that ensemble methods often outperform any single base learner
(Freund and Schapire, 1996; Bauer and Kohavi, 1999; Dietterich, 2000a). The improvement
can be dramatic when a base algorithm is unstable. More recently, a series of theoretical de-
velopments (Bousquet and Elisseeff, 2001; Poggio et al., 2002; Mukherjee et al., 2006; Poggio
et al., 2004) also confirmed the fundamental role of stability for the generalization of a learning

235

TuV BORISOV RUNGER TORKKOLA

algorithm. More comprehensive overviews of ensemble methods were presented by Dietterich
(2000b) and Valentini and Masulli (2002). There are two primary approaches to ensemble con-
struction: parallel and serial.

A parallel ensemble combines independently constructed and diverse base learners. That
is, different base learners should make different errors on new data. An ensemble of such
base learners can outperform any single one of its components since diverse errors cancel
out (Hansen and Salamon, 1990; Amit and Geman, 1997). Parallel ensembles are variance-
reduction techniques, and in most cases, they are applied to unstable, high-variance algorithms
(such as trees). Also, Valentini and Dietterich (2003) showed that ensembles of low-bias sup-
port vector machines (SVMs) often outperformed a single, best-tuned, canonical SVM (Boser
et al., 1992).

Random forest (RF) is an exemplar for parallel ensembles (Breiman, 2001). It is an im-
proved bagging method (Breiman, 1996) that extends the “random subspace” method (Ho,
1998). It grows a forest of random decision trees on bagged samples showing excellent re-
sults comparable with the best known classifiers. A RF can be summarized as follows: (1)
Grow each tree on a bootstrap sample of the training set to maximum depth, (2) Given M pre-
dictors, select at random m < M variables at each node, and (3) Use the best split selected from
the possible splits on these m variables. Note that for every tree grown in RF, about one-third
of the cases are out-of-bag (out of the bootstrap sample). The out-of-bag (OOB) samples can
serve as a test set for the tree grown on the non-OOB data. We discuss later how OOB samples
can be used for feature selection.

In serial ensembles, every new learner relies on previously built learners so that the weighted
combination forms an accurate model. A serial ensemble algorithm is often more complex. It
is targeted to reduce both bias and variance. A serial ensemble results in an additive model
built by a forward-stagewise algorithm. The adaboost algorithm was introduced by Freund
and Schapire (1996). At every step of ensemble construction the boosting scheme adds a new
base learner that is forced (by iteratively reweighting the training data) to concentrate on the
training observations that are misclassified by the previous sequence. Boosting showed dramatic
improvement in accuracy even with very weak base learners (like decision stumps, single split
trees). Breiman (1998) and Friedman et al. (2000) showed that the adaboost algorithm is a form
of gradient optimization in functional space, and is equivalent to a forward-stagewise, additive
algorithm with the exponential loss function ¥(y, F (x)) = exp(—yF (x)) referred to as a gradient
boosted tree (GBT).

11.3.1. Relative Variable Importance Metrics

A single decision tree partitions the input space into a set of disjoint regions, and assigns a
response value to each corresponding region. It uses a greedy, top-down recursive partition-
ing strategy. At every step an exhaustive search is used to test all variables and split points to
achieve the maximum reduction in impurity. Therefore, the tree constructing process itself can
be considered as a type of variable selection (a kind of forward selection, embedded algorithm),
and the impurity reduction due to a split on a specific variable indicates the relative importance
of that variable to the tree model (Breiman et al., 1984). For ensembles, the metric is averaged
over the collection of base learners. Note, that this relative importance automatically incor-
porates variable interaction effects thus being very different from the relevance measured by a
univariate filter method.
For a single decision tree the measure of variable importance is

VI, T) =Y AI(X;.1), (11.1)

teT

236

11. FEATURE SELECTION WITH ENSEMBLES

where AI(X;,1) is the decrease in impurity due to an actual (or potential) split on variable X; at a
node ¢ of the optimally pruned tree T (Breiman et al., 1984). Node impurity /(r) for regression
is defined as Y, (y; — ¥)?/N(t) where the sum and mean are taken over all observations i in
node ¢, and N(¢) is the number of observations in node ¢. For classification /(z) = Gini(t) where
Gini(t) is the Gini index of node ¢ defined as

Gini(1) = Y pip},
i#]

and p'. is the proportion of observations in r whose response label equals i (y = i) and i, j run
through all response class numbers. The Gini index is in the same family of functions as cross-
entropy = —Y,; pilog(pt), and measures node impurity. It is zero when 7 has observations only
from one class, and is maximum when classes are perfectly mixed. The decrease AI(X;,t)
computes the impurity at the node ¢ and the weighted average of impurities at each child node
of ¢. The weights are proportional to the number of observations that are assigned to each child
from the split at node ¢ so that AI(X;,t) = I1(t) — pI(t1) — prI(tg).

For an ensemble of M trees this importance measure is easily generalized. It is simply
averaged over the trees

1
M

M=

E(X;) VI(X;, Ty). (11.2)

m=1

The averaging makes this measure more reliable.

This split weight measure AI(X;,7) in Equation (11.1) can be improved if OOB samples are
used. The split value for a variable is calculated using the training data as usual. However,
the variable selected as the primary splitter uses only the OOB samples. Also, the variable
importance measure is calculated from only the OOB samples. This provides a more accurate
and unbiased estimate of variable importance in each tree and improves the filtering of noise
variables.

Breiman (2001) also proposed a sensitivity based measure of variable relevance evaluated
by a RF. For a classification problem it is summarized as follows: (1) Classify the OOB cases
and count the number of votes cast for the correct class in every tree grown in the forest, (2)
randomly permute the values of variable m in the OOB cases and classify these cases down
the tree, (3) Subtract the number of votes for the correct class in the variable-m-permuted OOB
data from the original OOB data, and (4) Average this number over all trees in the forest to
obtain the raw importance score for variable m. Similar ideas were presented by Parmanto et al.
(1996) and a similar resampling strategy was successfully used in a more traditional model by
Wisnowski et al. (2003). The sensitivity measure is computationally expensive. Furthermore, it
does not account for masking, nor does it consider an iterative process with residuals (that we
describe in Section 11.4.2). Experiments by Tuv (2006) demonstrated that weaker but indepen-
dent predictors can rank higher than stronger, but related predictors. Also, related predictors
can all be identified as important. Neither of these results are desirable for a best subset model
and a more effective algorithm is described in Section 11.4.

With the importance measure (11.2) we can thus merely rank the variables. The following
two subsections discuss how to amend the ranking so that irrelevant variables can be reliably
detected, and how the redundancies among the remaining relevant variables can then be handled.

11.3.2. Removing Irrelevant Features by Artificial Contrasts

Although an ensemble can be used to calculate a relative feature ranking from the variable
importance score in (11.2) the metric does not separate relevant features from irrelevant. Only a
list of importance values is produced without a clear indication which variables to include, and

237

TuV BORISOV RUNGER TORKKOLA

which to discard. Also, trees tend to split on variables with more distinct values. This effect
is more pronounced for categorical predictors with many levels. It often makes a less relevant
(or completely irrelevant) input variable more “attractive” for a split only because it has high
cardinality.

The variable importance score in (11.2) is based on the relevance of an input variable to the
target. Consequently, any stable feature ranking method should favor a relevant input X; over an
artificially generated variable with the same distribution as X; but generated to be irrelevant to
the target. That is, a higher variable importance score is expected from a true relevant variable
than from an artificially generated contrast variable. With sufficient replicates in an analysis
one can select important variables from those that have statistically significantly higher variable
importance scores than the contrast variables (Tuv et al., 2006). Here, these contrast variables
are integrated into a subset algorithm. We discuss this in detail in Section 4.

Also, artificial contrasts can be applied to masking discussed in the next subsection. Given
a selected subset of relevant variables, one computes the masking scores of all variables by
elements of this subset, and the masking of contrast variables by this subset. Masking scores
statistically higher than the contrast variables are considered to be real masking. Variables
that are masked are dropped from the relevant subset list over a sequence of iterations of the
algorithm.

11.3.3. Masking Measures

An important issue for variable importance in tree-based models is how to evaluate or rank
variables that were masked by others with slightly higher splitting scores, but could provide as
accurate a model if used instead. One early approach in the CART methodology used surrogate
splits (Breiman et al., 1984). The predictive association of a surrogate variable X* for the best
splitter X* at a tree node T is defined through the probability that X* predicts the action of X*
correctly and this is estimated as

p(XS7X*) = PL(XS7X*) +pR(XS7X*)7

where pr(X*,X*) and pr(X*,X*) define the estimated probabilities that both X* and X* send
a case in T left (right). The predictive measure of association A (X*|X*) between split X* and
primary split X* is defined as

_ min(ﬂ:L, TER) - [1 _p(X‘7X*)]

)L(X |X) o min(ﬂLJcR) ’

where 7y, g are the proportions of cases sent to the left(or right) by X*. It measures the relative
reduction in error (1 — p(X*,X*)) due to using X* to predict X* as compared with the “naive”
rule that matches the action with max (7, 7g) (with error min(7z, 7z)). If A (X*|X*) < 0 then X*
is disregarded as a surrogate for X*. Sometimes a small, nonnegative threshold is used instead.
The variable importance sum in Equation (11.1) is taken over all internal tree nodes where X;
is a primary splitter or a surrogate variable (1(X*|X;) > 0 for a primary splitter X*). Often a
variable that does not appear as a primary splitter in a tree is still ranked high on the variable
importance list constructed using surrogate variables.

We extend the surrogate concept to define a masking score as follows. Variable i is said to
mask variable j in a tree, if there is a split in variable i in a tree with a surrogate on variable j.
We define the masking measure for a pair of variables i, j in tree T as

M;(T) = Y w(Xi, 1) A (Xi]X;),
{reT|split on x;}

238

11. FEATURE SELECTION WITH ENSEMBLES

where w(X;,t) = AI(X;,t) is the decrease in impurity from the primary split on variable X;, and
summation is done over the nodes where primary split was made on variable X;. Here we take
into account both the similarity between variables X;,X; at the node, and the contribution of
the actual split of variable X; to the model. For an ensemble the masking measure is simply
averaged over the trees. Note that in general the measure is not symmetric in the variables. One
variable may mask several others, but for a single selected masked variable the reverse may not
be true.

11.4. Algorithm: Ensemble-Based Feature Selection with Artificial
Variables and Redundancy Elimination

We now integrate the previously described concepts and metrics into a subset selection algo-
rithm. The fundamental steps outlined in Section 2.3 consist of using the advantages of a paral-
lel ensemble to detect important variables among potentially a very large feature set, using the
advantages of a serial ensemble to de-mask the important variables, and calculating residuals
and repeating in order to recover variables of secondary importance.

Within the algorithm, artificial contrast variables are re-generated a number of times. Then
the significance from a paired t-test over the replicates is used to identify important variables and
masked variables. Essentially the t-test is used to define thresholds for selection and masking.
These thresholds could also be set as tunable parameters. An advantage of the statistical test is
that the significance of selected variables relative to noise can be quantified.

11.4.1. Algorithm Details

1. Identify Important Variables: Artificially generated noise variables are used to deter-
mine a threshold to test for statistically significant variable importance scores. The test is
used to remove irrelevant variables. Details are presented in the displayed algorithms and
further described as follows.

In each replicate r, r = 1,2, ..., R artificial variables are constructed as follows. For every
real variable X; j =1,2,...,M a corresponding artificial variable Z; is generated from a
random permutation. Then in each replicate a small RF is trained and variable importance
scores are computed for real and artificial variables. The scores from each replicate r are
compiled into the rth row of a matrix V R x 2M. Furthermore, the 1 — ¢ percentile of
the importance scores in replicate r is calculated from only the artificial variables. This
is denoted as v, and the vector of percentiles over the R replicates is v R x 1. For each
real variable X; a paired t-test compares importance scores for X; (obtained from the
Jjth column of V) to the vector of scores v. A test that results in statistical significance
identifies an important variable.

Significance is evaluated through a suitably small p-value. The use of a p-value requires
a feature to consistently score higher than the artificial variables over multiple replicates.
Furthermore, this statistical testing framework also allows any method to control false se-
lections to be applied. We routinely use the Bonferroni adjustment, but a false discovery
rate approach is also reasonable. Each replicate uses a RF with L = 20-50 trees to score
the importance of the original and artificial noise variables. Also, the split weight calcu-
lation for variable importance in (11.2) only uses OOB samples as described previously.

2. Calculate Masking Scores: A masking matrix is computed from independent replicates
in order to evaluate the statistical significance of masking results. Suppose there are m
important variables from step 1. For similar reasons as in the previous step, replicates

239

TuV BORISOV RUNGER TORKKOLA

and noise variables are used to detect masking among the relevant variables. These are
currently the same replicates that are used for variable importance. A set of R independent
GBT models are generated each with L = 10-50 trees. Note that all variables are tested
in each node in each tree in a serial ensemble. Therefore, richer, more effective masking
information is obtained from a serial ensemble than from a random subspace method
like RF. In these calculations, the surrogate scores and the split weights are calculated
from the OOB samples as in the previous step. Let M; ; denote the masking score for
variables X; and X; from the ensemble in replicate r, for r=12,....R Also, let M],

denote the (1 —) -percentile of the masking score in replicate r from the distribution of
scores between Variable X; and the noise variables. That is, M;, denotes the (1 — a)-
percentile of M; ; for j =m+1,...,2m. Similar to the check for variable importance, a

paired t-test compares the maskmg score between variables (X;,X;) with masking score
M7, computed from the noise variables. There is a significant masking between variables
(X,,X) if the paired t-test is significant. Variable X; is masked by variable X; if the test is
significant.

3. Eliminate Masked Variables: Masked variables are removed from the list of important
variables as follows. Given a list of important variables upon entry to this step, the vari-
ables are sorted by the importance score calculated in step 2. The most important variable
is added to an exit list, and dropped from the entry list. Assume this is variable X;. All
variables that are masked by X; are dropped from the entry list. This is repeated until the
entry list is empty. The exit list represents the unmasked important variables.

4. Generate Residuals for Incremental Adjustment: An iteration is used to enhance the
ability of the algorithm to detect variables that are important, but possibly weaker than
a primary set. Given a current subset of important variables, only this subset is used to
predict the target. Residuals are calculated and form a new target. For a numerical target
the residuals are simply the actual minus the predicted values. For a classification problem
residuals are calculated from a multiclass logistic regression procedure (Friedman et al.,
2000). We predict the log-odds of class probabilities for each class (typically GBT is
used), and then take pseudo residuals as summarized in the following multi-class logistic
regression algorithm. The algorithms are described using the notation in Table 11.1.

The iterations are similar to those used in forward selection. See, for example, Stop-
piglia et al. (2003). The Gram-Schmidt procedure first selects the variable with highest
correlation with the target. To remove the information from this variable the remaining
predictors and the target are orthogonalized with respect to the selected variable. This
provides residuals from the fit of the target to the first selected variable. In the feature
selection method here we do not require orthogonal predictors, but we adjust the target
for the variables already selected through residuals. We also can select more than a sin-
gle variable in each iteration. The method also uses a conservative selection criterion
(Bonferroni adjustment) and the residuals allow a variable to enter on another iteration.
There are similar procedures used elsewhere in regression model building. Least angle
regression (Efron et al., 2004) and projection pursuit methods (Friedman et al., 1981) are
well known examples that use residuals in forward-stagewise modeling.

The algorithm returns to step 1 and continues until no variables with statistically significant
importance scores remain. The current subset of important variables is used for the prediction
model. Whenever step 1 is calculated, all variables are used to build the ensembles—not only
the currently important ones. This approach allows the algorithm to recover partially masked
variables that still contribute predictive power to the model. This can occur after the effect of

240

11. FEATURE SELECTION WITH ENSEMBLES

a masking variable is completely removed, and the partial masking is eliminated. The algo-
rithms for numerical (regression) and categorical (classification) targets are presented as Algo-
rithms 11.1 and 11.2. A separate Algorithm 11.3 describes the variable masking calculations.

Algorithm 11.1: Ensemble-Based Feature Selection, Regression

1.

10.
11.
12.
13.

Set @+ {};set F < {Xi,....Xu};set W=0 (|[W|=M).

forr=1,...,Rdo

{Z\,...,Zy} + permute{X,..., Xy}
set Fp < FU{Z,...,Zy}
P row of V =V, = g1(Fp,Y);
endfor
R x 1 vector (element wise) v = Percentile)_q(V[-,M+1,...

Set & to those {X i} for which element wise V ; > v
with specified paired t-test significance (0.05)

Set & = RemoveMasked(®,W + g;(Fp,Y))
If & is empty, then quit.

P+ dUD;

Y=Y —gy(d,Y)

W(®) =W(®)+g(d,Y)

Go to 2.

,2M])

11.4.2. Comparison to Previous Work

Two earlier methods are closely related to ACE, FCBS (Yu and Liu, 2004) and MBBE (Koller
and Sahami, 1996). We compare our method in detail to these two methods. Because we
use a multivariate model (tree) instead of frequency tables, our method fits in the category of

embedded methods.

This is unlike FCBS and MBBE that can be considered as correlation
filters, although Koller works with frequency tables of 2—5 variables.

FCBS first sorts features by correlation with the response using a symmetric uncertainty,
optionally removing the bottom of the list by a user-specified threshold, then

1.
2.

3.

The feature most correlated to the response is selected.

All features that have correlation with the selected feature higher than it’s correlation with
response are considered redundant and removed. The feature is added to the minimal
subset (and this is an approximate heuristic for Markov blanket filtering).

Return to 1).

FCBS is similar in structure to our method, with the following important differences.

241

TuV BORISOV RUNGER TORKKOLA

Algorithm 11.2: Ensemble-Based Feature Selection, Classification

1. set ® « {}; G¢(F)=0,W;, =0
2. fork=1,...,K do
3. setV=0.

4. forr=1,...,Rdo
{2y,...,Zy} < permute{X;,...,Xu}
set F « XU{Z,...,Zy}
Compute class proportion py (x) = exp(Gi(x))/LX_, exp(G;(x))
Compute pseudo-residuals Y = I(Y; = k) — py(x;)
V, =V, +g(FY");
endfor

5. Element wise v = Percentile|_o(V[-,M+1,...,2M])

6. Set d to those {X;} for which V; > v
with specified paired t-test significance (0.05)

7. Set &, = RemoveMasked (dy, Wy + g/ (F,Y¥))

8. @« dUD
fork=1,...,K do

9. Gi(F) = Gy(F) + gy (¥4, Y¥)
10. Wk(‘i)k) = Wk(qA)k) +g1(‘i>k,Yk)
endfor
endfor

11. If & forall k=1,...,K is empty, then quit.

12. Goto 2.

242

11. FEATURE SELECTION WITH ENSEMBLES

Algorithm 11.3: RemoveMasked(F,W)

10.

. Letm=|F|.

forr=1,...,Rdo

{Z,,...,Zn} < permute{Xy,..., Xy}

set Fp < FU{Z\,...,Zy}

Build GBT model G, = GBT (Fp).

Calculate masking matrix M" = M(G,) (2m x 2m matrix).
endfor
Set M, = Percentile_q,, (M"[im+1,...,2m]), r=1,...,R
SetM* =1 for those i, j = 1...m for which M/ >Mla ,r=1,...,R

with spemﬁed paired t-test 51gn1ﬁcance (0.05), otherw1s’g set Ml-*j =0
SetL=F,L*={}.

Move X; € L with i = argmax; W; to L*.

11. Remove all X; € L from L, for which Mi*j =1.
12. Return to step 10 if L # {}.

1. We use tree importance instead of univariate correlation with the response. This makes
ACE much more robust and accurate.

2. We use a surrogate masking measure instead of correlation. This takes the response into
account, not only the correlations between inputs. No arbitrary thresholds for correlation
are used.

3. We compute residuals to find smaller effects reducing the chance to drop a non-redundant

feature.

Koller’s MBBE works as follows:

1.

For each feature X;, find the set M; of K features (K = 1 —4) that are most correlated to
it. (That is, which provide little information on the response when added to the selected
feature in frequency table models.) Additional information is measured as KL-distance
(Kullback and Liebler, 1951) D(P(y|X;,X;),P(y|Xi)). The set M; is called the approx-
imate Markov blanket for feature X;. The authors state that K = 1 — 2 gives the best
results.

For each feature compute the relevance score 6; = D(P(y|M;,X;),P(y|M;)). This repre-
sents the additional information it brings when added to its approximate Markov blanket,
and remove features that have the smallest relevance scores (i.e., most redundant).

Repeat (1,2) until all features are ranked in the order they are deleted. This method returns
a ranked list of features rather than one subset.

243

TuV BORISOV RUNGER TORKKOLA

Table 11.1: Notation in Algorithms 1-3

Number of classes (if classification problem)

set of original variables

target variable

Number of variables

Number of replicates for t-test

quantile used for variable importance estimation

quantile used for variable masking estimation

permuted versions of X

cumulative variable importance vector.

cumulative variable importance vector for k-th class in classification.

current working set of variables

set of important variables

variable importance matrix (R x 2M)

rth row of variable importance matrix V', r =1...R

Jjth column of matrix V'

function that trains an ensemble of L trees based on

variables F and target Y, and returns a row vector

of importance for each variable in F

gy(F,Y) function that trains an ensemble based on variables F
and target Y, and returns a prediction of ¥

Gi(F) current predictions for log-odds of k-th class

GBT(F) GBT model built on variable set F

N

~

>

SS<ETmEEINgRIITXA

=
—~<
®
=

M(G) Masking measure matrix calculated from model G
MF Masking matrix for k-th GBT ensemble G;.
M Masking flags matrix

Our ACE algorithm works more like FCBS as it uses only one feature as an approximate
MB for each feature (as does the MBBE algorithm with K = 1). Furthermore, it filters features
by relevance before computing redundancy between the features, and reports a final minimum
feature subset. However, the major difference is that our redundancy measure approximates
KL-distance taking the response into account and uses local information. Thus, it can deal with
multivariate dependencies. MBBE for K > 1 will incur three (or more) dimensional frequency
tables that are hard to deal with if number of categories is large.

The learner g(.,.) in the ACE algorithms is an ensemble of trees. Any classifier/regressor
function can be used, from which the variable importance from all variable interactions can be
derived. To our knowledge, only ensembles of trees can provide this conveniently.

The computational complexity of the algorithm is of the same order as the maximal com-
plexity of a RF on the whole feature set and a GBT model on the selected important feature
subset. A GBT model is usually more complex, because all surrogate splits at every tree node
are computed. However, a smaller tree depth setting for the GBT model reduces the calculations
in this part of the algorithm. The complexity is proportional to

(Fsel + Fimpvar) « N x logN * Ntrees x Nensembles x Niter + Niter x Fimpvar?,

where the variables are defined as follows: Niter is the number of iterations of the ACE algo-
rithm (for example, for the challenge discussed in Section 11.5.3 this was always less than 10

244

11. FEATURE SELECTION WITH ENSEMBLES

and usually 3-4); Nensembles is the number of replicates for t-tests (equal to 20 in the chal-
lenge); Ntrees is the number of trees in the RF or ensemble (equal to 20—100 in the challenge);
N is the number of samples; Fsel is the number of selected variables per tree split in RF (equal
to the square root of the total number features or less); Fimpvar is the number of selected im-
portant variables (for example, for the challenge data set NOVA discussed in Section 11.5.3
this was approximately 400-800 depending on parameters). The algorithm is very fast with
approximately a minute for one feature selection iteration on the challenge NOVA data set with
16K variables with 20 replicates with 70 trees on a Windows XP-based four-processor Xeon (2
x HT) 3.4GHz workstation.

11.5. Experiments

In order to evaluate the goodness of feature selection algorithms, two options have been used in
the literature. The first is not to evaluate the actual feature selection performance at all, but the
performance of a subsequent learner in some task. This facilitates the use of any data set in the
“evaluation” but does not give much useful information at all in characterizing the actual feature
selection. The second option is to directly evaluate the feature selection performance without
using a subsequent proxy task. The latter dictates the need to know the ground truth behind the
data, which typically means that the data must be artificially generated, either completely, or by
adding some redundant and/or irrelevant features to some known data.

As the topic of the paper at hand is a method for the subset feature selection, the first
evaluation method is affected by the choice of the classifier. The effects of feature selection are
mixed in with how well the learner is able to handle redundant or irrelevant features. The results
would thus depend on the choice of learners and on the choice of data sets. Therefore we will
mainly describe experiments with two types of simulated data with known ground truth.

Experiments on data with linear relationships are presented first. Then a nonlinear data gen-
erator is used to study the sensitivity to multiple variable interactions with nonlinear relations.
Further results are from the 2007 International Joint Conference on Neural Networks (IJCNN),
“Agnostic learning vs. prior knowledge challenge & data representation discovery workshop”.
The algorithm described here had the second best performance in the agnostic track. Here we
demonstrate the effect of the subset to predictor performance as compared to the full set of fea-
tures. Also, an actual manufacturing data set as well as a comparison to a previous analysis of
the well known Hepatitis data are also presented in terms of predictive power of the resulting
feature set.

11.5.1. Generated Data with Linear Relationships

The data in this experiment has an additive structure with one numeric response variable and
203 input variables. Inputs xp,...,xj00 are highly correlated with one another, and they are all
reasonably predictive of the response (regression R> ~ 0.5). But a,b, and ¢ are independent
variables that are much weaker predictors (regression R> ~ 0.1). Further uj,...,ujgo are i.i.d.
N(0, 1) variables that are unrelated to the target. The target variable was generated as an additive
model with additional noise using y = x; +a+ b+ c+ €, where € ~ N(0,1). This structure is
chosen because it is well known that linear (oblique) relationships are not optimal for a tree
representation. However, they are ideal for correlation-based methods. Thus we have here the
worst possible case for ACE and the best possible case for CFS. The methods were evaluated
on 50 data sets of size 400 samples.

245

TuV BORISOV RUNGER TORKKOLA

Linear data
100 T T

ace cfs cfs-gen rfe4 relief4

Figure 11.1: Artificial data with linear relationships. Subset discovery methods (ACE, CFS,
CFS-gen) and methods finding a subset of predefined size four (RFE4, Relief4)
are compared. The results for each method consist of three bars. The first is the
percentage of relevant variables detected (out of four), the second is the percentage
of redundant variables detected (out of 100), and the third is the percentage of
irrelevant variables detected (out of 100). The results are averages over 50 data
sets.

Figure 11.1 depicts the performance of ACE against methods that also discover the subsets
(CFS with best-first search, CFS with genetic search), as well as against some subset ranking
methods (RFE, Relief).

RFE and Relief are ranking methods. In this experiment they were given the advantage of
knowing the number of relevant features beforehand, that is, their task was to “find the best
possible four variable subset” (RFE4, Relief4), whereas ACE and CFS had to also find the
number themselves. A further advantage was given to RFE by matching the underlying support
vector regressor to the problem with a linear kernel (using the standard RBF kernel produced
inferior results). This experiment demonstrates one aspect of the advantages of ACE. In a task
ideal for correlation-based methods but hard for trees, we show equal performance.

11.5.2. Generated Nonlinear Data

Next, experiments were conducted using a well-known data generator (Friedman, 1999), which
produces data sets with multiple non-linear interactions between input variables. The true model
can be designed with relevant, redundant, and noise inputs. We selected 10 relevant inputs plus
random, uniform (0, 1) noise. Also, 20 redundant inputs were used. Each was a random linear
combination of three inputs plus random, uniform noise. Finally, 40 noise inputs were added,
so that 70 features were available to the full model. The target function was generated as a
weighted sum of 10 multidimensional Gaussians, each Gaussian at a time involving about four
input variables randomly drawn from the relevant 10 variables. Thus all of the relevant 10
input variables are involved in the target, to a varying degree. The Gaussian functions also
have a random mean vector and a random covariance matrix as described by Friedman (1999).
Weights for the Gaussians were randomly drawn from U[—1, 1].

The data generator produces continuous-valued variables. Thus the data sets can be used as
such for regression problems. Data sets of two different sizes were generated, 1000 and 4000
samples. In order to generate classification problems, the target variable was discretized to two

246

11. FEATURE SELECTION WITH ENSEMBLES

levels. Mixed-type data was generated by randomly discretizing half of the variables, each to
a random number of levels drawn from U[2,32]. There are thus eight different experiments
altogether. For each experiment, 50 data sets were generated with different seeds. Figure 11.2
presents the results for each case as average percentages of features selected in each group
(relevant, redundant, or noise) over the 50 generated data sets.

numeric, classification, N=1000 numeric, classification, N=4000

80F ! ' ' ' ' ' 1 80F ! ' ' ' '
60 1 60
401 1 401
20 1 20

ace cfs cfs-gen fcbs rfe10 relief10 ace cfs cfs-gen fcbs rfe10 relief10

numeric, regression, N=1000 numeric, regression, N=4000

80Ff ' ! ! ' ' '] 80Ff ! ' '
60
401
20 I I

ace cfs cfs-gen fcbs rfe10 relief10 ace cfs cfs-gen fc?)s rfe10 relief10

mixed, classification, N=1000 mixed, classification, N=4000

ace cfs cfs-gen fcbs rfe10 relief10 ace cfs cfs-gen fcbs rfe10 relief10

mixed, regression, N=1000 mixed, regression, N=4000

80 80
60
401

20

ace cfs cfs-gen fcbs rfe10 relief10 ace cfs cfs-gen fcbs rfe10 relief10

Figure 11.2: Artificial data with nonlinear relationships. Subset discovery methods (ACE, CFS,
CFS-gen, FCBS) and methods finding a subset of predefined size 10 (RFE10, Re-
lief10) are compared. FCBS works only in classification problems. The results for
each method consist of three bars. The first is the percentage of relevant variables
detected (out of 10), the second is the percentage of redundant variables detected
(out of 20), and the third is the percentage of irrelevant variables detected (out of
40). The results are averages over 50 data sets.

RFE and Relief were again given the advantage of knowing the number of relevant features
beforehand, that is, their task was to “find the best possible ten-variable subset”, whereas ACE,
CFS, and FCBS had to also find the number by themselves. A further advantage was given to
RFE by matching the underlying support vector classifier to the problem with an RBF kernel.
Using a linear kernel produced inferior results.

The notable failure of FCBS on this data can be explained as follows. Most numerical
important variables are dropped at the discretization step of FCBS, because MDL discretization
works as a filter method, and it cannot deal with the multivariate dependency from Friedmans’s

247

TuV BORISOV RUNGER TORKKOLA

generator. It works well with discrete variables only when the number of categories is small and
the response is categorical with a small number of categories.

This experiment demonstrates another aspect of the universality of ACE. The only case
where another method (RFE10) showed a superior result was a classification problem with a
smaller sample size and mixed type inputs. Again RFE10 was given the advantage of knowing
the number of relevant features and an appropriate kernel beforehand.

11.5.3. IJCNN 2007 Agnostic Learning vs. Prior Knowledge Challenge

In this experiment we show the effect of the selected subset within various classification tasks.
The ACE feature selection algorithm was applied to the data sets in the Agnostic Learning
Challenge. The number of training/validation/testing instances and the number of features are
shown in the following list:

e ADA, Marketing, 4147/415/41471, 48 features
* GINA, Handwriting recognition, 3153/315/31532, 970 features

HIVA, Drug discovery, 3845/384/38449, 1617 features
e NOVA, Text, 1754/175/17537, 16969 features
* SYLVA, Ecology, 13086/1309/130857, 216 features

For feature selection with ACE, the number of trees, importance and masking quantiles were
parameters that were optimized. Next GBT with embedded feature selection (to prevent over-
fitting) (Borisov et al., 2006) was built on the subset. The following parameters of GBT were
optimized: number of trees, tree depth, shrinkage, number of selected features per tree node, and
the importance adjustment rate for embedded feature selection, stratified sampling for 0/1 class
proportions, and priors. The optimization strategy (manual) was to set reasonable parameter
values, and then try to adjust each parameter sequentially, so that the test error decreased. The
model was trained on 60% of the training data during parameter optimization. Several passes
over all the GBT parameters were used, and one for the feature selection parameters. Priors
were selected using cross validation. Feature selection and GBT were used on K partitions of
the data and then optimal priors were selected on the remaining part.

Table 11.2 shows the results before and after subset selection for the five challenge data
sets. The CV-error was either preserved or reduced through a good subset. The overall results
were the second best in the agnostic learning challenge. Redundancy elimination was applied
on ADA, HIVA, SYLVA, and feature selection without redundancy elimination was used on
NOVA and GINA.

Table 11.2: IJCNN 2007 Agnostic Learning vs. Prior Knowledge Challenge results.

Original Features CV-error from Best CV-error from
all features subset size selected subset
Ada 47 0.1909 16 0.1855
Gina 970 0.0527 75 0.0506
Hiva 1617 0.2847 221 0.2559
Nova 12993 0.0591 400 0.0518
Sylva 212 0.0133 69 0.0129

248

11. FEATURE SELECTION WITH ENSEMBLES

11.5.4. TIED Data Set

A data set with multiple Markov boundaries was generated by Statnikov and Aliferis (2009).
The data was obtained from a discrete Bayesian network with 1000 variables and a target vari-
able with four classes. A training set was constructed with 750 instances simulated from the
network. The network contained 72 Markov boundaries. Each boundary contained five vari-
ables (one from each of the following subsets):(1){Xo}, (2) {X4,Xs}, 3){Xi11,X12,X13}, (4)
{X18,X19,X20}, and (5) {X1,X2,X3,X10}.

The ACE feature selection method described here was used to remove irrelevant features.
After three iterations of the residual calculations described previously the algorithm stopped
with the important variables (and p-values from the artificial contrasts) shown in Table 11.3.
The list of statistically significant variables reproduces all the variables in any of the Markov
boundaries listed above, with false alarms from variables X4, X;5, and X»9.

Table 11.3: Feature selection scores for the TIED data set. Variables in any Markov boundary
are recovered as significant with three false alarms.

Variable p-value Importance Score

3 0 100.0%
2 0 98.4%
10 0 96.4%
1 1.E-10 96.4%
11 3.E-07 83.3%
12 2.E-07 83.3%
13 5.E-07 79.1%
18 3.E-09 67.5%
19 2.E-07 67.5%
15 2.E-07 41.4%
20 2.E-06 39.5%
29 2.E-06 29.8%
8 3.E-06 26.2%
14 1.E-08 11.6%
4 8.E-06 9.5%
9 6.E-06 8.3%

Although ACE recovered the variables in the Markov boundaries, there are limitations with
the masking methods for a multi-class target. The GBT ensembles model each class (versus
the rest) with a binary logistic function and averages variable masking scores over the binary
models. Consequently, some attenuation of the importance scores are expected. Redundancy
elimination did not effectively eliminate masking in the TIED data. However, we used the TIED
network and TIED data for binary problems with each class versus the rest. For example, for
class 1 versus the rest the TIED network generates the same collection of 72 Markov bound-
aries. The results from ACE without redundancy elimination for the binary target are shown in
Table 11.4. The list of statistically significant variables reproduces all the variables in any of
the Markov boundaries, with no false alarms.

As the importance scores are arranged in decreasing order in Table 11.4, groups of variables
with similar scores become noticeable and these groups correspond to the subsets (equivalence
classes) in the cross-product that defines the Markov boundaries. That is, the most important

249

TuV BORISOV RUNGER TORKKOLA

Table 11.4: Variable importance for TIED data modified for a binary target (class 1 versus
the rest). All variables in the true Markov boundaries are identified with no false
alarms.

Variable Importance Score

4 100.0%
8 100.0%
19 88.1%
18 88.1%
20 88.1%
9 64.8%
13 39.5%
12 39.5%
11 39.5%
10 21.9%
2 21.9%
3 21.9%
1 21.9%
6 0.0%

variables in Table 11.4 are those in the subset {X4,Xg} in the Markov boundaries and the last
group matches the subset {X;,X>,X3,X10}. The equivalent groups are clear from their impor-
tance scores in this case.

The analysis with redundancy elimination generated the list of significantly significant vari-
ables in Table 11.5. One equivalent variable from the subset {X;,X,X3,X)o} was missed in the
recovery of a Markov boundary. The contribution from this subset was, however, small. The
predictive performance of a tree ensemble on the recovered variables is nearly identical to a
model on a true Markov boundary. In addition, the three variables {Xs,X20,X4} are identified
in Table 11.5 as important, but they are redundant in the true network. Although these comprise
false alarms, the magnitudes of the importance scores indicate that the last three variables are
much less important than the others.

Table 11.5: Variable importance for TIED data modified for a binary target (class 1 versus the
rest) with redundancy elimination.

Variable Importance Score

8 100.0%
9 61.3%
19 43.8%
1 10.2%
18 2.6%
20 0.9%
4 0.3%

250

11. FEATURE SELECTION WITH ENSEMBLES

Similar results (not shown here) were obtained for the binary target class 2 (versus the rest).
Results without any errors were obtained for classes 0 and 3 (each versus the rest). Specifi-
cally, for class O the Markov boundaries from the TIED network consist of one element from
{X1,X2,X3,Xj0}. In this case the ACE analysis without redundancy elimination recovered these
four variables without false alarms. The analysis with redundancy elimination correctly recov-
ered a single variable from this set. Similarly for class 3, without redundancy elimination all
variables in the Markov boundaries {Xi2,X;3,X)4} were recovered, and only one variable from
this set was recovered with redundancy elimination.

11.5.5. Manufacturing Data

In multiple real world applications collecting unnecessary variables is a cost issue and finding a
suitable subset is critical in terms of cost-efficiency. As an example we present manufacturing
data from a process that contained approximately 10K rows and consisted of 35 predictors that
were all numerical, continuous measurements. The target was a binary response and approx-
imately 20% of the data belonged in the rare class. Because the data is actual manufacturing
data, the specific variable names are not provided. The data was analyzed extensively with
traditional regression methods (the response was coded as 0 and 1) and models obtained were
complex and not accurate. A list of the results from our algorithm is shown in Table 11.6. It is
not unusual for manufacturing data to consist of related predictors. Without redundancy elimi-
nation, 20 variables were identified as related to the target. However, after masking scores were
used to remove redundant predictors the final subset model consisted of only five predictors.
The predictive accuracy for the binary target was nearly identical using a GBT model with
these 5 predictors to the full set of 35 predictors. Table 11.6 also compares other subset selection
algorithms to ACE in terms of their predictive accuracy and the size of the selected feature set.
A previous analysis of this data by Berrado and Runger (2007) used association rules applied
after the predictors were discretized with simple equal-frequency discretization. Only rules with
consequent equal to the rare target class were considered. A total of 25 rules were detected that
met the minimum support threshold. These rules contained 14 variables and 13 out of 14 are
listed in the Table 11.6. Although the objectives of the association analysis were different, the
relatively high proportion of important variables is consistent with the results in Table 11.6.

11.5.6. Hepatitis Data

The hepatitis data available from the UC-Irvine repository has been widely analyzed. There
are 155 patients and 19 predictors and the response is a binary survival result. Breiman (2001)
considered this data and cited a previous analysis from the Stanford Medical School and another
analysis by Diaconis and Efron (1983). The analysis from the medical school concluded that
the important variables were 6, 12, 14, 19. But Breiman (2001) concluded after a set of analyses
that number 12 or 17 provided predictive power nearly equivalent to the full set of variables,
and that these masked each other. A notable difficulty is the small sample size in this example.

We confirmed the strong masking between variables 12 and 17 (and vice versa) from our
masking matrix. We also obtained a subset model that consists of variables 6, 17, 14, 19, and
11, similar to medical school. Variable 11 was also identified in unpublished lecture notes
by Breiman. The subset selected by our algorithm has the lowest cross-validation error using
logistic regression.

251

TuV BORISOV RUNGER TORKKOLA

Table 11.6: Manufacturing data with a binary target with redundancy elimination excludes
many variables. Only a smaller subset of the relevant predictors remain. We com-
pare the extracted variables to other subset selection algorithms (selected variables
are marked as ‘1’ in the table). The error rate for the full set of variables was 0.146.

ACE without ACE with | CFS | CFS-gen | FCBS
Variables | redundancy elim. | redundancy elim.
Vil 100.0% 72.4% 1 1
v4 96.1% 100.0% 1 1
V5 49.8% 49.4% 1 1 1
V12 48.6% 1 1
V14 46.6% 1 1
V10 43.5% 1 1
V2 43.3% 36.4% 1 1
V13 38.7% 21.6%
A% 30.3% 1
V1 27.9% 1
Vo 23.7%
V3 23.6% 1
V19 21.8%
V7 21.5%
V20 20.4%
V26 1
V27 1
Errors 0.145 | 0.144 0.145 0.190

Table 11.7: Hepatitis data. Features selected from ACE compared to other subset selection
algorithms (selected variables are marked as ‘1’ in the table). The baseline error
rate for the full set of variables was 0.148.

252

Variables \ ACE \ CFS \ CFS-gen \ FCBS

malaise-6
albumin-17
bilirubin-14
histology-19
spiders-11
age-1

sex-2
ascites-12
varices-13

1 1

—_

1

Errors

= e e e e e

o)1
(V)
o

0.142

e

e e e e e e e

0.194

11. FEATURE SELECTION WITH ENSEMBLES

11.6. Conclusions

We have presented an efficient method for feature subset selection that builds upon the known
strengths of the tree ensembles and is designed explicitly to discover a non-redundant, effective
subset of features in large, dirty, and complex data sets.

Our method attempts to eliminate irrelevant variables using statistical comparisons with
artificial contrasts to obtain a threshold for importance estimated from the parallel ensembles of
trees capable of scoring very large number of variables.

It uses serial ensembles to discover significant masking effects for redundancy elimination.
Furthermore we have showed that the redundancy elimination based on feature masking ap-
proximates the Markov blanket redundancy filtering. It also uses an iterative strategy to allow
for weaker predictors to be identified after stronger contributors.

The superior performance of the algorithm is illustrated with a number of experiments on
both artificial and real data as well as by its success in the agnostic learning challenge.

Acknowledgments

This material is partly based upon work supported by the National Science Foundation under
Grant No. 0743160.

References

H. Almuallin and T. G. Dietterich. Learning boolean concepts in the presence of many irrelevant
features. Artificial Intelligence, 69(1-2):279-305, 1994.

Y. Amit and D. Geman. Shape quantization and recognition with randomized trees. Neural
Computation, 9(7):1545-88, 1997.

E. Bauer and R. Kohavi. An empirical comparison of voting classification algorithms: Bagging,
boosting and variants. Machine Learning, 36(1/2):525-536, 1999.

A. Berrado and G.C. Runger. Using metarules to organize and group discovered association
rules. Data Mining and Knowledge Discovery, 14(3):409—431, 2007.

A. Borisov, V. Eruhimov, and E. Tuv. Tree-based ensembles with dynamic soft feature selection.
In I. Guyon, S. Gunn, M. Nikravesh, and L. Zadeh, editors, Feature Extraction Foundations
and Applications: Studies in Fuzziness and Soft Computing. Springer, 20006.

B. Boser, I. Guyon, and V. Vapnik. A training algorithm for optimal margin classifiers. In
D. Haussler, editor, 5th Annual ACM Workshop on COLT, Pittsburgh, PA, pages 144—152.
ACM Press, 1992.

O. Bousquet and A. Elisseeff. Algorithmic stability and generalization performance. In Ad-
vances in Neural Information Processing Systems, volume 13, pages 196-202. MIT Press,
2001.

L. Breiman. Bagging predictors. Machine Learning, 24(2):123-140, 1996.
L. Breiman. Arcing classifiers. The Annals of Statistics, 26(3):801-849, 1998.

L. Breiman. Random forests. Machine Learning, 45(1):5-32, 2001.

253

TuV BORISOV RUNGER TORKKOLA

L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees.
Wadsworth, Belmont, MA, 1984.

S. Cost and S. Salzberg. A wighted nearest neighbor algorithm for learning with symbolic
features. Machine Learning, 10(1):57-78, 1993.

P. Diaconis and B. Efron. Computer intensive methods in statistics. Scientific American, (248):
116-131, 1983.

T. G. Dietterich. An experimental comparison of three methods for constructing ensembles of
decision trees: Bagging, boosting, and randomization. Machine Learning, 40(2):139-157,
2000a.

T. G. Dietterich. Ensemble methods in machine learning. In First International Workshop on
Multiple Classifier Systems 2000, Cagliari, Italy, volume 1857 of Lecture Notes in Computer
Science, pages 1-15. Springer, 2000b.

Bradley Efron, Trevor Hastie, Lain Johnstone, and Robert Tibshirani. Least angle regression.
Annals of Statistics, 32:407-499, 2004.

Y. Freund and R. E. Schapire. Experiments with a new boosting algorithm. In The 13th Inter-
national Conference on Machine Learning, pages 148—156. Morgan Kaufman, 1996.

J. Friedman. Greedy function approximation: a gradient boosting machine. Technical report,
Dept. of Statistics, Stanford University, 1999.

J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: A statistical view of
boosting. Annals of Statistics, 28:832-844, 2000.

Jerome H Friedman, Mark Jacobson, and Werner Stuetzle. Projection pursuit regression. Jour-
nal of the American Statistical Association, 76:817-823, 1981.

I. Guyon and A. Elisseeff. An introduction to variable and feature selection. Journal of Machine
Learning Research, 3:1157-1182, Mar 2003.

Isabelle Guyon, Jason Weston, Stephen Barnhill, and Vladimir Vapnik. Gene selection for
cancer classification using support vector machines. Machine Learning, 46(1-3):389-422,
2002.

M. A. Hall. Correlation-based feature selection for discrete and numeric class machine learning.
In Proceedings of the 17th International Conference on Machine Learning, pages 359-366,
2000.

L. K. Hansen and P. Salamon. Neural network ensembles. IEEE Trans. on Pattern Analysis and
Machine Intelligence, 12(10):993-1001, 1990.

T. K. Ho. The random subspace method for constructing decision forests. IEEE Trans. on
Pattern Analysis and Machine Intelligence, 20(8):832-844, 1998.

Kenji Kira and Larry A. Rendell. A practical approach to feature selection. In ML92: Proceed-
ings of the ninth international workshop on Machine learning, pages 249-256, San Francisco,
CA, USA, 1992. Morgan Kaufmann Publishers Inc. ISBN 1-5586-247-X.

D. Koller and M. Sahami. Toward optimal feature selection. In Proceedings of ICML-96,
13th International Conference on Machine Learning, pages 284-292, Bari, Italy, 1996. URL
citeseer.nj.nec.com/koller96toward.html.

254

citeseer.nj.nec.com/koller96toward.html

11. FEATURE SELECTION WITH ENSEMBLES

S. Kullback and R.A. Liebler. On information and sufficiency. Annals of Mathematical Statis-
tics, 22:76-86, 1951.

H. Liu and L. Yu. Toward integrating feature selection algorithms for classification and cluster-
ing. IEEE Trans. Knowledge and Data Eng., 17(4):491-502, 2005.

S. Mukherjee, P. Niyogi, T. Poggio, and R. Rifkin. Learning theory: Stability is sufficient for
generalization and necessary and sufficient for consistency of empirical risk minimization.
Advances in Computational Mathematics, 25:161-193, 2006.

B. Parmanto, P. Munro, and H. Doyle. Improving committee diagnosis with resampling tech-
niques. In D. S. Touretzky, M. C. Mozer, and M. Hesselmo, editors, Advances in Neural
Information Processing Systems 8, pages 882—888. Cambridge, MA: MIT Press, 1996.

T. Poggio, R. Rifkin, S. Mukherjee, and A. Rakhlin. Bagging regularizes. In CBCL Paper
214/A1 Memo 2002-003. MIT, Cambridge, MA, 2002.

T. Poggio, R. Rifkin, S. Mukherjee, and P. Niyogi. General conditions for predictivity in learn-
ing theory. Nature, 428:419-422, 2004.

M. Robnik-Sikonja and I. Kononenko. Theoretical and empirical analysis of relief and relieff.
Machine Learning, 53:23-69, 2003.

C. Stanfill and D. Waltz. Toward memory-based reasoning. Communications of the ACM, 29:
1213-1228, December 1986.

A. Statnikov and C.F. Aliferis. Tied: An artificially simulated dataset with multiple Markov
boundaries. Journal of Machine Learning Research Workshop Conference & Proceedings,
2009. to appear.

H. Stoppiglia, G. Dreyfus, R. Dubois, and Y. Oussar. Ranking a random feature for variable
and feature selection. Journal of Machine Learning Research, 3:1399-1414, March 2003.

E. Tuv. Ensemble learning and feature selection. In I. Guyon, S. Gunn, M. Nikravesh, and
L. Zadeh, editors, Feature Extraction, Foundations and Applications. Springer, 2006.

E. Tuv, A. Borisov, and K. Torkkola. Feature selection using ensemble based ranking against
artificial contrasts. In Proceedings of the International Joint Conference on Neural Networks
(IJCNN), 2006.

G. Valentini and T. Dietterich. Low bias bagged support vector machines. In ICML 2003, pages
752-759, 2003.

G. Valentini and F. Masulli. Ensembles of learning machines. In M. Marinaro and R. Tagliaferri,
editors, Neural Nets WIRN Vietri-02, Lecture Notes in Computer Science. Springer-Verlag,
2002.

J.W. Wisnowski, J.R. Simpson, D.C. Montgomery, and G.C. Runger. Resampling methods for
variable selection in robust regression. Computational Statistics and Data Analysis, 43(3):
341-355, 2003.

L. Yu and H. Liu. Efficient feature selection via analysis of relevance and redundancy. J. of
Machine Learning Research, 5:1205-1224, 2004.

255

256

Chapter 12

Classification with Random Sets, Boosting and
Distance-based Clustering

Vladimir Nikulin VNIKULIN.UQ@GMAIL.COM
Department of Mathematics, University of Queensland, Brisbane, Australia

Editor: Isabelle Guyon

Abstract

Overfitting is commonly a significant problem in classification of high-dimensional data. Ac-
cordingly, it appears to be logical to consider a large number of component-classifiers, each of
which is trained using a relatively small randomly selected subset of the available features. As
an outcome, random sets approach provides an effective means of feature selection by exami-
nation of the features used by the best performing component-classifiers. The proposed method
differs from Breiman’s Random Forests in two respects: firstly, it has non-voting nature; sec-
ondly, the component-classifiers need not be implemented using decision trees. We also pro-
pose a novel boosting technique based on experience/innovation principles. In order to make
some improvement of the training results we can increase attention to the mis-classified pat-
terns by the random increasing of the corresponding weights (innovation). As a starting point
for any iteration we can use weights, which correspond to the best past result (experience).
Lastly, assuming that the data exhibit a clustered structure, and that the relationship between
the target variable and the explanatory features is constant within each cluster, it is reasonable
to construct an ensemble classifier using component-classifiers, each of which is trained on
data drawn from the same cluster. The benefits of these innovations are demonstrated using re-
sults from the IICNN-2007 Agnostic Learning versus Prior Knowledge challenge which were
among the leading entries.

Keywords: random forests, gradient-based optimization, boosting, cross-validation, distance-
based clustering

12.1. Introduction

This paper contains three new developments comparing with previous publication (Nikulin,
2006a): random sets, heuristical version of boosting and distance-based clustering approach for
an ensemble classifier.

Random Forests (Breiman, 2001) grow a forest of random trees on bagged samples showing
excellent results comparable with the best known classifiers (Tuv et al., 2006). Clearly, the
choice of decision trees as a base model is not necessary, and as an alternative we can use
quadratic minimization (QM) or Naive Bayes model. Section 12.2.4 introduces a new general
method for feature selection. This method is based on the assumption that any component-
classifier, which is based on relatively small number of features, will not suffer from overfitting.

There are many ways to boost mis-classified pattern. Friedman et al. (2000) present some
reasonable mathematical grounds behind AdaBoost and LogitBoost algorithms for the additive
logistic regression model. Unfortunately, some of the required and essential conditions may
not be fulfilled during optimization process (see Section 12.3), and, as a result, performance
of the algorithm may not be monotonical or stable (Lutz, 2006). As it was noticed in Boulle

© V. Nikulin.

NIKULIN

(2006), the boosting method is theoretically founded to reduce the training bias, but without
guarantee against overfitting. Section 12.3.5 introduces two main types of specially defined
boosting, which are based on experience-innovation (EI) principles (Nikulin and Smola, 2005).
Assuming that overfitting is limited, we propose to apply heuristical boosting to some of the
mis-classified patterns using best past experience as a starting point for any iteration.

Ideally, our target is to find a transformation from multi-dimensional space of features to
one-dimensional Euclidean space in order to maximize the difference between different classes
and minimize volatility inside classes (see, for example, Kernel Fisher Discriminant). As a
next step, we can consider more advanced model using distance-based clustering technique
(see Section 12.4). Note that similar ideas may be found in Kurogi et al. (2006). First, we split
data into k clusters according to the given criterion. Then, we develop an ensemble system as
combined complex of k classifiers, where any classifier was developed independently using data
from the particular cluster.

GLiMix algorithm of the Section 12.4.1 may be useful in order to investigate uniformity of
the training data in the sense of relations between the target and explanatory variables.

Model selection represents a very complex process. The main problem here is that in most
cases settings for the particular model can not be optimised analytically and are very dependent
on the available training datasets. At the same time, most of the models are very flexible and
include many regulation parameters. Proper designed cross-validation (Section 12.2.7) may be
viewed as the most important attribute for the successful performance of the whole system.

Experimental results are presented in the Section 12.5. Most of experiments were conducted
during time of the IJCNN-2007 Agnostic Learning vs. Prior Knowledge Challenge! (Guyon
et al., 2007). The following 5 real life datasets were used during the Challenge: ADA (mar-
keting), GINA (handwriting), HIVA (drug discovery), NOVA (text classification) and SYLVA
(ecology). The competition had two parallel tracks: “agnostic learning” where data were pre-
processed in a simple feature-based representation, suitable for any data mining algorithm, and
“prior knowledge” where given data were not necessarily in a form of numerical table.

Our overall results (out of 5 complete entries): 1st place in the “prior knowledge” track and
4th place in the “agnostic learning” track. Also, we can report best result in the GINA-prior
track.

It is a well known fact that for various reasons it may not be possible to theoretically analyze
a particular algorithm or to compute its performance in contrast to another. The results of the
proper experimental evaluation are very important as these may provide the evidence that a
method outperforms existing approaches.

12.2. Main Models

Let X = (X;,y;),t = 1...n, be a training sample of observations where x; € R’ is ¢-dimensional
vector of features, and y; is binary label: y, € {—1,1}. Boldface letters denote vector-columns,
whose components are labeled using a normal typeface. It will be more convenient for us in
some cases to use indexes {1,2} instead of original values {—1,1}.

In practical situation the label y, may be hidden, and the task is to estimate it using vector
of features. Let us consider the most simple linear decision function

4
wp=u(x;) =Y wj-x;+b (12.1)
j=1

where w; are weight coefficients and b is a bias term.

1. http://www.agnostic.inf.ethz.ch/

258

http://www.agnostic.inf.ethz.ch/

12. CLASSIFICATION WITH RANDOM SETS

Definition 12.1 We will call two decision functions u(x) and v(x) as X-equivalent if there exist
two finite constants A € R and B € R such that u(x) = A-v(x) + B, Vx € X.

We can define decision rule as a function of decision function and threshold parameter

1 if lltzA;
ﬁ:f(u,,A):{ (12.2)

—1, otherwise.

Figure 12.1: (a) AUC (blue) and AUC (red) against BER; (b-d) BER against BER. Simulation
experiments were conducted using the following parameters: (a-b) g; = g» = 100
- balanced case; (¢) g1 = 50,g2 = 150; (d) g1 = 20,g2 = 180 - imbalanced case
(see definitions in the Section 12.2.1).

The optimization criterion is to minimize the balanced error rate (BER):

0(A)=0.5 <6112+q21>7 q1=4qn+4q12, @2 =q21+q2, (12.3)
q1 q2

where value of g;; equal to the number of j-predictions in the true cases of i = 1...2. Unfortu-

nately, the target function (12.3) can not be optimized directly. Respectively, we will consider

in the following Sections 12.2.2 and 12.2.3 an alternative (differentiable) target functions as-

suming that the corresponding models will produce good solutions in the sense of (12.3).

259

NIKULIN

12.2.1. On the relation between BER and AUC

As an alternative criterion, we used area under ROC curve (AUC). By definition, receiver oper-
ating curve (ROC) is a graphical plot of true positive rates against false positive rates.

It is interesting to clarify relations between BER and AUC using terminology of confusion
matrix.

Let us denote by {g;;} set of data-entries which correspond to ¢;j,i,j=1...2.

Accordingly, we denote by S1 = {q11, 421 } all data-entries which were classified as negative;
S2 ={q12,92} all data-entries which were classified as positive.

Without loss of generality we will assume that value of the decision function is —1 on S
and 1 on S>. This assumption will give us a flexibility to apply an arbitrary permutation within
S 1 Or Sz.

Note that any permutation within S; or S, (or both, assuming that data from Sy and S, are
not mixed) will not affect confusion matrix. Respectively, value of BER will be strictly the
same. In difference, value of AUC may vary significantly.

The upper bound for AUC (see Figure 12.1(a) — blue color)

422912 n q11
q9192 q1

AUC = (12.4)

corresponds to the following sequence:

{auHaa Ha g} (12.5)

The low bound (see Figure 12.1(a) — red color)

AUC — q11922 (12.6)
q192
corresponds to the following sequence:
{aa1 Hai Haz Har}- 12.7)

Let us consider a marginal example. Suppose that g;» = 0 and ¢2; = ¢». Then, q1; = q1,

and fﬁ]\C = 1. At the same time,
q21

BER = — =0.5.
2g>

Above situation may happen if classifier ranked data correctly, but threshold parameter A
was too big. Respectively, all data were classified as {—1} or S, = 0.

Now, let us consider more realistic second example. Suppose that g1 = 90,q12 = 10,421 =
1,g20 = 9. Then, BER = 0.1 in both cases (12.5) or (12.7). But, AUC = 0.99 in the case of
sequence (12.5), and AUC = 0.81 in the case of (12.7).

In fact, any separate re-distribution of the elements within S; and S, will not affect decision
making but may change value of AUC significantly.

Let us define an alternative balanced error rate

Eﬁe—o.s(2 | _ 9 > (12.8)
q12+q22 q11+q21

where true and predicted labels were replaced with each other. Figures 12.1(b-d) illustrate non-
symmetrical properties of the BER loss function.

260

12. CLASSIFICATION WITH RANDOM SETS

Table 12.1: Regularization in conjunction with QM model (see Section 12.2.2) in the case of
HIVA-set, used CV-100 where value of threshold parameter A was optimized for
any particular fold (see Section 12.2.7).

| N | p | TrainBER | TestBER | MeanA | StdA |
1 [0.001 0.0326 0.2344 -0.678 | 0.161
2 | 001 0.0469 0.2222 -0.722 | 0.147
3 0.02 0.066 0.2188 -0.752 0.13
4 | 0.03 0.0771 0.2194 -0.772 | 0.127
5 0.05 0.0925 0.2209 -0.789 0.12
6 | 0.08 0.1081 0.2235 -0.801 | 0.108
7 0.1 0.1156 0.224 -0.805 | 0.103
8 0.12 0.122 0.2253 -0.806 | 0.101
9 0.15 0.1302 0.2264 -0.808 | 0.094
10 | 0.18 0.1377 0.2274 -0.807 | 0.091
11 0.2 0.1416 0.229 -0.808 | 0.094
12 | 025 0.1518 0.2297 -0.819 | 0.081
13 0.3 0.1601 0.2316 -0.829 | 0.078

12.2.2. QM Model with Regularization

Let us consider the most basic quadratic minimization model with the following target function:
- 2
L(w) =Q(u,n,w)+ Y & (v —u) (12.9)
=1

where Q(u,n,w) = u-n-||w||? is a regularization term with ridge parameter u (Wichard, 2006);
non-negative weight coefficients & are necessary in order to implement boosting algorithm in
the Section 12.3.

Remark 12.2 The target of the regularization term with parameter L is to reduce the difference
between training and test results. Value of L may be optimized using cross-validation as it is
described in the Section 12.2.7 (see, also, Table 12.1).

Remark 12.3 Based on observation of the Table 12.1 (last column) it is interesting to note that
the regularization term Q may be viewed as a stabilizer of the model: standard deviation of A
is decreasing as a function of L.

The direction of the steepest decent is defined by the gradient vector

g(w) = {g;(w),j = 1.4},

where
dL(w)

gj(w) = D =2U-n-w;j *229511'51 (Ve —u).
J t=1

Initial values of the linear coefficients w; and bias parameter b may be arbitrary. Then, we
recompute the coefficients

wk D — w1 g g(wk)), (12.10a)
l n

pktD) =b<k)+;Z§;~(yt—uz) (12.10b)
t=1

261

NIKULIN

where k is a sequential number of iteration. Minimizing (12.9) we find size of the step according
to the formula ,
5 Ly—Ly—p-ny w;g;

Y Gst +u 'n2§=18§

(12.11)

where

n n l
L= Z Gisiye, Lo = Z Cisity, s = thjgf
=1 =1 j=1

12.2.3. Relevance Vector Machine

Good performance of pattern classifier is achieved when the number of adjustable parameters
is matched to the size of the training set (Boser et al., 1992). Using above idea as a motivation
we consider relevance vector machine (Tipping, 2001) with regularization

L(w) = Q(u,n,w)+ ||y — Pwl> (12.12)

where
¥ ={& & w(xix;),ij=1.n}

is a kernel matrix and w is vector-column of coefficients, weight coefficients & have the same
interpretation as in the previous section. Note that bigger value of y(x;,x;) reflects stronger
similarity between patterns x; and x;.

Value of the decision function for the pattern x will be computed according to the following
formula

u(x) ~ ile i w(x,x;),

which does not include bias term because we will need to optimize value of threshold parameter
A anyway.

12.2.4. Feature Selection using Random Sets

Let us consider an illustrative example of HIVA-set from the IJCNN-2007 Agnostic Learn-
ing vs. Prior Knowledge challenge. The training sample size is 3845 where any data instance
includes binary target variable and 1617 features. Pure QM model (without regularization) pro-
duced perfect training results with nearly zero value of the balanced error rate. As a next step
we considered 100-folds cross-validation: test BERs were in the range from 0.35 to 0.4, which
indicates very strong overfitting.

Then, we considered sequence of 10000 subsets with 70 randomly selected features (without
repeats). We observed training BERs in the following range: from 0.2164 to 0.3329.

It is hardly possible to expect strong disagreement between training and test results in the
case of only 70 features. The union of 25 top performing subsets includes 1074 different fea-
tures (see Table 12.2).

Firstly, we note that all test results in the Table 12.2 are surprisingly good, see WCCI-2006
Performance Prediction Challenge”. This observation may be explained by the fact that value of
the threshold parameter A was optimized for any particular fold (see Section 12.2.7). Also, we
can see that after some point the model suffers from overfitting. According to our experiments
the optimal model is based on 600-800 features out of available 1617.

2. http://clopinet.com/isabelle/Projects/modelselect/

262

http://clopinet.com/isabelle/Projects/modelselect/

12. CLASSIFICATION WITH RANDOM SETS

Table 12.2: Feature selection using Random Sets (HIVA). The values in the columns “Train
BER” and “Test BER” were generated using 50-folds cross validation. The second
column represents number of features (without repeats) in the union of the first k

top-performing subsets.

| Number of subsets | Number of features | Train BER | Test BER | Mean A | StdA |

1 70
2 138
3 201
4 261
5 322
6 371
7 434
8 485
9 529
10 575
11 620
12 656
13 702
14 735
15 766
16 797
17 832
18 866
19 905
20 942
21 964
22 996
23 1024
24 1051
25 1074

0.2193
0.2091
0.1742
0.1399
0.1146
0.1074
0.098
0.0897
0.0805
0.0748
0.0721
0.0698
0.0635
0.0594
0.0561
0.0575
0.0565
0.0553
0.0499
0.0484
0.0466
0.0444
0.0429
0.0445
0.0442

0.2345
0.2429
0.235
0.2024
0.21
0.2108
0.2027
0.2064
0.2001
0.2081
0.2114
0.2123
0.2137
0.2082
0.2112
0.2072
0.2121
0.2138
0.2147
0.2158
0.2166
0.218
0.2264
0.2235
0.2289

-0.886
-0.812
-0.806
-0.815
-0.802
-0.789
-0.786
-0.756
-0.756
-0.743
-0.738
-0.742
-0.704
-0.674
-0.689
-0.684
-0.671
-0.673
-0.677
-0.711
-0.702
-0.701
-0.713
-0.676
-0.713

0.048
0.081
0.07
0.078
0.108
0.085
0.095
0.09
0.107
0.122
0.13
0.138
0.163
0.15
0.155
0.152
0.147
0.125
0.13
0.139
0.155
0.142
0.16
0.139
0.148

263

NIKULIN

As an alternative, we can select required number of features according to the highest num-
bers of repeats in the 100-200 top-performing subsets. Further, these repeats may be used in
order to optimize construction of the distance-based splitter (see Section 12.4).

Remark 12.4 According to the experimental results of the Table 12.2 we can make a conclusion
that the model with smaller number of features is more stable: fluctuations of the threshold
parameter are smaller.

Clearly, randomly selected subsets of features can not claim optimality, and we can conduct
further adjustment using Algorithm 12.1.

Algorithm 12.1: Feature Selection

1: Select leading subset, which includes all features from the 1-5 best subsets (found using
RS-method).

2: Split the field of all features into 2 parts without intersection: 1) leading subset with m
features; 2) remaining k = ¢ — m features.

3: Add to the leading subset one feature (randomly selected out of k remaining features).

4: Find the worst performing feature in the leading subset using Leave-One-Out principle, and
remove this feature permanently.

50 k< k—1.

6: If k = O stop the Algorithm, otherwise, goto the Step 3.

Remark 12.5 Algorithm 12.1 requires (m+ 1) - ({ —m) optimizations, which appears to be
realistic (in the sense of time), taking into account the fact that one particular optimization may
be very fast assuming that m is sufficiently small.

12.2.5. Naive Bayes Classifier

The Naive Bayes modelling approach is based on the assumption that the variables are indepen-
dent within each output label, and simply relies on the estimation of conditional probabilities.
Binary datasets (for example, NOVA or HIVA) represent an ideal case for the illustration of the
concepts of Naive Bayes approach.

We will need the following definitions

n=Ply=1); 6;=Px;=1y=1); 7,=Pkx;=1]y=0) (12.13)

where probabilities 7, 6 and Y may be estimated maximizing the following log-likelihood target
function

S DrQi+ (1=y7)Qx] (12.14)

D=

1
where label y¥ = 0.5(1+y;) is taking values {0,1},

-
Il

4 4
Q1 =log{m}+ Y x;jlog{6;}+) (1—x;)log{1—6;}, (12.15a)
j=1 j=1
4 l
Oy =log{l—7}+ Y xjlog{y}+) (1—x;)log{1—y}. (12.15b)
j=1 j=1

264

12. CLASSIFICATION WITH RANDOM SETS

Similar to (12.9), the target of the non-negative (weight) coefficients & is to implement boosting
algorithm in the Section 12.3.
Required solution is given by the following formulas

_ Yo gzyt*, 9 — Yo gtxtjy?' ¥ = Yo &1 —)’;().
Y& o Yior Y Y &(1—y7)

Definition 12.6 In order to avoid marginal probabilities it is proposed to use the following
truncation with parameter ¢ >0 :

{1¢gf9>1¢
0+)
¢ if 0<9¢.

Similar truncation is applicable to © and y (used value ¢ = 0.001).

T (12.16)

(12.17)

12.2.5.1. ON THE DIFFERENCE BETWEEN RANDOM FORESTS (RF) AND RANDOM SETS
(RS)

Following Boulle (2006), let us denote by a;; € {0,1} indicator for j-feature selection in the
subset i:

l

a,-j:m<<£, i=1.k.
j=1
Next, we consider a single Naive Bayes classifier:

{1 if Qu>0x+A;
Uit =

. (12.18)
—1, otherwise,

where A is a threshold parameter and log-likelihood conditional functions Q1; and Q»; are de-
fined in (12.15a) and (12.15b).
Then, we consider RF'-classifier (voting system):

k
1if Y wy>0;
;”— (12.19)

Uur —

—1, otherwise.

In order to define RS-classifier we will evaluate long sequence of subsets {a;j,i = 1..N, j =
1..£} against the whole training set. The final RS-classifier (non-voting system) has the same
appearance as (12.18). This classifier is based on a new subset of features B = {b; € {0,1},j =
1..6,2“]4.:, b= m } where m; > m. Particular configuration of the subset B may be evaluated
using different methods, see for more details Section 12.2.4 and Table 12.2. We conducted
experiments in the case of HIVA-set with m = 70,m; = 200, N = 60000.

12.2.5.2. LOGLIKELIHOOD BASED FEATURE SELECTION METHOD

We can re-write target function (12.14) using different terms

4
H+) H, (12.20)
j=1

where
H=Alog{r}+Aylog{l —7};

265

NIKULIN

Hj = Bijlog{6;} + Byjlog{1 — 6;} + Bsjlog{y;} + Bajlog {1 - ¥;}

where

n n
A=Y &y A=Y &(1—y));
=1 =1
n n
By = Zézyt*m; Byj = Ziryt*(l — 1))

n
B3 = Zét =Y)xjs Baj= Z (I=y) (1 =)

We can not expect that importance of the feature j is significant if the coefficients B;;,i =
1..4, and the difference between an alternative values 0; and y; are small. Accordingly, we can
measure importance of the features using ratings R; as it is defined below.

Definition 12.7 Subject to the important truncation (12.17), we propose to calculate likelihood-
based ratings for features according to the following formula

R,fBl,log{ }+szlog{ ’}+B log {4 }+B4,log{ ”}

where bigger value indicates the higher relevance or importance (see Figure 12.2), parameters
0 and vy are defined in (12.16).

12.2.6. Decision Trees

Decision Trees is a non-parametric tool of discriminant analysis, which is designed to represent
decision rules in a form of so called binary trees. Binary trees split training data imposing
univariate linear restrictions and represent resulting clusters hierarchically starting from root
node for the whole training sample itself and ending with relatively homogenous small groups of
observations. For each terminal node forecasted value is assigned, hence resulting tree structure
can be interpreted as a decision rule (Breiman et al., 1984).

More specifically, we define a criterion in order to split Rf-space into m Voronoi-regions
Vi,i = 1...m, without intersection. Let us denote by S; = V; UX the corresponding clusters.
Assuming that clusters S; are sufficiently large in order to ensure proper level of confidence we
form decision function:

D> S; e
= u(x;) Zy,x,ev, 5i = X;fs

where 14 is an indicator of the event A.
We can apply Gini index in order to measure uniformity of any subset S

Zx,eSyl
#S

Again, binary datasets represent an ideal cases for the illustration of the concepts of decision
trees approach. Considering node S as a starting point we can continue construction of the tree
deeper using feature j, which was not used previously as a splitter and must be selected in order
to maximize the following difference

Gini($) = §(1-3), §=

#S1.

Gini(S) — p- Gini(Sy) — (1 — p) - Gini(Sg) >0, p= 5

where § = S; USg, SpNSr=0.

266

800

600

400

200

600

500

400

300

200

100

12. CLASSIFICATION WITH RANDOM SETS

200 400 600 800 1000 1200 1400

1
1600

1800

| Il
2000 4000 6000 8000 10000 12000 14000
(b)

16000

18000

Figure 12.2: Feature selection using likelihood method (see Section 12.2.5.2): (a) HIVA and

(b) NOVA-sets where rates are sorted in a decreasing order.

267

NIKULIN

Remark 12.8 In addition, we can apply such general method as threshold-based clustering
with regularization in order to split data into several clusters, which are uniform in the sense of
labels. Note, also, that the clustering process may include tuning of the used distance according
to the given requirements (Nikulin, 2006D).

12.2.7. Cross-Validation

CV is a very important in order to test overfitting, and it may be implemented using different
methods. For example, we can split training data randomly into two subsets (with ratio 9:1)
where bigger subset is to be used for training and smaller subset is to be used for testing. The
most important here is selection of the threshold parameter A.

1: We can optimize value of A for any particular folder, and then use an average value in the
final model, or

2: we can optimize general value of A for the whole experiment of 50-200 folds.

In the previous paper (Nikulin, 2006a) we employed first approach. Obviously, this ap-
proach has tendency for an optimistic BER prediction. Besides, as Tables 12.1 and 12.2 demon-
strate fluctuation of the threshold parameter A may be significant. In this competition we de-
cided to apply second strategy, which appears to be more logical (see Figure 12.4).

12.3. Boosting Algorithms

Boosting works by sequentially applying a classification algorithm to re-weighted versions of
the training data, and then taking a weighted majority vote of the sequence of classifiers thus
produced. For many classification algorithms, this simple strategy results in dramatic improve-
ments in performance (Friedman, Hastie, and Tibshirani, 2000).

12.3.1. An Exponential Criterion

The motivation in support of exponential target function is very simple and clear. Let us com-
pare squared and exponential loss functions:

(e —u)*; (12.21a)
exp{—p-yr-u}, p>0. (12.21b)

using two data instances {1,—1} and {1,4} where first and second values correspond to the
label and decision function. The first example represents a mis-classification, and exponential
loss function (12.21b) detects this misclassification correctly in difference to the squared loss
function (12.21a):

squared 4 9
exponential e e 4P

Similar to the Logit model (Nikulin, 2006a), we can not optimize step-size in the case of
exponential target function. Respectively, we will need to maintain low value of the step-size
in order to ensure stability of the algorithm. As a consequence, the whole optimization pro-
cess may be very slow and time-consuming. The target of the following AdaBoost Algorithm
(Freund and Schapire, 1997) is to facilitate optimization process.

268

0.054

0.053

0.052

0.051

0.05

0.049
0

0.188

0.186

0.184

0.182 \

0.18
0

Synthetic

20 40 60 80 100
(a)
ADA (agnostic); AdaBoost

AV AN TR

50 100 150 200

12. CLASSIFICATION WITH RANDOM SETS

Synthetic

0.053
0.052
0.051

0.05
0.049 . : ‘ ‘

0 20 40 60 80 100
(b)
ADA (agnostic); LogitBoost
0.19

0.185

0.18

Figure 12.3: BER as a function of boosting iteration. First row illustrates application of EI-
boosting to two synthetic sets, see Section 12.3.6; second row illustrates exper-
iments against ADA-set: (c) application of AdaBoost (see Section 12.3.2) and
EI-boosting (Algorithm 12.2 with @ = 1.5 and § = 0.2, red-dashed line); (d) ap-
plication of LogitBoost (see Section 12.3.3) and LogitBoost2 (red-dashed line, see

Section 12.3.4) algorithms.

269

NIKULIN

12.3.2. AdaBoost Algorithm

Let us consider minimizing the criterion (Friedman et al., 2000)

E (X, yr) - e) (12.22)

(ngE

t=1

where
& (xs,y1) == exp{—yiF(x:)}. (12.23)

We shall assume that initial values of F(x;) are set to zero.
The following Taylor-approximation is valid under assumption that values of u(x;) are small

exp{—yu(x)} ~ % [—u(x)*+1]. (12.24)

Therefore, we can apply OM-model in order to minimize (12.22). Then, we optimize value of
the threshold parameter A for u,, and find corresponding decision rule f; € {—1,1}.
Next, we will return to (12.22)

Y E(xe,yp) e) (12.25)
t=1

where optimal value of the parameter ¢ may be easily found
1 A
= —log{= 12.26
¢= 5log {B } ()

where

A= Z i(xt>yt)7 B= Z g(xhyt)‘
ye=f(x) yi#f (%)

Finally (for the current boosting iteration), we update function F:
Fnew(xt) < F(X;) +C'f(X;), (1227)
and recompute weight coefficients & according to (12.23) (see Figure 12.3(c)).

Remark 12.9 Considering test dataset (labels are not available), we will not be able to opti-
mize value of the threshold parameter A. Respectively, we can use either an average (predicted)
value of A in order to transform decision function into decision rule, or we can apply direct
update:

Frew(X;) — F(X¢) +c-u(x;)

where value of the parameter ¢ < 1 must be small enough in order to ensure stability of the
algorithm.
12.3.3. LogitBoost Algorithm

Let us parameterize the binomial probabilities by

eZF(Xl>
p(x) = |+ e2F(x)°
The binomial log-likelihood is
yilog{p(x:)} + (1 =) log{1—p(x;)} = —log {1 +exp{—2y:F(x/)}}. (12.28)

270

12. CLASSIFICATION WITH RANDOM SETS

0.45

0.4
0.4

0.3
0.35

0.3 02

0.25 0.1
-1 -0.8 -0.6 -0.4 -0.2 0 20 40 60 80 100

0.4

0.38
0.36
0.34
0.32

0.3
0.28

0.26 ‘ ‘ ‘ : ‘ ‘ ‘ ‘
01 -0.05 0 0.05 0.1 0O 20 40 60 80 100

(©) ()

Figure 12.4: Experiments against HIVA-set. Left column: an average BER as a function of
threshold parameter A, which was optimized for the whole CV-experiment with
100 folds (see Section 12.2.7). Right column: behavior of BERs as a function of
fold-index where we used an optimal value of the threshold parameter. First row:
RS+QM-+reg.; second row: SVM-RBFE.

271

NIKULIN

The following relation is valid
exp {2y F (%)} = &(x)z/ (12.29)

where

o= yt*'é_(i()m’ §(xr) = p(x))(1 = p(x:)).

We can maximize (12.28) using method with Newton’s step, which is based on the matrix
of second derivatives (Nikulin, 2006a). This option may be applicable in a low-dimensional
case, for example, ADA or SYLVA sets. As an alternative, we can consider standard weighted
OM-model:

E(x¢) (2 —ur). (12.30)

(N E

=1

After solution u(x,) was found, we update function p(x;)

1 if h >1;
px) < by if 0<h <I; (12.31)
0 if h <0
where i, = p(x;) + &(x;)u(x;). Then, we recompute weight coefficients £, and return to the
minimization criterion (12.30).
Let us consider update of function F assuming that 0 < 4, < 1. By definition,
Iy
1—h

1 p(x;) 1 u(x;)
F=gloel gyt e T e

~F(x)+V-u(x), v=05. (12.32)

1
Frew(x/) = 3 log {

Remark 12.10 Boosting trick (similar to the well-known kernel trick): as an alternative to
OM-solution, we can apply in (12.27) or (12.32) decision function, which was produced by
another method, for example, Naive Bayes or Decision Trees (Lutz, 2000).

Remark 12.11 Approximation (12.32) coincides with update formula of Friedman et al. (2000),
and is valid under condition that value of u(x;) is small enough. Lutz (2006) suggests careful
approach with the following range 0.1 < v < 0.3 depending on the particular dataset. Also, it
appears to be reasonable (Friedman et al., 2000) to restrict values of z; in (12.30). However, ex-
periments against ADA-set (see Figure 12.3(d)) were conducted strictly according to the above
formulas (12.31-12.32) with v =0.5.

12.3.4. LogitBoost2 Algorithm

Let us consider logit target function

(e — ¢ (ur))*, ¢ (u) = tanh(u). (12.33)

™=

L(w) =

t=1

Above target function appears to be more natural comparing with squared loss, but we can
not find an optimal value of the step-size in analytical form. Respectively, we will need to
maintain low value of the step-size in order to ensure stability of the algorithm.

The following simple boosting procedure may be efficient in order to facilitate optimization
process (see Figure 12.3(d)). Essentially, the procedure includes 2 steps (NN2-3):

272

12. CLASSIFICATION WITH RANDOM SETS

0.2 0.24
0.195 0.02
0.19
0.2
0.185
0.18
0.18
0.175 0.16
017 0.14
-0.5 0 05 0 20 40 60 80 100
(a) (b)
0.188 0.24
0.186 0.22
0.2]
0.184
0.18
0.182
0.16
0.18 0.14
0.178 0.12
205 0 05 0 20 40 60 80 100

(©) (d)

Figure 12.5: Experiments against ADA-set (used LogitBoost). Left column: an average BER

as a function of threshold parameter A, which was optimized for the whole CV-
experiment with 100 folds (see Section 12.2.7). Right column: behavior of BERs
as a function of fold-index where we used an optimal value of the threshold pa-
rameter. First row: ADA-agnostic; second row: ADA-prior (see Section 12.5).

273

NIKULIN

1: Set initial values: j =0, zt(j) =y, and pV)(x;) = 0,1 = L..n;

2: find solution of the standard QM-problem
n X AN 2
Lw)=Y (Z,U) - u§f>) (12.34)

where j is a sequential number of iteration;

3: re-compute the target function

Zz(jH) =Yt — P(‘HU (%),

it pU(x)+ul > 1;
PV pU () it — 1< pD(x) + ! < 1; (1235)
1 if pW(x) +u < —1.

4: j< j+1, and goto step 2.

Repeat K times above steps 2—4 and use p(&) (x;) as a decision function.

Algorithm 12.2: EI-Boosting for the weight coefficients (see Section 12.3.5)

A A R ol e

Let us consider model (12.9) of the Section 12.2.2.

Set initial weights &(© = & as uniform.

Set initial value of optimal BER Qp = 1, and

select values of parameters & > 1 and 0 < 8 < 1.

Repeat for k = 1..K the following steps 6-8:

Evaluate OM model and compute the corresponding value of BER Q.
Make update Qp = Q,E©) = € if 0 < Qy.

Boost mis-classified patterns with probability 3

& = ét(o).a if fioy=-—1.

Based on the above experiment select the optimal value of K.

Remark 12.12 Further, we can extend above model (combined with backpropagation algo-
rithm, see Abid et al. (20006)) to the case of arbitrary neural networks with several hidden
layers where computational speed may be very important.

Remark 12.13 Bootstrap Aggregation was introduced by Breiman (1996) as a means for im-
proving accuracy of estimators, and it appears to be logical to combine bagging and boosting
(Pfahringer, 2000).

274

12. CLASSIFICATION WITH RANDOM SETS

12.3.5. Experience-Innovation Approach

The motivation for El-approach is very simple: after some standard experiments against ADA
or SYLVA-sets we can make a conclusion that overfitting is very limited. Respectively, we
would be interested to improve training results under expectation that the corresponding test
results will follow. This target may be pursued by the natural approach: we propose to increase
attention to the mis-classified patterns, and we can employ here two main methods: 1) increase
weights (Algorithm 12.2), or 2) increase absolute values of the corresponding target functions
(Algorithm 12.3).

Algorithm 12.3: EI-Boosting for the target function (see Section 12.3.5)

Let us consider model (12.9) of the Section 12.2.2.

Set initial values of target function 20 =z = Vi, t = 1..m.

Set initial value of optimal BER Qp = 1, and

select values of parameters @ > 1 and 0 < 8 < 1.

Repeat for k = 1..K the following steps 6-8:

Evaluate QM model and compute the corresponding value of BER Q.
Make update Qp = 0,29 =zif 0 < Qp.

Boost mis-classified patterns with probability 8

ai=2%a if fiy=—1

X DN A RN

9: Based on the above experiment select the optimal value of K.

Remark 12.14 There may be nearly identical vectors of features with opposite labels (see ex-
ample of the Section 12.3.6). Respectively, it appears to be not a good idea to boost all mis-
classified patterns identically.

12.3.6. Synthetic Set

The structure of this example (with non-linear dependence between explanatory variables x;
and target variable y) was motivated by ADA-set: it is very understandable that people with the
same demographical characteristics may or may not have an income of $50,000 per year.

We define target variable according to the following rule:

) h
1 if —— >7;
yi= 1+h (12.36)

—1, alternatively,
where

h=exp{z-(xi —x2+0.3-x3)}, (12.37)

1 if 62>0.38;

= 12.38
¢ { 1—2-exp{—Avy}, alternatively, ()

where A =3;7 = 0.45:0,y ~ Rjg 1]; Xi ~A(1,1),i=1.4;0=3.

Remark 12.15 Role of the regulation parameter 7 is very essential in (12.37): it is positive in
most cases, but may be, also, negative.

275

NIKULIN

According to the above algorithm we simulated a sample of n = 10000 observations, which
were used for testing of the Algorithms 12.2 and 12.3 (see Figure 12.3).

3.5

Figure 12.6: Distance-based clustering (see Section 12.4).

12.4. Distance-based Clustering

Let us consider synthetic example (see Figure 12.6(a)) with 384 observations from the Predic-
tive Uncertainty in Environmental Modelling Challenge® (Gawley et al., 2006).

It is common to start any case study of a regression problem with linear modelling (Bagnall
et al., 2006). The QM model produced MSE = 0.4096 (see red line in Figure 12.6(a)). Then,
we decided to split the data (based on the visual consideration) into 4 clusters: 1) x < 0.7;
2) x>0.7and x < 1.8; 3) x > 1.8 and x < 2.3; 4) x > 2.3. As a next step we computed
regression coefficients specifically for the particular clusters. Consequently, we created a non-
linear classifier with MSE = 0.2828 (see blue line in Figure 12.6(a)).

Remark 12.16 Further improvement may be achieved using specially selected transformation
of the target variable. As a result, we can expect to reduce non-uniform variance or het-
eroscedasticity.

3. http://theoval.cmp.uea.ac.uk/~gcc/competition/

276

http://theoval.cmp.uea.ac.uk/~gcc/competition/

12. CLASSIFICATION WITH RANDOM SETS

Figure 12.6(b) illustrates the UDON data-set from the NIPS-2006 data-mining competition*
“Learning when the test and training inputs have different distributions”. Here we used also 4
clusters: 1) x < —1.5;2) x> —15and x < 1.8; 3) x > 1.8 and x < 5.5; 4) x > 5.5 with
improvement of MSE from 0.6174 to 0.0384.

In the case of real high dimensional data (where visual consideration may not be possible)
we can use k-means algorithm with Euclidean or Manhatten distance and special weight coef-
ficients (12.9). For example, weight coefficients may be computed according to the RS method
(see Section 12.2.4).

We can employ k-means algorithm in order to split available training dataset into several
subsets/clusters where any cluster is represented by centroid. Then, we can compute specific
vector of regression coefficients for any particular cluster.

The combination of two matrices 1) centroids and 2) coefficients may be used as an indirect
non-linear kNN classifier, which may be described as a two steps procedure: for any data in-
stance 1) find nearest centroid, and 2) compute decision function according to the corresponding
vector of linear coefficients.

Remark 12.17 Using prior information (see, for example, Table 12.3), we can split data ac-
cording to one or several features as it is described in the Section 12.2.6. But, in difference to
the Section 12.2.6 uniformity of the clusters in the sense of labels is not an issue here.

Remark 12.18 Also, we can use likelihood-based splitter, see Nikulin and Smola (2005).

12.4.1. Generalized Linear Mixture Model (GLiMix)

The GLiMix is an essentially different comparing with the popular EM-algorithm (Dempster
etal., 1977). Using GLiMix we can investigate uniformity of training data in terms of relations
between the target and explanatory variables. Then, we apply these insights in order to optimize
construction of the distance-based splitter.

The definition of the algorithm is based on the following log-likelihood function:

n m

ZZ tc'log{ﬁc'fcc(utc} Ute = ch‘/ Xtjs (12.43)
t=1c=1

where p,. are probabilities of memberships of data-instance x; within cluster ¢; T.,c =1...m,
are prior probabilities; fs is a density of normal distribution:

1
fo(u) ~ *exp{—f}
In order to simplify notations it is assumed that the constant is one of the features.

Remark 12.19 Note that hard-clustering analogue of the above algorithm GLiC may be found
in Nikulin and Smola (2005).

12.5. Experiments

We considered only three sets in the prior track: ADA, GINA and SYLVA where GINA and
SYLVA have the same format as the corresponding sets from the agnostic track. The data
related to ADA require some preprocessing, which was conducted according to the following
Table 12.3:

277

NIKULIN

Algorithm 12.4: GLiMix

1
2:
3

: Select number of segments .

Select initial values of 7, ¢ and w.

Ptc =

: Compute probabilities of membership according to Bayesian formula:

Tte 'fdc (yt - utc)

B Y7 fo; (v —uj)’

Re-compute prior probabilities:

1 &
e = — Zptc-
3

Re-compute linear coefficients:

where

B., =

t

{
Bcv = ZACVj'Wij V= 1..[,
j=1

n

Pte Yt - Xrvs Acvj = Zptc'xtv'xtj-
=1

(agE

Il
-

Re-compute standard deviations:

2 Z;lzl Pre (i — Mzc)2
Gc - n
Zt:I Ptc

Repeat above steps 3-6 until convergence.

(12.39)

(12.40)

(12.41)

(12.42)

Table 12.3: Preprocessing of ADA-prior information into numerical matrix with 127 columns
or features.

278

00 AN N AW =

EERE3e

Age
Employment
fnlwgt
Education
Education level
Marital status
Profession
Family
Race
Sex
Capital-gain
Capital-loss
Hours per week
Native Country

categorical with 32 dummy variables (step size is 2 years);
categorical with 6 dummy variables;
continuous, used transformation: log { 5555 + 1};
categorical with 15 dummy variables;
continuous, used transformation: log {x+ 1};
categorical with 6 dummy variables;
categorical with 13 dummy variables;
categorical with 5 dummy variables;
categorical with 4 dummy variables;
dummy variables {0, 1};
continuous, used transformation: log { 10 + 1}
continuous, used transformation: log { 1o5 + 1};
categorical with 40 dummy variables (step size is 2 hours);
dummy variables {0, 1} where 1 was used for USA.

12. CLASSIFICATION WITH RANDOM SETS

Table 12.4: Winning results of the IICNN-2007 Agnostic Learning vs. Prior Knowledge Chal-
lenge (used only 5 last complete entries).

[Agnostic track |

| Data Entrant name Entry name TestBER | AUC |
ADA Roman Lutz LogitBoost with trees 0.166 0.9168
GINA Roman Lutz LogitBoost/Doubleboost 0.0339 0.9668
HIVA Vojtech Franc RBF SVM 0.2827 0.7707
NOVA Mehreen Saeed Submit E final 0.0456 0.9552
SYLVA Roman Lutz LogitBoost with trees 0.0062 0.9938

| Overall | RomanLutz | LogitBoost withtrees | 0.1117 | 0.8892 |

Prior track

ADA Marc Boulle Data Grid 0.1756 0.8464
GINA Vladimir Nikulin vn2 0.0226 0.9777
HIVA Chloe Azencott SVM 0.2693 0.7643
NOVA Jorge Sueiras Boost mix 0.0659 0.9712
SYLVA Roman Lutz Doubleboost 0.0043 0.9957

| Overall | Vladimir Nikulin | vn3 | 01095 | 0.8949 |

Tables 12.4 and 12.5 illustrate some of the test results. It appears that none of the models
may be regarded as a perfect for all datasets. Based on our experimental results, which are
presented in the Table 12.5, we can recommend the following selections: LogitBoost for ADA
and SYLVA; RBF-SVM for GINA (y = 0.013); LinearSVM for NOVA and regularized linear
model for HIVA with ridge parameter (t = 0.07. Note that the entry “SVM+GbO-+trees” dated
15th November 2006 with very competitive overall result 0.1139 was produced using only spe-
cially developed original software written in C (means without any involvement of R-packages,
CLOP, TreeNet or similar). Guyon et al. (2007) noted that the best performing complete entries
do not necessarily include best individual entries. For example, if we will optimise the structure
of the complete entries using information of the above Table 12.5, the results will be 0.1125
for agnostic, and 0.1068 for prior tracks. According to our experimental results, an advantage
of SYLVA-prior was not significant in difference to GINA-prior. We spent a lot of time for the
preprocessing of ADA-prior information, and, surprisingly, did not achieved any improvement.
Moreover, the performance of ADA-prior was slightly worse comparing with ADA-agnostic.

We used an opportunity of the challenge to test CLOP Version 1.1 — October, 2006. The
most basic (and sufficient) instructions may be found on the last page of Guyon et al. (2007).
The package is a quite efficient and can produce competitive results in application to any dataset
of the Challenge. It is very easy to arrange suitable cross validations with required number
of folds in order to evaluate any particular model, and there is a wide range of choices. For
example, we can recommend the settings in Table 12.6.

All necessary details in relation to the above models may be found in the file “model_examples.m”
in the directory “../CLOP/sample_code”.

In order to check the quality of the model we used cross-validation as it is described in the
Section 12.2.7 with number of folds from 10 to 100 depending on the complexity of the model.

4. http://different.kyb.tuebingen.mpg.de/

279

http://different.kyb.tuebingen.mpg.de/

NIKULIN

Table 12.5: Some selected experimental results where abbreviation “FS-RS” means feature se-
lection with random sets; “ADA” means package in R, “RF” means randomForest

package in R.
| Data | Method | FS-RS | Test-BER | AUC |

ADA ADA(l = 100,v =10.3) 38 0.1751 0.8331
ADA TreeNet (Salford Systems) 38 0.1786 0.8306
ADA CLOP-gentleboost (neural) 38 0.183 0.8213
ADA LogitBoost 38 0.1838 0.8038
ADA Exponential 38 0.1847 0.8066
ADA-prior ADA(l =50,v=0.3) 108 0.1788 0.8225
ADA-prior TreeNet (Salford Systems) 108 0.1817 0.805
ADA-prior Exponential 108 0.186 0.8189
ADA-prior QM 108 0.1875 0.8172
ADA-prior CM2+QM 108 0.1886 0.7892
ADA-prior CLOP-gentleboost (neural) 108 0.195 0.7928
GINA-prior CLOP-svc All 0.0226 0.9777
GINA-prior SVM-RBF 540 0.0266 0.975
GINA CLOP-svc All 0.0503 0.9507
GINA SVM-RBF 720 0.0535 0.9464

GINA RVM 720 0.0546 0.95
HIVA SVM-RBF (y = 0.05) 797 0.282 0.7104
HIVA QM-+reg. (1 =0.07) 797 0.2833 0.7322
HIVA RVM (u =0.1) 797 0.2916 0.7296
HIVA RF (200,30, 10) 797 0.2929 0.742
HIVA CLOP-gentleboost (kridge) All 0.297 0.7105
HIVA Naive Bayes (¢ = 0.006, m = 200) 400 0.3025 0.6908
NOVA CLOP-gentleboost (neural) All 0.0471 0.9456
NOVA LinearSVM 3200 0.0589 0.9345
NOVA CLOP-gentleboost (kridge) All 0.0601 0.9289
NOVA RVM-reg. 3200 0.0696 0.9585
SYLVA-prior ADA(l =50,v=0.3) 36 0.0071 0.9959
SYLVA-prior CLOP-gentleboost (neural) All 0.0075 0.9918
SYLVA-prior TreeNet (Salford Systems) 36 0.0076 0.994
SYLVA-prior AdaBoost+trees 36 0.0084 0.9924
SYLVA TreeNet (Salford Systems) 74 0.0082 0.9939
SYLVA RF(600, 10,10) 74 0.0084 0.9917
SYLVA AdaBoost+trees 74 0.0087 0.9966
SYLVA ADA(l =50,v=0.3) 74 0.0096 0.9933
SYLVA CLOP-gentleboost (neural) All 0.0115 0.9858

Table 12.6: CLOP settings for GINA and NOVA.

Data [Model [CLOP-specifications
GINA base_model | svc(‘coef0=0.1", ‘degree=7’, ‘gamma=0.005", ‘shrinkage=0.01")
my_model chain(normalize , base_model , bias)

NOVA | base_model neural(‘units=1", ‘shrinkage=0.2’, ‘balance=1’, ‘maxiter=50’)
my_model chain(normalize , gentleboost(base_model , ‘units=5") , bias)

280

12. CLASSIFICATION WITH RANDOM SETS

12.5.1. Small and Low-Dimensional Datasets

In the case of small datasets we can optimize exponential or logit losses directly using gradient-
based optimization (Nikulin, 2006a). Table 12.7 shows some results, which were obtained using
data of the data-mining competition “Learning when the test and training inputs have different
distributions”.

Table 12.7: Values in the first column “Data” indicate sizes of the samples for training, testing
and validation. The best results are given in bold style. Full convergence of the al-
gorithms was achieved after less than 30000 iterations with step size 0.0001 (about

1min time).
| Exponential model Il Il Logit model Il
Data [l [[Train [Test [Valid [[p [[Train [Test [Valid [[¢
Barley: 400-1000-50 | 5 || 0.2625 | 0.1402 | 0.1336 || 0.5 || 0.2201 | 0.1229 | 0.1093 || 0.0001
Wheat: 400-1000-50 | 5 || 0.2288 | 0.2674 | 0.3064 || 0.5 || 0.2321 | 0.2694 | 0.2920 0.005
Schitzel: 280-185-40 | 3 || 0.5964 | 0.6732 | 0.6879 1 0.5489 | 0.7439 | 0.7540 0.1

The competition criterion, an average negative log estimated predictive probability of the
true labels,

—% l Y log{p(x)}+). log{l—ﬁ(xt)}] (12.44)
ry=1 tiy=—1

may be computed using values of the decision functions u(x,). We can estimate required values
of probabilities in (12.44) according to the standard method

[expluln)ta)]’
plxi) = {l—kex