
Hands-On Pattern Recognition
Challenges in Machine Learning, Volume 1

Hands-On Pattern Recognition
Challenges in Machine Learning, Volume 1

Isabelle Guyon, Gavin Cawley,
Gideon Dror, and Amir Saffari, editors

Nicola Talbot, production editor

Microtome Publishing
Brookline, Massachusetts
www.mtome.com

Hands-On Pattern Recognition
Challenges in Machine Learning, Volume 1

Isabelle Guyon, Gavin Cawley,
Gideon Dror, and Amir Saffari, editors

Nicola Talbot, production editor

Collection copyright c� 2011 Microtome Publishing, Brookline, Massachusetts, USA.
Copyright of individual articles remains with their respective authors.

ISBN-13: 978-0-9719777-1-6

Series Foreword

During recent years, a team of motivated researchers led by Isabelle Guyon has done an ad-
mirable job conceiving and organizing performance evaluations in machine learning and in-
ference, in the form of competitions or challenges. This book opens the series Challenges
in Machine Learning. It contains papers by the top ranking challenge participants, providing
instructive analyses of the results. It also includes tutorials and theoretical papers on topics
addressed by the challenges.

Designing good challenges is far from trivial. The team benefitted from Isabelle’s experi-
ence as a member of technical staff at Bell Laboratories, where she was part of a group that
held world records in pattern recognition tasks, while at the same time employing theoreticians
proving theorems about statistical learning. This group, which I fondly remember from the
time I spent there as a student, always put great emphasis on benchmarking, but at the same
time it avoided the trap of searching only the vicinity of local optima by tweaking existing
methods — quite the contrary; in the 1990s, the group came up with Support Vector Machines,
a development to which Isabelle made significant contributions.

While these methods are now part of our standard toolkit, Isabelle has moved on to design
benchmarks for tasks that are harder to evaluate. This is not only a great service to the com-
munity, but it will also enable scientific progress on problems that are arguably more difficult
than classical pattern recognition. In particular, the benchmarks include the fascinating prob-
lem of causal inference. Finding causal directions from observations is not only a profound
issue for the philosophy of science, but it can also develop into an important area for practical
inference applications. According to Hans Reichenbach, all statistical associations arise from
causal mechanisms. However, machine learning has so far focused on the statistical ‘surface’
of things. Penetrating this surface would help us detect regularities that are more robust to is-
sues that make our life difficult today, including nonstationarity and covariate shifts. It may
also move us closer to the long term goal of building intelligent systems that learn about the
structure of the world in an autonomous way.

Bernhard Schölkopf
Max Planck Institute, Tübingen, Germany

i

Foreword

Machine learning is about building machines that learn. Building machines is engineering. The
idea is to create an artefact. The hope is that these artefacts are useful (typically to others). The
machines have to solve some end-user problem. The present book grapples with a number of
key issues central to this task — how to represent the data, how to select suitable models, and
how to evaluate performance.

Engineers design many types of machine — flying machines, communication machines etc.
The question of how to evaluate performance arises in many areas. The question of representing
data also arises (although it means something different). If one compares the state-of-the-art in
performance measurement and prediction in mature engineering disciplines, Machine Learning
looks primitive in comparison. Communications engineers [4] can design systems and predict
their performance in messy real world situations very well. The same is true in aeronautics [2].
Why is Machine Learning lagging behind? And what can be done about it?

One thing that more mature engineering disciplines seem to have in common is a wide va-
riety of “ways of knowing” or acceptable research practices. It is well accepted in aeronautical
engineering that it is useful to have design rules of thumb [2]. In fact many scholars have ar-
gued that the traditional view of engineering as applied science is back-the-front [5]. There
are a range of different categorisations of “useful knowledge” different to the tired “pure ver-
sus applied” (see for example Mokyr’s [3] distinction between propositional and prescriptive
knowledge). How do philosophical reflections on the nature of engineering knowledge affect
the development of machine learning, and how is it relevant to the present book? Simply, dif-
ferent ways of knowing require different means of inquiry. The benchmark competitions sum-
marised in this book are a different way of knowing. They are analogous to the principled (but
not scientifically derived) empirical studies in many branches of engineering that complement
more well-honed scientific knowledge.

But this is a starting point — a beginning rather than an end. There are in fact many pro-
found scientific questions to be answered regarding performance evaluation. For example, a
satisfactory theory of cross-validation still eludes the community. And the plethora of different
performance measures need to brought into better order. Self-bounding learning algorithms [6]
(that not only estimate an object of interest but also estimate how well it is estimated) deserve
further study. There are many more questions to be answered.

Much machine learning research is driven by the interests of the researcher. It is often
technique-oriented rather than problem driven. End users often neither understand nor care
about the distinctions between variants of different learning algorithms. A problem-oriented
perspective is rare (an exception is [1]). However, end-users do care about performance, how to
represent their data and how to choose models. These topics are the focus of this book, which
marks a great first step in building a richer understanding of the engineering of machines that
learn.

Robert C. Williamson
Canberra, Australia.

iii

[1] Vic Barnett, Comparative Statistical Inference, (3rd Edition) John Wiley and Sons, Chich-
ester 1999.

[2] Walter G. Vincenti, What Engineers Know and How They Know It: Analytical Studies
from Aeronautical History, The Johns Hopkins University Press, Baltimore 1990.

[3] Joel Mokyr, The Gifts of Athena: Historical Origins of the Knowledge Economy, Prince-
ton University Press, Princeton, 2002.

[4] John G. Proakis and Masoud Salehi, Communication Systems Engineering, Pearson Ed-
ucation, 2003.

[5] Marc J. de Vries, “The Nature of Technological Knowledge: Extending Empirically In-
formed Studies into What Engineers Know”, Techné, 6:3, 1–21, 2003.

[6] Yoav Freund, “Self bounding learning algorithms”, COLT ’98: Proceedings of the eleventh
annual conference on Computational learning theory, ACM Press, 247–258, 1998.

Preface

Recently organized competitions have been instrumental in pushing the state-of-the-art in
machine learning, establishing benchmarks to fairly evaluate methods, and identifying
techniques, which really work.

This book harvests three years of effort of hundreds of researchers who have participated to
three competitions we organized around five datasets from various application domains. Three
aspects were explored:

• Data representation.

• Model selection.

• Performance prediction.
With the proper data representation, learning becomes almost trivial. For the defenders of fully
automated data processing, the search for better data representations is just part of learning.
At the other end of the spectrum, domain specialists engineer data representations, which are
tailored to particular applications. The results of the “Agnostic Learning vs. Prior Knowledge”
challenge are discussed in the book, including longer versions of the best papers from the IJCNN
2007 workshop on “Data Representation Discovery” where the best competitors presented their
results.

Given a family of models with adjustable parameters, Machine Learning provides us with
means of “learning from examples” and obtaining a good predictive model. The problem be-
comes more arduous when the family of models possesses so-called hyper-parameters or when
it consists of heterogenous entities (e.g. linear models, neural networks, classification and re-
gression trees, kernel methods, etc.) Both practical and theoretical considerations may yield to
split the problem into multiple levels of inference. Typically, at the lower level, the parame-
ters of individual models are optimized and at the second level the best model is selected, e.g.
via cross-validation. This problem is often referred to as model selection. The results of the
“Model Selection Game” are included in this book as well as the best papers of the NIPS 2006
“Multi-level Inference” workshop.

In most real world situations, it is not sufficient to provide a good predictor, it is important to
assess accurately how well this predictor will perform on new unseen data. Before deploying a
model in the field, one must know whether it will meet the specifications or whether one should
invest more time and resources to collect additional data and/or develop more sophisticated
models. The performance prediction challenge asked participants to provide prediction results
on new unseen test data AND to predict how good these predictions were going to be on a test set
for which they did not know the labels ahead of time. Therefore, participants had to design both
a good predictive model and a good performance estimator. The results of the “Performance
Prediction Challenge” and the best papers of the “WCCI 2006 workshop of model selection”
will be included in the book.

A selection of the special topic of JMLR on model selection, including longer contributions
of the best challenge participants, are also reprinted in the book.

Isabelle Guyon, Gavin Cawley, Gideon Dror, Amir Saffari, Editors. January 2011.

v

Table of Contents

Series Foreword i

Foreword iii

Preface v

Part I Introduction 1

Challenges in Data Representation, Model Selection, and Performance Prediction 3
I. Guyon, A. Saffari, G. Dror & G. Cawley

Model Selection: Beyond the Bayesian/Frequentist Divide 23
I. Guyon, A. Saffari, G. Dror & G. Cawley; JMLR 11(Jan):61–87, 2010.

On Over-fitting in Model Selection and Subsequent Selection Bias in Performance
Evaluation 49
G.C. Cawley & N.L.C. Talbot; JMLR 11(Jul):2079–2107, 2010.

Part II Data representation 77

Hybrid Learning Using Mixture Models and Artificial Neural Networks 81
M. Saeed

Data Grid Models for Preparation and Modeling in Supervised Learning 99
M. Boullé

Virtual High-Throughput Screening with Two-Dimensional Kernels 131
C.-A. Azencott & P. Baldi

Part III Robust Parameter Estimation 147

Unified Framework for SVM Model Selection 151
M.M. Adankon & M. Cheriet

Liknon feature selection: Behind the scenes 169
E. Pranckeviciene & R. Somorjai

vii

Model Selection in Kernel Based Regression using the Influence Function 195
M. Debruyne, M. Hubert & J.A.K. Suykens; JMLR 9(Oct):2377–2400, 2008.

Part IV Ensemble Methods 219

An Improved Random Forests Approach with Application to the Performance Prediction
Challenge Datasets 223
C. Dahinden

Feature Selection with Ensembles, Artificial Variables, and Redundancy Elimination 231
E. Tuv, A. Borisov, G. Runger & K. Torkkola; JMLR 10(Jul):1341–1366, 2009.

Classification with Random Sets, Boosting and Distance-based Clustering 257
V. Nikulin

Part V Multi-level Inference 285

Preventing Over-Fitting during Model Selection via Bayesian Regularisation of the
Hyper-Parameters 289
G.C. Cawley & N.L.C. Talbot; JMLR 8(Apr):841–861, 2007.

Particle Swarm Model Selection 309
H.J. Escalante, M. Montes & L.E. Sucar; JMLR 10(Feb):405–440, 2009.

Bilevel Cross-validation-based Model Selection 345
G. Kunapuli, J.-S. Pang & K.P. Bennett

Appendix A Dataset Description 371

Datasets for the Agnostic Learning vs. Prior Knowledge Competition 373
I. Guyon

Appendix B Fact Sheets 397

B1 Performance Prediction Challenge 399

B1.1 LogitBoost with trees 399

B1.2 Weighted LS-SVM + Leave-One-Out Cross-Validation + Repeated Hold-Out 400

B1.3 Bayesian Neural Networks for the Performance Prediction Challenge 402

B1.4 Random Forests 405

B1.5 Kernel Classifier 406

TABLE OF CONTENTS ix

B1.6 Random Linear Matching Pursuit 408

B1.7 Regularized and Averaged Selective Naïve Bayes Classifier 409

B1.8 Artificial Contrasts with Ensembles and Regularized Least Squares Classifiers 411

B1.9 SVM-LOO 412

B1.10 Model Selection in an Ensemble Framework 413

B1.11 Advanced Analytical Methods, INTEL 414

B1.12 Learning with Mean-Variance Filtering, SVM and Gradient-based Optimization 415

B1.13 Large margin linear classifiers with bias adjustment for skewed two-class distribu-
tions. 416

B1.14 A Study of Supervised Learning with Multivariate Analysis on Unbalanced Datasets 417

B1.15 Cross-indexing 419

B2 AL vs PK Challenge 421

B2.1 LogitBoost with trees 421

B2.2 Feature selection with redundancy elimination + gradient boosted trees. 422

B2.3 Cross-indexing 424

B2.4 Classification with Random Sets, Boosting and Distance-based Clustering 426

B2.5 PSMS for Neural Networks 429

B2.6 Hybrid approach for learning 432

B2.7 Linear Programming SVM (Liknon) 433

B2.8 Agnostic Learning with Ensembles of Classifiers 436

B2.9 Modified multi-class SVM formulation; Efficient LOO computation 436

B2.10 Report on Preliminary Experiments with Data Grid Models in the Agnostic Learn-
ing vs. Prior Knowledge Challenge 438

B2.11 Dimensionality Reduction Techniques 440

B2.12 DoubleBoost 441

B2.13 Boosting with SVM 442

B2.14 High-Throughput Screening with Two-Dimensional Kernels 443

Appendix C CLOP: The challenge learning object package 447

Quick Start Guide for CLOP 449
A.R.S.A. Alamdari & I. Guyon

Part I

Introduction

Chapter 1

Challenges in Data Representation, Model Selection, and
Performance Prediction
Isabelle Guyon ISABELLE@CLOPINET.COM
ClopiNet, Berkeley, CA 94708, USA

Amir Saffari AMIR@YMER.ORG
Graz University of Technology, Austria

Gideon Dror GIDEON@MTA.AC.IL
Academic College of Tel-Aviv-Yaffo, Israel

Gavin Cawley GCC@CMP.UEA.AC.UK

University of East Anglia, UK

Abstract
We organized a series of challenge for the conferences IJCNN/WCCI 2006, NIPS 2006 and
IJCNN 2007 to explore various aspects of machine learning, ranging from the choice of data
representation to the selection of the best model. The class of problems addressed are classifica-
tion problems encountered in pattern recognition (classification of images, speech recognition),
medical diagnosis, marketing (customer categorization), text categorization (filtering of spam).
All three challenges used the same five datasets, formatted in two data representations: raw data
and preprocessed data in a feature-based representation. Post-challenge submissions can still
be made at: http://www.agnostic.inf.ethz.ch/. Several chapters in this volume
are contributed by top ranking challenge participants who describe their methods in details.
Keywords: Supervised learning; Classification; Competition; Performance prediction; Model
selection; Agnostic Learning; Prior Knowledge; Domain Knowledge; Boosting; Ensemble
methods; Kernel methods; Support Vector Machines; SVM; LSSVM; Data Grid models.

1.1. Introduction
Challenges have proved to be a great stimulus for research in machine learning, pattern recog-
nition, and robotics. Robotics contests seem to be particularly popular, with hundreds of events
every year, the most visible ones probably being the DARPA Grand Challenges of autonomous
ground vehicle navigation and RoboCup, featuring several challenges for robots including play-
ing soccer or rescuing people. In data mining and machine learning, several conferences
have regularly organized challenges over the past 10 years, including the well established Text
Recognition Conference (e.g., TREC) and the Knowledge Discovery in Databases cup (KDD
cup). More specialized pattern recognition and bioinformatics conference have also held their
own contests, e.g. CASP for protein structure prediction, DREAM for reverse engineering bi-
ological networks, ICDAR for document analysis, and the PASCAL Visual Object Challenge
(VOC) for object recognition. The European network of excellence PASCAL2 has actively
sponsored a number of challenges around hot themes in machine learning, which have punc-
tuated workshop at NIPS and other conferences. These contests are oriented towards scientific
research and the main reward for the winners is to disseminate the product of their research and
obtain recognition. In that respect, they play a different role than challenges like the Netflix

© I. Guyon, A. Saffari, G. Dror & G. Cawley.

http://www.agnostic.inf.ethz.ch/

GUYON SAFFARI DROR CAWLEY

prize, which offer large monetary rewards for solving a task of value to the Industry (movie
referral in than particular case), but are narrower scope. Attracting hundreds of participants and
the attention of a broad audience of specialists as well as sometimes the general public, these
events have been important in several respects: (1) pushing the state-of-the art, (2) identify-
ing techniques which really work, (3) attracting new researchers, (4) raising the standards of
research, (5) giving the opportunity to non-established researchers to make themselves rapidly
known.

In 2003, we organized a challenge on the theme of feature selection (Guyon et al., 2005)
whose results were discussed at NIPS 2003. A book was published collecting tutorial pa-
pers and the best papers from the challenge participants (Guyon et al., 2006a). We have
continued organizing challenges regularly every year, exploring various aspects of machine
learning: model selection, causal discovery, and active learning (see http://clopinet.
com/challenges). The present paper summarizes the results of three challenges: The
IJCNN/WCCI 2006 “performance prediction challenge” (Guyon et al., 2006b), the NIPS 2006
“model selection game”, and the IJCNN 2007 “agnostic learning vs. prior knowledge chal-
lenge” (Guyon et al., 2007, 2008).

1.2. Motivations for this series of challenges
Predictive modeling for classification and regression is a central problem addressed in statis-
tics, data mining and machine learning. Examples include pattern recognition (handwriting
recognition, speech recognition, object classification, text classification), medical diagnosis and
prognosis, spam filtering, etc. In such problems, the goal is to predict an outcome (a category or
a continuous variable), given patterns represented as vectors of features, graphs, texts, etc. The
standard approach to tackle such problems is to construct a predictive model from examples of
pairs pattern/outcome. After training, the model should be capable of making predictions of
outcome give new examples, not used for training (generalization).

Machine learning researchers have been devoting much effort in the past few decades to
inventing and improving learning algorithms. In proportion,less effort has been dedicated to
problems of data representation, model selection, and performance prediction. This paper
that summarizes the results of challenges we organized around these topics. The questions
addressed are the following:

• Data representation: The difficulty of learning from examples can be alleviated with
a proper data representation. However, finding such representations rely on expert do-
main knowledge. Conversely, adding more training data may yield better performance
without requiring such knowledge. How should human resources be rather exploited:
in collecting more data or in incorporating domain knowledge in the design of the data
representation?

• Model selection: There are many learning machine architectures and algorithms to choose
from. Given a certain amount of available training data, what strategy should be adopted
to deliver the best predictive model, including choosing the model family and the model
architecture, and tuning all hyper-parameters and parameters?

• Performance prediction: It is one thing to deliver the best model, but it is a different
thing to know how well it will perform on new, previously unseen, data. The former prob-
lem is that of model selection. The latter is that of performance prediction. A good esti-
mator of performance prediction is obviously a good model selection criterion. However,
there may exist simpler model selection criteria allowing only to rank models according

4

http://clopinet.com/challenges
http://clopinet.com/challenges

1. CHALLENGES AND DATASETS

to predictive power without predicting their performance. The problem of performance
prediction is to make best possible use of the training data to both train the model and
predict its prediction accuracy on future test data.

1.3. Datasets
In all challenges we used the same five datasets, however, the data were formatted differently
and scrambled to prevent the participants to use results of previous challenges as a head start and
give an even chance to new competitors. The tasks are five two-class classification problems
spanning a variety of domains (marketing, handwriting recognition (HWR), drug discovery,
text classification, and ecology) and a variety of difficulties, with sufficiently many examples
to obtain statistically significant results. The input variables are continuous or binary, sparse
or dense. Some raw data representations are not feature based. In some problems, the class
proportions are very imbalanced. A detailed report on the data preparation is available (Guyon,
2005). The main data characteristics are summarized in Table 1.1. Non-feature based represen-
tations are supplied for HIVA (molecular structure) and NOVA (emails) and were used in the
“data representation” competition.

Table 1.1: Datasets of the three challenges

Dataset Domain Number of examples Percent Number of features
(train/valid/test) pos. class Raw data Preproc.

ADA Marketing 4147 / 415 / 41471 28.4 14 48
GINA HWR 3153 / 315 / 31532 49.2 784 970
HIVA Drug discovery 3845 / 384 / 38449 3.5 Molecules 1617
NOVA Text classif. 1754 / 175 / 17537 28.5 Text 16969
SYLVA Ecology 13086 / 1309 / 130857 6.2 108 216

1.4. Design of the challenges
1.4.1. General evaluation procedure

The design of the challenges was informed by experience gained from another challenge we
organized previously on feature selection (Guyon et al., 2005). In particular, we used a system
of on-line submission, which provided the competitors with immediate feed-back on a small
subset of the data called the validation set. The organizers provided initial submissions to
bootstrap the challenge. A toolkit including some of the methods performing best in previous
challenges was also provided (the so-called Challenge Learning Object Package CLOP (Saffari
and Guyon, 2006), see Appendix). At the end of a development period, the validation set labels
were revealed. The final ranking was performed on a large separate test set. The test set labels
will remain hidden to permit meaningful comparison with post-challenge submissions.

Performance was measured in balanced error rate (BER), which is the average of the error
rate on the positive class and the error rate on the negative class. As is known, for i.i.d. errors
corresponding to Bernouilli trials with a probability of error p, the standard deviation of the
error rate E computed on a test set of size m is

�
p(1− p)/m. This result can be adapted

to the balanced error rate. Let us call m+ the number of examples of the positive class, m−
the number of examples of the negative class, p+ the probability of error on examples of the
positive class, p− the probability of error on examples of the negative class, and E+ and E− the

5

GUYON SAFFARI DROR CAWLEY

corresponding empirical estimates. Both processes generating errors on the positive or negative
class are Bernouilli processes. By definition, the balanced error rate is BER = (1/2)(E++E−),
and its variance is var(BER) = (1/4)(var(E+)+var(E−)). The standard deviation of the BER
using m+ and m− examples is therefore

σ =
1
2

�
p+(1− p+)

m+
+

p−(1− p−)
m−

. (1.1)

For sufficiently large test sets, we may substitute p+ by E+ and p− by E− to compute σ .
To rank the participants we adopted the following scheme: The entries were first ranked for

each individual dataset. Then a global ranking was obtained based on the average rank over
all five datasets. Different ranking scores incorporating the BER were used in the different
challenges.

1.4.2. Performance prediction challenge

We ran first the competition on performance prediction, which was easiest technically to orga-
nize. In that competition, in addition to providing predicted labels on test data, the participants
had to also provide an estimate of their performance on the test set. For the performance
prediction challenge, the ranking score balanced the classification accuracy and performance
prediction accuracy. Denoting as BER the balanced error rate actually computed from predic-
tions made on test examples, and BERguess the challenger’s own performance prediction, we
defined our ranking score as:

S = BER+δBER(1− e−δBER/σ) , (1.2)

where δBER = |BERguess −BER| measures in absolute value the difference between the com-
puted BER and the predicted BER. The multiplicative factor (1− e−δBER/σ) accounts for our
uncertainly of the exact BER, since we can only estimate it on a finite test set of size m. If the
BER error bar σ is small compared to the error of the challenger δBER, then this factor is just
one. The ranking score becomes simply BER+δBER. But if σ is large relative to the error made
by the challenger, we have S � BER.

The challenge started September 30th, 2005 and ended March 1st, 2006 (duration: 21
weeks). Therefore, the competitors had several months to build classifiers with provided (la-
beled) training data. We estimated that 145 entrants participated. We received 4228 “de-
velopment entries” (entries not counting towards the final ranking). A total of 28 partici-
pants competed for the final ranking by providing valid challenge entries (results on train-
ing, validation, and test sets for all five tasks). We received 117 submissions qualifying for
the final ranking (a maximum of 5 entries per participant was allowed). The participation
doubled in number of participants and entry volume compared to the feature selection chal-
lenge. The results of the challenge were discussed at the IJCNN/WCCI 2006 conference. The
website of the performance prediction challenge including details on the results is available
at: http://www.modelselect.inf.ethz.ch/. The submissions of the website are
closed because the same datasets were used in the follow-up ALvsPK challenge, whose website
remains open.

1.4.3. ALvsPK challenge on data representation

The agnostic learning vs. prior knowledge challenge (AlvsPK) had two parallel tracks: AL
and PK. For the “agnostic learning” (AL) track we supplied data preprocessed to provide a

6

http://www.modelselect.inf.ethz.ch/

1. CHALLENGES AND DATASETS

simple feature-based representation, suitable for use with any off-the-shelf machine learning
or data mining package. The pre-processing used was identical to that used in the previous
challenge on performance prediction, but with a new split of the data. The participants had no
knowledge of the identity of the features in the agnostic track. The raw data representations
were supplied in the “prior knowledge” (PK) track. They were not necessarily in the form of
data tables. For instance, in the drug discovery problem the raw data consists of a representation
of the three dimensional structure of the drug molecules; in the text processing problem, the raw
data are messages posted to USENET newsgroups. The participants had full knowledge of the
meaning of the representation of the data in the PK track. Therefore, PK competitors had the
opportunity to use domain knowledge to build better predictors and beat last year’s AL results or
make new “agnostic” entries. Note that the training/test splits used are the same in both tracks,
but the example ordering is different in each data subset to hinder matching patterns in the two
representations and/or submitting results with the representation prescribed for the other track.

The Balanced Error Rate (BER) was used for scoring the participants and otherwise the
modalities of evaluation were similar as those of the previous challenge on performance pre-
diction. The challenge started on October 1st, 2006 and ended on August 1st, 2007 (duration:
10 months). Two milestone rankings of the participants were made using the test set, without
revealing either the test labels or the test performance: on December 1st, for the “model selec-
tion game”, and on March 1st, to allow us to publish intermediate results (Guyon et al., 2007).
To be eligible for the final ranking, submissions had to include results on all the tasks of the
challenge in either track, on the test data. However, recognizing that domain knowledge is task
specific, prizes were given for each task individually in the “prior knowledge” track. For each
group, only the last five entries in either track counted towards the final ranking. The results of
the ALvsPK challenge were discussed at the IJCNN 2007 conference. Details can be found on
the website or the challenge http://www.agnostic.inf.ethz.ch/.

1.4.4. Model selection game

In previous challenges, we noted that different teams using similar classification methods (even
sometimes the same software package) obtained very different results. We conjectured that this
variance may be due to differences in model selection strategies. To stimulate research in model
selection and verify our conjecture, we organized a model selection game, within the ALvsPK
challenge. Using the data of the AL track, the competitors were asked to return results with
the constraint of using only models from the toolkit that the organizers provided: the Challenge
Learning Object Package CLOP (Saffari and Guyon, 2006), see Appendix). The package was
available for downloading from the web site of the challenge, and the latest version is available
from http://clopinet.com/CLOP, see Appendix for a brief description. That toolkit
includes classical methods and some of the algorithms that worked best in the previously orga-
nized challenges. Hence comparisons between model selection methods were facilitated. The
results of the model selection game were discussed ant the NIPS 2006 conference. Details can
be found on the website or the challenge http://www.agnostic.inf.ethz.ch/.

1.5. Results
1.5.1. General observations

In Figure 1.1, we show the distribution of performance on the test set of the entries who qualified
for ranking in the ALvsPK challenge. Graphs similar to those of the AL track were obtained in
the challenge on performance prediction, which uses the same datasets. We see that the datasets
vary in difficulty and that there are noticeable differences between the two tracks.

7

http://www.agnostic.inf.ethz.ch/
http://clopinet.com/CLOP
http://www.agnostic.inf.ethz.ch/

GUYON SAFFARI DROR CAWLEY

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0
10
20
30

ADA

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0
10
20
30

GINA

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0
10
20
30

HIVA

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0
10
20
30

NOVA

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0
10
20
30

SYLVA

Test BER

(a)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

50

100
ADA

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

50
100

GINA

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

50

100
HIVA

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

50
100

NOVA

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

50

100
SYLVA

Test BER

(b)

Figure 1.1: Distribution of test set Balanced Error Rate (BER). (a) Prior knowledge (PK) track.
(b) Agnostic learning (AL) track. The thin vertical line indicates the best ranked
entry (only the 5 last of each participant are ranked).

8

1. CHALLENGES AND DATASETS

HIVA (drug discovery) seems to be the most difficult dataset: the average BER and the
spread are high. ADA (marketing) is the second hardest. The distribution is very skewed and
has a heavy tail, indicating that a small group of methods “solved” the problem, which was not
obvious to others. NOVA (text classification) and GINA (digit recognition) come next. Both
datasets have classes containing multiple clusters. Hence, the problems are highly non-linear.
This may property of the data explain the very long distribution tails. Finally, SYLVA (ecology)
is the easiest dataset, due to the large amount of training data.

We surveyed the participants to get more details about the methods employed. The survey
reveals that the preprocessing methods used in the challenge on performance prediction and in
the AL track of the ALvsPK challenge were very elementary. Tree classifiers most often use no
preprocessing at all. The most common preprocessing is feature standardization (subtract the
mean and divide by the standard deviation for each feature). A few entries used PCA or ICA
to extract features. Most entries used no feature selection. Some entries resampled the training
data to balance the two classes. There does not seem to be a correlation between the type of
preprocessing used and how well people did in the challenge.

As classification methods, a variety of algorithms were used in top ranking entries, including
ensembles of decision trees, kernel methods/SVMs, Bayesian Neural Networks, ensembles of
linear methods, and Naïve Bayes. It is interesting to note that single or ensembles thereof did
generally better than mixed models.

1.5.2. Results of the Performance Prediction Challenge

The winner by average rank for the performance prediction challenge is Roman Lutz (Lutz,
2006). The best average score was obtained by Gavin Cawley and Nicola Talbot (Cawley and
Talbot, 2007), who obtained also the best guessed BER. Radford Neal obtained the best AUC
(data not shown). The full result tables are found on the web-site of the challenge (http:
//www.modelselect.inf.ethz.ch/).

The top ranking entries have made errors on their performance prediction of the same order
of magnitude as the error bar of the performance computed on test examples. This is an impor-
tant achievement considering that the training set is ten times smaller than the test set and the
validation set 100 times smaller.

We examined how the various methods did with respect to optimizing the test BER and the
δBER. In Figure 1.2 each point represents one of the 117 final entries, for each dataset. The best
ranking entry according to the challenge score is indicated by an arrow.

The symbols code for the methods used:

• X: Mixed or unknown method.
• TREE: Ensembles of trees (like Random Forests, RF).
• NN/BNN: Neural networks or Bayesian neural nets.
• NB: Naïve Bayes.
• LD/SVM/KLS/GP: Methods linear in their parameters, including kernel methods and

linear discriminant (LD), Support Vector Machines (SVM), Kernel Least-Squares (KLS)
and LS-SVM, Gaussian Processes (GP).

Figure 1.2 reveals that Naïve Bayes did very well on two datasets (ADA and SYLVA) but
poorly on others. Similarly, kernel methods did very well on most datasets (they rank first for
HIVA, GINA, and NOVA), but they did poorly on ADA. This failure on ADA make them rank
only fifth in the overall ranking. They are the most frequently used type of method, but their
performance shows a lot of variance. On the contrary, ensembles of decision trees are not so
popular, but they perform consistently well on all datasets in this challenge, even though they

9

http://www.modelselect.inf.ethz.ch/
http://www.modelselect.inf.ethz.ch/

GUYON SAFFARI DROR CAWLEY

are never the top entry for any of the datasets. The challenge winner used an ensemble of
decision trees. Similarly, Bayesian neural networks did well on all datasets, even though they
were not best for any. They end up ranking third in the overall scoring.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
10−4

10−3

10−2

10−1

100

BER

D
el

ta
 B

ER

 Other
TREE
NN/BNN
NB
LD/SVM/KLS/GP

SYLVA

GINA

NOVA

ADA

HIVA

Figure 1.2: Methods employed. We show a scatter plot of the methods employed in the
IJCNN06 challenge, coarsely grouped into five categories. The arrows indicate
the winners of the performance prediction challenge. The lines indicate the Pareto
front (see text for details).

This analysis also tells us something about the datasets: SYLVA has a large number of train-
ing examples, so all methods essentially perform well, even the simple naïve Bayes. We know
by design that GINA and NOVA are very non-linear. The top ranking participants used highly
non-linear methods and naïve Bayes failed. HIVA seems to also be in this category, not too
surprisingly: chemical molecules with very different structures can be active or inactive drugs.
ADA has a particularity that makes kernel methods fail and which should be further investigated.
We conjecture that is could be because the variables are mixed categorical/binary/continuous.

10

1. CHALLENGES AND DATASETS

Even though it is interesting to see how well methods performed as a function of the clas-
sification techniques, the most interesting thing is to analyze the methods of prediction of the
BER and the methods of model selection, since this was the theme of the challenge.

We can roughly categorize the methods used as follows:

• Nested cross-validation loops. The entry who obtained the best average guess error
(Cawley and Talbot, 2007), with average guess error: 0.0034, used a rather sophisticated
cross-validation scheme. The hyperparameters were adjusted with a “virtual leave-one-
out” cross-validation (VLOO). For regularized least-square kernel classifiers (LS-SVMs,
kernel ridge regression, RLSC, Gaussian processes), it is possible to compute the leave-
one-out error without training several classifiers (each time leaving one example out).
Only one training with the entire training set and some inexpensive additional calcula-
tions are required. Gavin Cawley explored various loss-functions for the VLOO method
using LS-SVMs for classification. He selected the best loss function with an outer loop
of cross-validation (drawing 100 random 90%training-10%validation splits; we call this
100CV). After selecting his model, he re-estimated performance by 100CV using fresh
data splits. The entrant who obtained the second best average guess error (Reunanen,
2007a), average guess error: 0.0048) performed a similar type of cross-validation called
“cross-indexing”, which uses nested cross-validation loops. The BER guess was obtained
by the cross-validation performance in the outer loop. Nested cross-validation loops can
be expensive computationally, however, in the case of the use of VLOO, the computa-
tional increase is minimal. We note however that VLOO is not available for all methods.
Approximate formulas are available for SVMs (as used by Olivier Chapelle, average
guess error: 0.0137) and neural networks.

• Plain cross-validation. Many participants used plain cross-validation, with a preference
for 10-fold cross-validation. They chose their hyperparameters on the basis of the small-
est cross-validated BER. The same cross-validated BER (CV BER) was used to guess the
test BER, hoping that the bias introduced by using only 90% of the training data would
be compensated by the bias introduced by selecting the model having smallest CV BER.
This strategy seems to have been reasonable since the challenge winner (Lutz, 2006), av-
erage guess error: 0.0059) used it. He won because of his good BER performance. The
second best entrant (Cawley and Talbot, 2007) had better BER guesses (average guess
error: 0.0034). A few entrants took care of balancing the fraction of positive and nega-
tive examples in the data splits to reflect the proportions found in the entire training set –
stratified cross-validation (Dahinden, 2010, this volume).

• Other methods. A few entrants performed model selection or estimated the performance
on future data using training data, without reserving validation data or performing cross-
validation, which is possible for regularized and Bayesian methods not prone to overfit-
ting. This was used as a model selection strategy for the naïve Bayes classifier (Boullé,
2007a). Radford Neal for his Bayesian Neural Network predicts the error rate using train-
ing data only, but this was not one of the best performing methods (average guess error:
0.0122). Other methods include the use of performance bounds for SVM model selection
like the Radius Margin bound (Olivier Chapelle). Bagging methods (including Random
Forests) use bootstrap resampling. The final model makes decisions according to a vote
of the models trained on the various bootstrap samples. The error rate of the model can be
estimated using the “out-of-bag” samples. This method was used by Nicolai Meinshausen
(average guess error: 0.0098). The least reliable method was to use the validation set of
the challenge to predict the test set performance. The best ranking participants did not
use this method.

11

GUYON SAFFARI DROR CAWLEY

1.5.3. Results of the Model Selection Game

Using models from the provided toolkit (CLOP, see Appendix), the best model selection game
participants (Escalante et al., 2009; Reunanen, 2007b) closely matched the performances of
the best entrants in the AL track using their own methods and considerably outperformed the
baseline performances provided by the organizers using CLOP models. This validates their
model selection techniques, which use efficient search algorithms and cross-validation to eval-
uate models.

All model selection methods rely on two basic elements: (1) a scoring function to evaluate
the models, and (2) a search algorithm to explore the space of all possible models. In the two
last challenges we organized (Guyon et al., 2005; Guyon et al., 2006b), the most successful
scoring functions were based on cross-validation; participants relying on the training set error
(eventually corrected by some complexity penalty terms) or on the validation set error overfitted
the training data. Conversely, cross-validation users could afford searching the model space
quite intensively without apparently incurring overfitting problems. Hence, the winners singled
themselves out by effectively searching model space. This may be achieved either by brute
force grid search using a computer cluster, or by some more refined search methods using a
variety of algorithmic advances or simple heuristics. We briefly describe a few.

The winner of the game, Juha Reunanen, proposed a new variant of cross-validation called
cross-indexing, which increases the accuracy of performance prediction in nested cross-validation
loops (Reunanen, 2007b). Closely matching the performances of the winner, Hugo Jair Es-
calante used a search technique biologically inspired called “particule swarm model selection”
(Escalante et al., 2009). In this method, each candidate model is represented as a particle in the
solution space; and by using a population of particles, as well as a fitness function, it emulate
the behavior of biological societies (swarm), which objective is to obtain common goals for the
entire population. Examples of this behavior on biological populations are bird flocking and fish
schooling. Also noteworthy is the method of Gavin Cawley (Cawley and Talbot, 2007a) who
won the “performance prediction challenge” and whose results have not been outperformed in
the game. He proposed the use of a Bayesian regularization at the second level of inference,
adding a regularization term to the model selection criterion corresponding to a prior over the
hyper-parameter values, where the additional regularization parameters are integrated out an-
alytically. Finally, new promising methods of multi-level optimization (Bennett et al., 2006;
Kunapuli et al., 2010, this volume) were proposed at the NIPS workshop where the results of
the game were discussed, but must be optimized before they can be applied to sizeable datasets
like the ones of the challenge.

The problem of selecting an optimum K in K-fold cross-validation has not been addressed.
K=10 seems to be the default value everyone uses.

1.5.4. Results of the ALvsPK challenge

In the Agnostic Learning vs. Prior Knowledge challenge (ALvsPK), the final ranking of sub-
missions was also based on the balanced error rate (BER) on the test set (the average of the
error rate for the positive class and the error rate for the negative class). The Area Under the
ROC Curve (AUC) was also computed, but not used for scoring. People scoring well with
the BER generally perform also well with the AUC, but the opposite is not necessarily true
since it is difficult to learn the correct bias when the two classes are unbalanced with respect
of number of examples. The top ranking participants did well with respect to both metrics,
but ranked in a slightly different order. To obtain the overall ranking we averaged the ranks
of participants in each track after normalizing by the number of entries. The number of sub-
missions was unlimited, but only the five last “complete” submissions for each entrant in either

12

1. CHALLENGES AND DATASETS

Table 1.2: PK better than AL comparison results

ADA GINA HIVA NOVA SYLVA
Min PK BER 0.170 0.019 0.264 0.037 0.004
Min AL BER 0.166 0.033 0.271 0.046 0.006

Median PK BER 0.189 0.025 0.310 0.047 0.008
Median AL BER 0.195 0.066 0.306 0.081 0.015
Pval ranksum test 5 10−8 3 10−18 0.25 8 10−6 10−18

Jorge Sueiras −
Juha Reunanen (Reunanen, 2007a) + +

Marc Boullé (Boullé, 2007b) + + − −
Roman Lutz (Lutz, 2006) +

Vladimir Nikulin (Nikulin, 2007) − + +
Vojtech Franc + +

CWW − −
Reference (gcc) (Cawley and Talbot, 2007b) + + −

Pvalue sign test 0.31 0.19 0.25 0.25 0.31

track were included in the final ranking. For the first few weeks of the challenge, the top of the
rankings were largely dominated by agnostic track (AL) submissions. However, the learning
curves for the agnostic learning and prior knowledge tracks eventually crossed for all datasets,
except for ADA. After approximately 150 days the PK performance asymptote was reached.
The asymptotic performances are reported at the top of Table 1.2. In contrast, in the IJCNN-06
performance prediction challenge, using the same data as the AL track, the competitors attained
almost their best performance within about 60 days and kept improving only slightly afterward.

Figure 1.1, shows the distribution of the test BER for all entries. There were approximately
60% more submissions for the AL track than in the PK track. This indicates that the “prior
knowledge” track was harder to enter. However, the participants who did enter the PK track
performed significantly better on average than those who entered the AL track, on all
datasets except for HIVA. To quantify this observation we ran a Wilcoxon rank sum test on the
difference between the median values of the two tracks (Table 1.2). We also performed paired
comparisons for entrants who entered both tracks, using their last 5 submissions. In Table 1.2,
a “+” indicates that the entrant performed best in the PK track and a “−” indicates the opposite.
We see that the entrants who entered both tracks did not always succeed in obtaining better
results in the PK track. The p-values of the sign test do not reveal a significant dominance of
PK over AL or vice versa in that respect (all are between 0.25 and 0.5). However, for HIVA and
NOVA the participants who entered both tracks failed to get better results in the PK track. We
conclude that, while on average PK seems to win over AL, success is uneven and depends both
on the domain and on the individuals’ expertise.

Agnostic learning methods

The winner of the “agnostic learning” track is Roman Lutz, who also won the Performance
Prediction Challenge (IJCNN06) (Lutz, 2006), using boosting techniques. Gavin Cawley from
the organization team made a reference entry (not counting towards the competition) using
LSSVMs, which slightly outperforms that of Lutz. The improvements he made can partly be
attributed to the introduction of an ARD kernel, which automatically down-weighs the least
relevant features and to a Bayesian regularization at the second level of inference (Cawley and

13

GUYON SAFFARI DROR CAWLEY

Talbot, 2007b,a). The second best entrant is the Intel group, also using boosting methods (Tuv
et al., 2009). The next best ranking entrants include Juha Reunanen and Hugo Jair Escalante,
who have both been using CLOP models provided by the organizers and have proposed inno-
vative search strategies for model selection: Escalante is using a biologically inspired particle
swarm technique (Escalante et al., 2007, 2009) and Reunanen a cross-indexing method to make
cross-validation more computationally efficient (Reunanen, 2007a,b). Other top ranking partic-
ipants in the AL track include Vladimir Nikulin (Nikulin, 2007) and Jörg Wichard (Wichard,
2007) who both experimented with several ensemble methods, Erinija Pranckeviciene (Pranck-
eviciene et al., 2007; Pranckeviciene and Somorjai, 2010, this volume) who performed a study
of linear programming SVM methods, and Marc Boullé who introduced a new data grid method
(Boullé, 2007a, 2010, this volume). Mehreen Saeed (Saeed, 2010, this volume) achieved the
best result on NOVA with a hybrid approach using mixture models and neural networks. Eu-
gene Tuv In the following sections, we look into more details at the methods employed in the
“prior knowledge” track to outperform the results of the “agnostic track”.

Agnostic learning vs. prior knowledge: analysis per dataset

ADA: THE MARKETING APPLICATION

The task of ADA is to discover high revenue people from census data, presented in the form of
a two-class classification problem. The raw data from the census bureau is known as the Adult
database in the UCI machine-learning repository (Kohavi and Becker, 1994). The 14 original
attributes (features) represent age, workclass, education, marital status, occupation, native coun-
try, etc. and include continuous, binary and categorical features. The PK track had access to
the original features and their descriptions. The AL track had access to a preprocessed numeric
representation of the features, with a simple disjunctive coding of categorical variables, but the
identity of the features was not revealed. We expected that the participants of the AL vs. PK
challenge could gain in performance by optimizing the coding of the input features. Strategies
adopted by the participants included using a thermometer code for ordinal variables (Gavin
Cawley) and optimally grouping values for categorical variables (Marc Boullé). Boullé also op-
timally discretized continuous variables, which make them suitable for a naïve Bayes classifier
(Boullé, 2007a). However, the advantage of using prior knowledge for ADA was marginal. The
overall winner on ADA is in the agnostic track (Roman Lutz), and the entrants who entered both
tracks and performed better using prior knowledge do not have results statistically significantly
better. We conclude that optimally coding the variables may not be so crucial and that good
performance can be obtained with a simple coding and a state-of-the-art classifier.

GINA: THE HANDWRITING RECOGNITION APPLICATION

The task of GINA is handwritten digit recognition, the raw data is known as the MNIST dataset
(LeCun and Cortes, 1998). For the “agnostic learning” track we chose the problem of separat-
ing two-digit odd numbers from two-digit even numbers. Only the unit digit is informative for
this task, therefore at least 1/2 of the features are distracters. Additionally, the pixels that are
almost always blank were removed and the pixel order was randomized to hide the meaning
of the features. For the “prior knowledge” track, only the informative digit was provided in
the original pixel map representation. In the PK track the identities of the digits (0 to 9) were
provided for training, in addition to the binary target values (odd vs. even number). Since the
prior knowledge track data consists of pixel maps, we expected the participants in perform im-
age pre-processing steps such as noise filtering, smoothing, de-skewing, and feature extraction
(points, loops, corners) and/or use kernels or architectures exploiting geometric invariance by

14

1. CHALLENGES AND DATASETS

small translation, rotation, and other affine transformations, which have proved to work well on
this dataset (LeCun and Cortes, 1998). Yet, the participants in the PK track adopted very simple
strategies, not involving a lot of domain knowledge. Some just relied on the performance boost
obtained by the removal of the distracter features (Vladimir Nikulin, Marc Boullé, Juha Re-
unanen). Others exploited the knowledge of the individual class labels and created multi-class
of hierarchical classifiers (Vojtech Franc, Gavin Cawley). Only the reference entries of Gavin
Cawley (which obtained the best BER of 0.0192) included domain knowledge by using RBF
kernels with tunable receptive fields to smooth the pixel maps (Cawley and Talbot, 2007a). In
the future, it would be interesting to assess the methods of Simard et al (Simard et al., 2003)
on this data to see whether further improvements are obtained by exploiting geometrical invari-
ances. The agnostic track data was significantly harder to analyze because of the hidden class
heterogeneity and the presence of feature distracters. The best GINA final entry was therefore
on the PK track and all four ranked entrants who entered both tracks obtained better results in
the PK track. Further, the differences in performance are all statistically significant.

HIVA: THE DRUG DISCOVERY APPLICATION

The task of HIVA is to predict which compounds are active against the AIDS HIV infection.
The original data from the NCI (Collins, 1999) has 3 classes (active, moderately active, and
inactive). We brought it back to a two-class classification problem (active & moderately active
vs. inactive), but we provided the original labels for the “prior knowledge” track. The com-
pounds are represented by their 3d molecular structure for the “prior knowledge” track (in SD
format). For the “agnostic track" we represented the input data as a vector of 2000 sparse binary
variables. The variables represent properties of the molecule inferred from its structure by the
ChemTK software package (version 4.1.1, Sage Informatics LLC). The problem is therefore
to relate structure to activity (a QSAR — quantitative structure-activity relationship problem)
to screen new compounds before actually testing them (a HTS — high-throughput screening
problem). Note that in such applications the BER is not the best metric to assess performance
since the real goal is to identify correctly the compounds most likely to be effective (belonging
to the positive class). We resorted to using the BER to make comparisons easier across datasets.
The raw data was not supplied in a convenient feature representation, which made it impossi-
ble to enter the PK track using agnostic learning methods, using off-the-shelf machine learning
packages. The winner in HIVA (Chloé-Agathe Azencott of the Pierre Baldi Laboratory at UCI)
is a specialist in this kind of dataset, on which she is working towards her PhD (Azencott et al.,
2007; Azencott and Baldi, 2010, this volume). She devised her own set of low level features,
yielding a “molecular fingerprint” representation, which outperformed the ChemTK features
used on the agnostic track. Her winning entry has a test BER of 0.2693, which is significantly
better than the test BER of the best ranked AL entry of 0.2827 (standard error 0.0068). The
results on HIVA are quite interesting because most agnostic learning entrants did not even at-
tempt to enter the prior knowledge track and the entrants that did submit models for both tracks
failed to obtain better results in the PK track. One of them working in an institute of pharmacol-
ogy reported that too much domain knowledge is sometimes detrimental; experts in his institute
advised against using molecular fingerprints, which ended up as the winning technique.

NOVA: THE TEXT CLASSIFICATION APPLICATION

The data of NOVA come from the 20-Newsgroup dataset (Mitchell, 1999). Each text to classify
represents a message that was posted to one or several USENET newsgroups. The raw data
is provided in the form of text files for the “prior knowledge” track. The preprocessed data
for the “agnostic learning” track is a sparse binary representation using a bag-of-words with

15

GUYON SAFFARI DROR CAWLEY

a vocabulary of approximately 17000 words (the features are simply frequencies of words in
text). The original task is a 20-class classification problem but we grouped the classes into
two categories (politics and religion vs. others) to make it a two-class problem. The original
class labels were available for training in the PK track but not in the AL track. As the raw data
consist of texts of variable length it was not possible to enter the PK track for NOVA without
performing a significant pre-processing. All PK entrants in the NOVA track used a bag-of-
words representation, similar to the one provided in the agnostic track. Standard tricks were
used, including stemming. Gavin Cawley used the additional idea of correcting the emails with
an automated spell checker. No entrant who entered both tracks outperformed their AL entry
with their PK entry in their last ranked entries, including the winner! This is interesting because
the best PK entries made throughout the challenge significantly outperform the best AL entries
(BER difference of 0.0089 for an standard error of 0.0018), see also Figure 1.1. Hence in this
case, the PK entrants overfitted and were unable to select among their PK entries those,
which would perform best on test data. This is not so surprising because the validation set on
NOVA is quite small (175 examples). Even though the bag-of-words representation is known
to be state-of-the-art for this kind of applications, it would be interesting to compare it with
more sophisticated representations. To our knowledge, the best results on the 20 Newsgroup
data were obtained by the method of distributional clustering by Ron Bekkerman (Bekkerman
et al., 2003).

SYLVA: THE ECOLOGY APPLICATION

The task of SYLVA is to classify forest cover types. The forest cover type for 30× 30 meter
cells was obtained from US Forest Service (USFS) Region 2 Resource Information System
(RIS) data (Blackard and Dean, 1998). We converted this into a two-class classification problem
(classifying Ponderosa pine vs. everything else). The input vector for the “agnostic learning”
track consists of 216 input variables. Each pattern is composed of 4 records: 2 true records
matching the target and 2 records picked at random. Thus 1/2 of the features are distracters.
The “prior knowledge” track data is identical to the “agnostic learning” track data, except that
the distracters are removed and the meaning of the features is revealed. For that track, the
identifiers in the original forest cover dataset are revealed for the training set. As the raw data
was already in a feature vector representation, this task was essentially testing the ability of
the participants in the AL track to perform well in the presence of distracter features. The PK
track winner (Roman Lutz) in his Doubleboost algorithm exploited the fact that each pattern
was made of two records of the same pattern to train a classifier with twice as many training
examples. Specifically, a new dataset was constructed by putting the second half of the data
(variables 55 to 108) below the first half (variables 1 to 54). The new dataset is of dimension 2n
times 54 (instead of n times 108). This new dataset is used for fitting the base learner (tree) of his
boosting algorithm. The output of the base learner is averaged over the two records belonging to
the same pattern. This strategy can be related to the neural network architectures using “shared
weights”, whereby at training time, the weights trained on parts of the pattern having similar
properties are constrained to be identical (LeCun and Cortes, 1998). This reduced the number
of free parameters of the classifier.

1.6. Conclusions
This paper presented the results of three competitions organized around the same datasets. The
challenge series was very successful in attracting a large number of participants who delivered
many interesting ways of approaching performance predictions.

16

1. CHALLENGES AND DATASETS

We observed that rather unsophisticated methods (e.g. simple 10-fold cross validation) did
well to predict performance. Nested cross-validation loops are advisable to gain extra predic-
tion accuracy. They come at little extra computational expense, if the inner loop uses virtual
leave-one-out. Successful model selection techniques include cross-validation and regulariza-
tion methods. Ensemble and Bayesian methods provide an efficient alternative to model se-
lection by constructing committees of classifiers. A number of sophisticated methods with
appealing theoretical motivations were proposed for the model selection special session, but the
authors did not compete in the challenge. We believe there is still a gap to be filled between
theory and practice in this game of performance prediction and model selection.

The Agnostic Learning vs. Prior Knowledge challenge (ALvsPK) compared the “agnostic
learning” (AL) approach putting all the effort on the classifier and the “prior knowledge” (PK)
approach capitalizing on human domain knowledge. For the first few months of the challenge,
the participants of the AL track led over the PK track, showing that the development of good
AL classifiers is considerably faster. As of March 1st 2007, PK was leading over AL on four out
of five datasets. We extended the challenge five more months, but few significant improvements
were made during that time period. On datasets not requiring real expert domain knowledge
(ADA, GINA, SYLVA), the participants entering both track obtained better results in the PK
track, using a special-purpose coding of the inputs and/or the outputs, exploiting the knowledge
of which features were uninformative, and using “shared weights” for redundant features. On
the datasets requiring most real expert domain knowledge (HIVA and NOVA), several entrants
failed to capitalize on prior knowledge. For both HIVA and NOVA, the winning data represen-
tation consisted of a high-dimensional vector of low level features (“molecular fingerprints” and
“bag-of-words”). From the analysis of this challenge, we conclude that agnostic learning meth-
ods are very powerful. They quickly yield (in 40 to 60 days) a level of performance close to the
best achievable performance. General-purpose techniques for exploiting prior knowledge in the
encoding of inputs or outputs or the design of the learning machine architecture (e.g. via shared
weights) may provide an additional performance boost, but exploiting real domain knowledge is
both difficult and time consuming. This fact seems to be a recurrent theme in machine learning
publications and further confirmation is provided by the results of our challenge.

We incorporated the best identified methods in our challenge toolkit, CLOP http://
clopinet.com/CLOP. The challenge web site remains open for post-challenge submis-
sions at http://www.agnostic.inf.ethz.ch/, where supplementary analyzes and
complete result tables are also made available.

Acknowledgments
We are very thankful to the institutions that originally provided the data. The organization of
this challenge was a team effort to which many have participated. We are particularly grateful
to Olivier Guyon (MisterP.net) our webmaster. Prof. Joachim Buhmann (ETH Zurich) who pro-
vided computer resources and all the advisors, beta-testers and sponsors are gratefully acknowl-
edged (see http://www.agnostic.inf.ethz.ch/credits.php for a full list). The
Challenge Learning Object Package (CLOP) is based on code to which many people have con-
tributed Weston et al. (2005); Saffari and Guyon (2006). This project has been supported by
the Pascal network of excellence funded by the European Commission and the National Sci-
ence Foundation under Grants N0. ECCS-0424142 and N0. ECCS-0736687. Any opinions,
findings, and conclusions or recommendations expressed in this material are those of the au-
thors and do not necessarily reflect the views of the National Science Foundation. Amir Saffari
acknowledges the support of the Austrian FFG project Outlier (820923) under the FIT-IT pro-
gram.

17

http://clopinet.com/CLOP
http://clopinet.com/CLOP
http://www.agnostic.inf.ethz.ch/
http://www.agnostic.inf.ethz.ch/credits.php

GUYON SAFFARI DROR CAWLEY

References
C.-A. Azencott and P. Baldi. Virtual high-throughput screening with two-dimensional kernels.

In I. Guyon, et al., editor, Hands on Pattern Recognition. Microtome, 2010, this volume.

C. A. Azencott, A. Ksikes, S. J. Swamidass, J. H. Chen, L. Ralaivola, and P. Baldi. One- to
four-dimensional kernels for virtual screening and the prediction of physical, chemical, and
biological properties. J. Chem. Inf. Model., 2007. Available at http://pubs3.acs.
org/acs/journals/doilookup?in_doi=10.1021/ci600397p.

R. Bekkerman, R. El-Yaniv, N. Tishby, and Y. Winter. Distributional word clusters vs
words for text categorization. J. Machine Learning Research, 3, 2003. Available at cite-
seer.ist.psu.edu/article/bekkerman02distributional.html. Code available at http://www.
cs.technion.ac.il/~ronb/.

K. Bennett, J. Hu, X. Ji, G. Kunapuli, and J.-S. Pang. Model selection via
bilevel optimization. In Proc. IJCNN06, pages 3588–3505, Vancouver, Canada, July
2006. INNS/IEEE. Available at http://clopinet.com/isabelle/Projects/
modelselect/Papers/Bennett_paper_IJCNN06.pdf.

J. A. Blackard and D. J. Dean. Forest cover type, 1998. Available at http://kdd.ics.
uci.edu/databases/covertype/covertype.html.

M. Boullé. Compression-based averaging of Selective Naïve Bayes classifiers. In I. Guyon
and A. Saffari, editors, JMLR, Special topic on model selection, volume 8, pages 1659–
1685, Jul 2007a. URL http://www.jmlr.org/papers/volume8/boulle07a/
boulle07a.pdf.

M. Boullé. Report on preliminary experiments with data grid models in the agnostic learning vs.
prior knowledge challenge. In Proc. IJCNN07, Orlando, Florida, Aug 2007b. INNS/IEEE.

M. Boullé. Data grid models for preparation and modeling in supervised learning. In
I. Guyon, et al., editor, Hands on Pattern Recognition. Microtome, 2010, this volume.

G. Cawley and N. Talbot. Preventing over-fitting during model selection via Bayesian regular-
isation of the hyper-parameters. In I. Guyon and A. Saffari, editors, JMLR, Special topic on
model selection, volume 8, pages 841–861, Apr 2007a. URL http://www.jmlr.org/
papers/volume8/cawley07a/cawley07a.pdf.

G. C. Cawley and N. L. C. Talbot. Agnostic learning versus prior knowledge in the design of
kernel machines. In Proc. IJCNN07, Orlando, Florida, Aug 2007b. INNS/IEEE.

G. C. Cawley and N. L. C. Talbot. Preventing over-fitting during model selection using Bayesian
regularisation. In I. Guyon and A. Saffari, editors, JMLR, Special topic on model selec-
tion, volume 8, pages 841–861, April 2007. URL http://jmlr.csail.mit.edu/
papers/volume8/cawley07a/cawley07a.pdf.

J. M. Collins, Associate Director. The DTP AIDS antiviral screen program, 1999. Available at
http://dtp.nci.nih.gov/docs/aids/aids_data.html.

C. Dahinden. An improved Random Forests approach with application to the performance
prediction challenge datasets. In I. Guyon, et al., editor, Hands on Pattern Recognition.
Microtome, 2010, this volume.

18

http://pubs3.acs.org/acs/journals/doilookup?in_doi=10.1021/ci600397p
http://pubs3.acs.org/acs/journals/doilookup?in_doi=10.1021/ci600397p
http://www.cs.technion.ac.il/~ronb/
http://www.cs.technion.ac.il/~ronb/
http://clopinet.com/isabelle/Projects/modelselect/Papers/Bennett_paper_IJCNN06.pdf
http://clopinet.com/isabelle/Projects/modelselect/Papers/Bennett_paper_IJCNN06.pdf
http://kdd.ics.uci.edu/databases/covertype/covertype.html
http://kdd.ics.uci.edu/databases/covertype/covertype.html
http://www.jmlr.org/papers/volume8/boulle07a/boulle07a.pdf
http://www.jmlr.org/papers/volume8/boulle07a/boulle07a.pdf
http://www.jmlr.org/papers/volume8/cawley07a/cawley07a.pdf
http://www.jmlr.org/papers/volume8/cawley07a/cawley07a.pdf
http://jmlr.csail.mit.edu/papers/volume8/cawley07a/cawley07a.pdf
http://jmlr.csail.mit.edu/papers/volume8/cawley07a/cawley07a.pdf
http://dtp.nci.nih.gov/docs/aids/aids_data.html

1. CHALLENGES AND DATASETS

H. J. Escalante, M. Montes, and L. E. Sucar. PSMS for neural networks: Results on the IJCNN
2007 agnostic vs. prior knowledge challenge. In Proc. IJCNN07, Orlando, Florida, Aug 2007.
INNS/IEEE.

H. J. Escalante, M. Montes, and L. E. Sucar. Particle swarm model selection. In I. Guyon and
A. Saffari, editors, JMLR, Special topic on model selection, volume 10, pages 405–440,
Feb 2009. URL http://www.jmlr.org/papers/volume10/escalante09a/
escalante09a.pdf.

I. Guyon. Datasets for the agnostic learning vs. prior knowledge competition. Technical re-
port, Clopinet, 2005. Available at http://clopinet.com/isabelle/Projects/
agnostic/Dataset.pdf.

I. Guyon, S. Gunn, A. Ben-Hur, and G. Dror. Result analysis of the nips 2003 fea-
ture selection challenge. In Lawrence K. Saul, Yair Weiss, and Léon Bottou, edi-
tors, Advances in Neural Information Processing Systems 17, pages 545–552. MIT Press,
Cambridge, MA, 2005. Available at http://books.nips.cc/papers/files/
nips17/NIPS2004_0194.pdf.

I. Guyon, S. Gunn, M. Nikravesh, and L. Zadeh, Editors. Feature Extraction, Foundations and
Applications. Studies in Fuzziness and Soft Computing. Physica-Verlag, Springer, 2006a.

I. Guyon, A. Saffari, G. Dror, and J. Buhmann. Performance prediction challenge. In
IEEE/INNS conference IJCNN 2006, Vancouver, July 16-21 2006b.

I. Guyon, A. Saffari, G. Dror, and G. Cawley. Agnostic vs. prior knowledge challenge. In Proc.
IJCNN07, Orlando, Florida, Aug 2007. INNS/IEEE.

I. Guyon, A. Saffari, G. Dror, and G. Cawley. Analysis of the IJCNN 2007 agnostic learning
vs. prior knowledge challenge. Neural Networks, 21(2-3):544–550, 2008.

R. Kohavi and B. Becker. The Adult database, 1994. Available at ftp://ftp.ics.uci.
edu/pub/machine-learning-databases/adult/.

G. Kunapuli, J.-S. Pang, and K. Bennett. Bilevel cross-validation-based model selection. In
I. Guyon, et al., editor, Hands on Pattern Recognition. Microtome, 2010, this volume.

Y. LeCun and C. Cortes. The MNIST database of handwritten digits, 1998. Available at http:
//yann.lecun.com/exdb/mnist/.

R. W. Lutz. Logitboost with trees applied to the WCCI 2006 performance prediction challenge
datasets. In Proc. IJCNN06, pages 2966–2969, Vancouver, Canada, July 2006. INNS/IEEE.

T. Mitchell. The 20 Newsgroup dataset, 1999. Available at http://kdd.ics.uci.edu/
databases/20newsgroups/20newsgroups.html.

V. Nikulin. Non-voting classification with random sets and boosting. In Proc. IJCNN07 Data
Representation Discovery workshop, Orlando, Florida, Aug 2007.

E. Pranckeviciene and R. Somorjai. Liknon feature selection: Behind the scenes. In
I. Guyon, et al., editor, Hands on Pattern Recognition. Microtome, 2010, this volume.

E. Pranckeviciene, R. Somorjai, and M. N. Tran. Feature/model selection by the linear pro-
gramming SVM combined with state-of-art classifiers: What can we learn about the data. In
Proc. IJCNN07, Orlando, Florida, Aug 2007. INNS/IEEE.

19

http://www.jmlr.org/papers/volume10/escalante09a/escalante09a.pdf
http://www.jmlr.org/papers/volume10/escalante09a/escalante09a.pdf
http://clopinet.com/isabelle/Projects/agnostic/Dataset.pdf
http://clopinet.com/isabelle/Projects/agnostic/Dataset.pdf
http://books.nips.cc/papers/files/nips17/NIPS2004_0194.pdf
http://books.nips.cc/papers/files/nips17/NIPS2004_0194.pdf
ftp://ftp.ics.uci.edu/pub/machine-learning-databases/adult/
ftp://ftp.ics.uci.edu/pub/machine-learning-databases/adult/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://kdd.ics.uci.edu/databases/20newsgroups/20newsgroups.html
http://kdd.ics.uci.edu/databases/20newsgroups/20newsgroups.html

GUYON SAFFARI DROR CAWLEY

J. Reunanen. Model selection and assessment using cross-indexing. In Proc. IJCNN07, Or-
lando, Florida, Aug 2007a. INNS/IEEE.

J. Reunanen. Resubstitution error is useful for guiding feature selection. Unpublished techre-
port, 2007b.

M. Saeed. Hybrid learning using mixture models and artificial neural networks. In
I. Guyon, et al., editor, Hands on Pattern Recognition. Microtome, 2010, this volume.

A. Saffari and I. Guyon. Quick start guide for CLOP. Technical report, Graz University of Tech-
nology and Clopinet, May 2006. Available at http://ymer.org/research/files/
clop/QuickStartV1.0.pdf.

P. Simard, D. Steinkraus, and J. Platt. Best practice for convolutional neural networks applied to
visual document analysis. In International Conference on Document Analysis and Recogn-
tion (ICDAR), pages 958–962, Los Alamitos, 2003. IEEE Computer Society.

E. Tuv, A. Borisov, G. Runger, and K. Torkkola. Feature selection with ensembles, artificial
variables, and redundancy elimination. In I. Guyon and A. Saffari, editors, JMLR, Special
topic on model selection, volume 10, pages 1341–1366, Jul 2009. URL http://www.
jmlr.org/papers/volume10/tuv09a/tuv09a.pdf.

J. Weston, A. Elisseeff, G. Bakir, and F. Sinz. The Spider machine learning toolbox. 2005.
Available at http://www.kyb.tuebingen.mpg.de/bs/people/spider/.

J. Wichard. Agnostic learning with ensembles of classifiers. In Proc. IJCNN07, Orlando,
Florida, Aug 2007. INNS/IEEE.

Appendix: The Challenge Learning Object Package (CLOP)
The CLOP package can be downloaded from the web-site http://clopinet.com/CLOP.
The Spider package on top of which CLOP is built, uses Matlab® objects (The MathWorks,
http://www.mathworks.com/). Two simple abstractions are used:

• data: Data objects include two members X and Y, X being the input matrix (patterns in
lines and features in columns), Y being the target matrix (i.e. one column of ±1 for binary
classification problems).

• algorithms: Algorithm objects representing learning machines (e.g. neural networks,
kernel methods, decision trees) or preprocessors (for feature construction, data normal-
ization or feature selection). They are constructed from a set of hyper-parameters and
have at least two methods: train and test. The train method adjusts the parameters of the
model. The test method processes data using a trained model.

For example, you can construct a data object D:

> D = data(X, Y);

The resulting object has 2 members: D.X and D.Y. Models are derived from the class
algorithm. They are constructed using a set of hyperparameters provided as a cell array of
strings, for instance:

> hyperparam = {’h1=val1’, ’h2=val2’};
> model0 = algorithm(hyperparam);

20

http://ymer.org/research/files/clop/QuickStartV1.0.pdf
http://ymer.org/research/files/clop/QuickStartV1.0.pdf
http://www.jmlr.org/papers/volume10/tuv09a/tuv09a.pdf
http://www.jmlr.org/papers/volume10/tuv09a/tuv09a.pdf
http://www.kyb.tuebingen.mpg.de/bs/people/spider/
http://clopinet.com/CLOP
http://www.mathworks.com/

1. CHALLENGES AND DATASETS

In this way, hyperparameters can be provided in any order or omitted. Omitted hyperparam-
eters take default values.

To find out about the default values and allowed hyperparameter range, one can use the
“default” method:

> default(algorithm)

The constructed model model0 can then be trained and tested:

> [Dout, model1] = train(model0, Dtrain);
> Dout = test(model1, Dtest);

model1 is a model object identical to model0, except that its parameters (some data
members) have been updated by training. Matlab uses the convention that the object of a method
is passed as first argument as a means to identify which overloaded method to call. Hence, the
“correct” train method for the class of model0 will be called. Since Matlab passes all
arguments by value, model0 remains unchanged. By calling the trained and untrained model
with the same name, the new model can overwrite the old one. Repeatedly calling the method
“train" on the same model may have different effects depending on the model.

To save the model is very simple since Matlab objects know how to save themselves:

> save(’filename’, ’modelname’);

This feature is very convenient to make results reproducible, particularly in the context of a
challenge.

The Spider (with some CLOP extensions) provides ways of building more complex “com-
pound” models from the basic algorithms with two abstractions:

• chain: A chain is a learning object (having a train and test method) constructed from an
array of learning objects. Each array member takes the output of the previous member
and feeds its outputs to the next member.

• ensemble: An ensemble is also a learning object constructed from an array of learning
objects. The trained learning machine performs a weighted sum of the predictions of the
array members.

A typical model chains modules for preprocessing, feature selection, classification, and
postprocessing.

Until December 1st 2006, the challenge participants had the opportunity to participate in a
model selection game using CLOP. For the purpose of the game, a valid model was defined as
a combination of learning objects from a predefined list (type whoisclop at the MATLAB
prompt to get a the full list of allowed CLOP learning objects; to check that a particular object
is a valid CLOP object, type isclop(object)).

A typical model may include some of the following modules: preprocessing, feature selec-
tion, classification, and postprocessing. Table 3 shows a list of the modules provided.

21

GUYON SAFFARI DROR CAWLEY

Table 1.3: CLOP modules provided for the model selection game.

Object name Description
Preprocessing
standardize Subtract feature mean and divide by stdev.
normalize Divide patterns by their Euclidean norm.
shift_n_scale Offset and scale all values.
pc_extract Construct features from principal components.
subsample Take a subsample of training patterns.
Feature selection
s2n Signal-to-noise ratio filter method.
relief Relief filter method.
gs Gram-Schmidt orthogonalization forward selection.
rffs Random Forest feature selection.
svcrfe SVC-based recursive feature elimination.
Classifier
kridge Kernel ridge regression
naive naive Bayes classifier
gentleboost Regularized boosting
neural Two layer neural network
rf Random Forest (ensemble of trees)
svc Support vector classifier
Postprocessing
bias Post-fitting of the bias value.

22

Journal of Machine Learning Research 11(Jan):61–87, 2010 Submitted 11/09; Published 1/10

Chapter 2

Model Selection: Beyond the Bayesian/Frequentist Divide
Isabelle Guyon GUYON@CLOPINET.COM
ClopiNet
955 Creston Road
Berkeley, CA 94708, USA

Amir Saffari SAFFARI@ICG.TUGRAZ.AT
Institute for Computer Graphics and Vision
Graz University of Technology
Inffeldgasse 16
A-8010 Graz, Austria

Gideon Dror GIDEON@MTA.AC.IL
The Academic College of Tel-Aviv-Yaffo
2 Rabeinu Yerucham St., Jaffa
Tel-Aviv 61083, Israel

Gavin Cawley GCC@CMP.UEA.AC.UK

School of Computing Sciences
University of East Anglia
Norwich, NR4 7TJ, U.K.

Editor: Lawrence Saul

Abstract
The principle of parsimony also known as “Ockham’s razor” has inspired many theories of
model selection. Yet such theories, all making arguments in favor of parsimony, are based on
very different premises and have developed distinct methodologies to derive algorithms. We
have organized challenges and edited a special issue of JMLR and several conference proceed-
ings around the theme of model selection. In this editorial, we revisit the problem of avoiding
overfitting in light of the latest results. We note the remarkable convergence of theories as dif-
ferent as Bayesian theory, Minimum Description Length, bias/variance tradeoff, Structural Risk
Minimization, and regularization, in some approaches. We also present new and interesting ex-
amples of the complementarity of theories leading to hybrid algorithms, neither frequentist, nor
Bayesian, or perhaps both frequentist and Bayesian!
Keywords: model selection, ensemble methods, multilevel inference, multilevel optimization,
performance prediction, bias-variance tradeoff, Bayesian priors, structural risk minimization,
guaranteed risk minimization, over-fitting, regularization, minimum description length

2.1. Introduction
The problem of learning is often decomposed into the tasks of fitting parameters to some train-
ing data, and then selecting the best model using heuristic or principled methods, collectively
referred to as model selection methods. Model selection methods range from simple yet pow-
erful cross-validation based methods to the optimization of cost functions penalized for model
complexity, derived from performance bounds or Bayesian priors.

© 2010 I. Guyon, A. Saffari, G. Dror & G. Cawley.

GUYON SAFFARI DROR CAWLEY

This paper is not intended as a general review of the state-of-the-art in model selection
nor a tutorial; instead it is a synthesis of the collection of papers that we have assembled. It
also provides a unifying perspective on Bayesian and frequentist methodologies used in various
model selection methods. We highlight a new trend in research on model selection that blends
these approaches.

The reader is expected to have some basic knowledge of familiar learning machines (linear
models, neural networks, tree classifiers and kernel methods) and elementary notions of learn-
ing theory (bias/variance tradeoff, model capacity or complexity, performance bounds). Novice
readers are directed to the companion paper (Guyon, 2009), which reviews basic learning ma-
chines, common model selection techniques, and provides elements of learning theory.

When we started organizing workshops and competitions around the problem of model se-
lection (of which this collection of papers is the product), both theoreticians and practitioners
welcomed us with some scepticism; model selection being often viewed as somewhat “old hat”.
Some think that the problem is solved, others that it is not a problem at all! For Bayesian theo-
reticians, the problem of model selection is circumvented by averaging all models over the pos-
terior distribution. For risk minimization theoreticians (called “frequentists” by the Bayesians)
the problem is solved by minimizing performance bounds. For practitioners, the problem is
solved using cross-validation. However, looking more closely, most theoretically grounded
methods of solving or circumventing model selection have at least one hyper-parameter left
somewhere, which ends up being optimized by cross-validation. Cross-validation seems to be
the universally accepted ultimate remedy. But it has its dark sides: (a) there is no consensus
on how to choose the fraction of examples reserved training and for validation; (b) the overall
learning problem may be prone to over-fitting the cross-validation error (Cawley and Talbot,
2009). Therefore, from our point of view, the problem of optimally dividing the learning prob-
lem into multiple levels of inference and optimally allocating training data to these various
levels remains unsolved, motivating our efforts. From the novel contributions we have gath-
ered, we are pleased to see that researchers are going beyond the usual Bayesian/frequentist
divide to provide new creative solutions to those problems: we see the emergence of multi-level
optimization methods, which are both Bayesian and frequentist. How can that be? Read on!

After explaining in Section 2.2 our notational conventions, we briefly review a range of
different Bayesian and frequentist approaches to model selection in Section 2.3, which we then
unify in Section 2.4 under the framework of multi-level optimization. Section 2.5 then presents
the advances made by the authors of papers that we have edited. In Section 2.6, we open a
discussion on advanced topics and open problems. To facilitate reading, a glossary is appended;
throughout the paper, words found in the glossary are indicated in boldface.

2.2. Notations and Conventions
In its broadest sense, model selection designates an ensemble of techniques used to select a
model, that best explains some data or phenomena, or best predicts future data, observations or
the consequences of actions. This broad definition encompasses both scientific and statistical
modeling. In this paper, we address only the problem of statistical modeling and are mostly
concerned with supervised learning from independently and identically distributed (i.i.d.)
data. Extensions to unsupervised learning and non i.i.d. cases will be discussed in Section 2.6.

The goal of supervised learning is to predict a target variable y ∈ Y , which may be con-
tinuous (regression) or categorical or binary (classification). The predictions are made us-
ing observations x from a domain X , often a vectorial space of dimension n, the number of
features. The data pairs {x,y} are independently and identically distributed according to an
unknown (but fixed) distribution P(x,y) . A number m of pairs drawn from that distribution

24

2. MODEL SELECTION: BEYOND THE BAYESIAN/FREQUENTIST DIVIDE

are given, forming the training data D = {(xk,yk),k = 1, ...m}. We will denote by X = [xki],
k = 1, ...m, i = 1, ...n, the matrix of dimensions (m,n) whose rows are the training patterns and
whose columns are the features. Finally, we denote by y the column vector of dimensions (m,1)
containing the target values yk.

There are several formulations of the supervised learning problem:

• Function approximation (induction) methods seek a function f (called model or learn-
ing machine) belonging to a model class F , which minimizes a specified risk func-
tional (or maximizes a certain utility). The goal is to minimize an expected risk R[f] =�

L (f (x),y) dP(x,y), also called generalization error, where L (f (x),y) is a loss func-
tion (often a negative log likelihood) measuring the discrepancy between f (x) and y.
Since P(x,y) is unknown, only estimates of R[f] can be computed, which we call evalua-
tion functions or estimators. Function approximation methods differ in the choice of eval-
uation function and optimization algorithm and include risk minimization, PAC leaning,
maximum likelihood optimization, and MAP learning.

• Bayesian and ensemble methods make predictions according to model averages that
are convex combinations of models f ∈ F , that is, which belong to the convex closure
of the model class F ∗. Such methods differ in the type of model averaging performed.
Bayesian learning methods approximate E f (y|x) =

�
f∈F f (x) dP(f), an expectation

taken over a class of models F , using an unknown probability distribution P(f) over the
models. Starting from a “prior”, our knowledge of this distribution is refined into a “pos-
terior” when we see some data. Bagging ensemble methods approximate ED(f (x,D)),
where f (x,D) is a function from the model class F , trained with m examples and ED(·)
is the mathematical expectation over all training sets of size m. The key point in these
methods is to generate a diverse set of functions, each providing a different perspective
over the problem at hand, the ensemble thus forming a consensus view.

• Transduction methods make direct predictions of y given x and X , bypassing the mod-
eling step. We do not address such methods in this paper.

The desired properties of the chosen predictor include: good generalization performance,
fast training/prediction, and ease of interpretation of the predictions. Even though all of these
aspects are important in practice, we will essentially focus on the first aspect: obtaining the
best possible generalization performance. Some of the other aspects of model selection will be
discussed in Section 2.6.

The parametrization of f differentiates the problem of model selection from the general
machine learning problem. Instead of parameterizing f with one set of parameters, the model
selection framework distinguishes between parameters and hyper-parameters. We adopt the
simplified notation f (x;α,θ) for a model of parameters α and hyper-parameters θ. It should be
understood that different models may be parameterized differently. Hence by f (x;αθ) we re-
ally mean f (x;α(θ),θ) or fθ(x;α). For instance, for a linear model f (x,w) =wTx, α=w;
for a kernel method f (x,α) = ∑k αkK(x,xk), α = [αk]. The hyper-parameters may include
indicators of presence or absence of features, choice of preprocessing methods,, choice of algo-
rithm or model sub-class (e.g., linear models, neural networks, kernel methods, etc.), algorithm
or model sub-class parameters (e.g., number of layers and units per layer in a neural network,
maximum degree of a polynomial, bandwidth of a kernel), choice of post-processing, etc. We
also refer to the parameters of the prior P(f) in Bayesian/MAP learning and the parameters of
the regularizer Ω[f] in risk minimization as hyper-parameters even if the resulting predictor
is not an explicit function of those parameters, because they are used in the process of learning.

25

GUYON SAFFARI DROR CAWLEY

In what follows, we relate the problem of model selection to that of hyper-parameter selection,
taken in is broadest sense and encompassing all the cases mentioned above.

We refer to the adjustment of the model parameters α as the first level of inference. When
data are split in several subsets for the purpose of training and evaluating models, we call mtr
the number of training examples used to adjust α. If the hyper-parameters θ are adjusted from
a subset of data of size mva, we call the examples used to adjust them at this second level
of inference the “validation sample”. Finally we call mte the number of test examples used
to evaluate the final model. The corresponding empirical estimates of the expected risk R[f],
denoted Rtr[f], Rva[f], and Rte[f], will be called respectively training error, validation error,
and test error.

2.3. The Many Faces of Model Selection
In this section, we track model selection from various angles to finally reduce it to the unified
view of multilevel inference.

2.3.1. Is Model Selection “Really” a Problem?

It is legitimate to first question whether the distinction between parameters and hyper-parameters
is relevant. Splitting the learning problem into two levels of inference may be convenient for
conducting experiments. For example, combinations of preprocessing, feature selection, and
post-processing are easily performed by fixing θ and training α with off-the-shelf programs.
But, the distinction between parameters and hyper-parameters is more fundamental. For in-
stance, in the model class of kernel methods f (x) = ∑k αkK(x,xk;θ), why couldn’t we treat
both α and θ as regular parameters?

One common argument is that, for fixed values of θ, the problem of learning α can be
formulated as a convex optimization problem, with a single unique solution, for which powerful
mathematical programming packages are available, while the overall optimization of α and
θ in non-convex. Another compelling argument is that, splitting the learning problem into
several levels might also benefit to the performance of the learning machine by “alleviating” (but
not eliminating) the problem of over-fitting. Consider for example the Gaussian redial basis
function kernel K(x,xk;θ) = exp(−�x−xk�2/θ 2). The function f (x) = ∑m

k=1 αkK(x,xk;θ)
is a universal approximator if θ is let to vary and if the sum runs over the training examples. If
both α and θ are optimized simultaneously, solutions with a small value of θ 2 might be picked,
having zero training error but possibly very poor generalization performance. The model class
F to which f belongs has infinite capacity C(F). In contrast, for a fixed value of the hyper-
parameter θ o, the model f (x) = ∑m

k=1αkK(x,xk;θ o) is linear in its parameters αk and has
a finite capacity, bounded by m. In addition, the capacity of f (x) = ∑m

k=1α
o
kK(x,xo

k ;θ) of
parameter θ for fixed values αo

k and xo
k is very low (to see that, note that very few examples

can be learned without error by just varying the kernel width, given fixed vectors xo
k and fixed

parameters αo
k). Hence, using multiple levels of inference may reduce over-fitting, while still

searching for solutions in a model class of universal approximators.
This last idea has been taken one step further in the method of structural risk minimization

(Vapnik, 1979), by introducing new hyper-parameters in learning problems, which initially did
not have any. Consider for instance the class of linear models f (x) = ∑n

i=1 wixi. It is possible
to introduce hyper-parameters by imposing a structure in parameter space. A classical example
is the structure �w�2 ≤ A, where �w� denotes the Euclidean norm and A is a positive hyper-
parameter. For increasing values of A the space of parameters is organized in nested subsets.
Vapnik (1998) proves for Support Vector Machines (SVM) and Bartlett (1997) for neural net-

26

2. MODEL SELECTION: BEYOND THE BAYESIAN/FREQUENTIST DIVIDE

works that tighter performance bounds are obtained by increasing A. The newly introduced pa-
rameter allows us to monitor the bias/variance tradeoff. Using a Lagrange multiplier, the prob-
lem may be replaced by that of minimizing a regularized risk functional Rreg = Rtr + γ�w�2,
γ > 0, where the training loss function is the so-called “hinge loss” (see e.g., Hastie et al.,
2000). The same regularizer �w�2 is used in ridge regression (Hoerl, 1962), “weight decay”
neural networks (Werbos, 1988), regularized radial-basis function networks (Poggio and Girosi,
1990), Gaussian processes (MacKay, 1992), together with the square loss function. Instead of
the Euclidean norm or 2-norm, the 1-norm regularizer �w�1 = ∑i |wi| is used in LASSO (Tib-
shirani, 1994) and 1-norm versions of SVMs (see e.g., Zhu et al., 2003), logistic regression
(Friedman et al., 2009), and Boosting (Rosset et al., 2004). Weston et al. (2003) have proposed
a 0-norm regularizer �w�0 = ∑i 1(wi), where 1(x) = 1, if x �= 0 and 0 otherwise.

Interestingly, each method stems from a different theoretical justification (some are Bayesian,
some are frequentist and some a a little bit of both like PAC-Bayesian bounds, see, for exam-
ple, Seeger, 2003, for a review), showing a beautiful example of theory convergence (Guyon,
2009). Either way, for a fixed value of the hyper-parameter A or γ the complexity of the learning
problem is lower than that of the original problem. We can optimize A or γ at a second level of
inference, for instance by cross-validation.

2.3.2. Bayesian Model Selection

In the Bayesian framework, there is no model selection per se, since learning does not involve
searching for an optimum function, but averaging over a posterior distribution. For example, if
the model class F consists of models f (x;α,θ), the Bayesian assumption is that the parameters
α and hyper-parameters θ of the model used to generate the data are drawn from a prior P(α,θ).
After observing some data D the predictions should be made according to:

Eα,θ(y|x,D) =
� �

f (x;α,θ) P(α,θ|D) dα dθ .

Hence there is no selection of a single model, but a summation over models in the model class
F , weighed by P(α,θ|D). The problem is to integrate over P(α,θ|D).1 A two-level decom-
position can be made by factorizing P(α,θ|D) as P(α,θ|D) = P(α|θ,D)P(θ|D):

Eα,θ(y|x,D) =
� ��

f (x;α,θ)P(α|θ,D) dα
�

P(θ|D) dθ . (2.1)

Bayesian model selection decomposes the prior P(α,θ) into parameter prior P(α|θ) and
a “hyper-prior” P(θ). In MAP learning, the type-II likelihood (also called the “evidence”)
P(D|θ) = ∑α P(D|α,θ)P(α|θ) is maximized with respect to the hyper-parameters θ (therefore
assuming a flat prior for θ), while the “regular” parameters α are obtained by maximizing the
posterior α∗ = argmaxα P(α|θ,D) = argmaxα P(D|α,θ)P(α|θ).2

2.3.3. Frequentist Model Selection

While Bayesians view probabilities as being realized in the idea of “prior” and “posterior”
knowledge of distributions, frequentists define probability in terms of frequencies of occurrence
of events. In this section, the “frequentist” approach is equated with risk minimization.

1. The calculation of the integral in closed form may be impossible to carry out; in this case, variational approxima-
tions are made or numerical simulations are performed, sampling from P(α,θ|D), and replacing the integral by
the summation over a finite number of models.

2. In some Bayesian formulations of multi-layer Perceptrons, the evidence framework maximizes over θ but
marginalises over the weights, rather than maximizing, so in this case the MAP can apply to the parameters or
the hyper-parameters or both.

27

GUYON SAFFARI DROR CAWLEY

There are obvious ties between the problem of model selection and that of performance
prediction. Performance prediction is the problem of estimating the expected risk or general-
ization error R[f]. Model selection is the problem of adjusting the capacity or complexity of
the models to the available amount of training data to avoid either under-fitting or over-fitting.
Solving the performance prediction problem would also solve the model selection problem, but
model selection is an easier problem. If we find an ordering index r[f] such that for all pairs of
functions r[f1] < r[f2] ⇒ R[f1] < R[f2], then the index allows us to correctly carry out model
selection. Theoretical performance bounds providing a guaranteed risk have been proposed as
ranking indices (Vapnik, 1998). Arguably, the tightness of the bound is of secondary impor-
tance in obtaining a good ranking index. Bounds of the form r[f] = Rtr[f]+ε(C/mtr), where C
characterizes the capacity or complexity of the model class, penalizes complex models, but the
penalty vanishes as mtr →∞. Some learning algorithms, for example, SVMs (Boser et al., 1992)
or boosting (Freund and Schapire, 1996), optimize a guaranteed risk rather than the empirical
risk Rtr[f], and therefore provide some guarantee of good generalization. Algorithms derived
in this way have an embedded model selection mechanism. Other closely related penalty-based
methods include Bayesian MAP learning and regularization.

Many models (and particularly compound models including feature selection, preprocess-
ing, learning machine, and post-processing) are not associated with known performance bounds.
Common practice among frequentists is to split available training data into mtr training exam-
ples to adjust parameters and mva validation examples to adjust hyper-parameters. In an effort
to reduce variance, the validation error Rva[f] may be averaged over many data splits, leading
to a cross-validation (CV) estimator RCV [f]. The most widely used CV method is K-fold cross-
validation. It consists in partitioning training data into K � (mtr +mva)/mva disjoint subsets
of roughly equal sizes (up to rounding errors), each corresponding to one validation set (the
complement being used as training set). In stratified cross-validation, the class proportions of
the full data sets are respected in all subsets. The variance of the results may be reduced by
performing Q times K-fold cross-validation and averaging the results of the Q runs. Another
popular method consists in holding out a single example at a time for validation purposes. The
resulting cross-validation error is referred to as “leave-one-out” error RLOO[f]. Some prelimi-
nary study design is necessary to determine the sufficient amount of test data to obtain a good
estimate of the generalization error (Langford, 2005), the sufficient amount of training data to
attain desired generalization performances, and an adequate split of the training data between
training and validation set. See Guyon (2009) for a discussion of these issues.

2.4. Multi-level Inference: A Unifying View of Model Selection
What is common among the various views of model selection is the idea of multiple levels of
inference, each level corresponding to one set of parameters or hyper-parameters. Consider
a two-level case for a model class f (x;α,θ) parameterized by one set of parameters α and
one set of hyper-parameters θ. From the frequentist (risk minimization) point of view, instead
of jointly optimizing a risk functional with respect to all parameters α and θ, one creates a
hierarchy of optimization problems:3

f ∗∗ = argmin
θ

R2[f ∗,D] , such that f ∗ = argmin
α

R1[f ,D] (2.2)

where R1 and R2 are first and second level risk functionals.

3. It would be more correct if the argmin was assigned to parameters not functions, since the search domain is over
parameters, and write θ∗∗ = argminθ R2[f ∗,D] , such that α∗ = argminα R1[f ,D], f ∗ = f (x,α∗), but we adopt
a shorthand to emphasize the similarities between the frequentist and Bayesian approaches.

28

2. MODEL SELECTION: BEYOND THE BAYESIAN/FREQUENTIST DIVIDE

From the Bayesian point of view, the goal is to estimate the integral of Equation (2.1). There
are striking similarities between the two approaches. To make the similarity more obvious, we
can rewrite Equation (2.1) to make it look more like Equation (2.2), using the notation f ∗∗ for
Eα,θ(y|x,D):

f ∗∗ =
�

f ∗ e−R2 dθ , such that f ∗ =
�

f e−R1 dα (2.3)

where R1 = − lnP(α|θ,D) and R2 = − lnP(θ|D). Note that in Bayesian multi-level inference
f ∗ and f ∗∗ do not belong to F but to F ∗, the closure of F under convex combinations.

More generally, we define a multi-level inference problem as a learning problem organized
into a hierarchy of learning problems. Formally, consider a machine learning toolkit which in-
cludes a choice of learning machines A [B,R], where B is a model space of functions f (x;θ),
of parameters θ and R is an evaluation function (e.g., a risk functional or a negative log pos-
terior). We think of A [B,R] not as a procedure, but as an “object”, in the sense of object
oriented programming, equipped with a method “train”, which processes data according to a
training algorithm:4

f ∗∗ = train(A [B,R2],D); (2.4)

This framework embodies the second level of inference of both Equations (2.2) and (2.3).
The solution f ∗∗ belongs to B∗, the convex closure of B. To implement the first level of
inference, we will consider that B is itself a learning machine and not just a model space. Its
model space F includes functions f (x;θ,α) of variable parameters α (θ is fixed), which are
adjusted by the “train” method of B :

f ∗ = train(B[F ,R1],D); (2.5)

The solution f ∗ belongs to F ∗, the convex closure of setF . The method “train” of A
should call the method “train” of B as a subroutine, because of the nested nature of the learning
problems of Equations (2.2) and (2.3). Notice that it is possible that different subsets of the data
D are used at the different levels of inference.

We easily see two obvious extensions:

(i) Multi-level inference: Equations (2.4) and (2.5) are formally equivalent, so this formalism
can be extended to more than two levels of inference.

(ii) Ensemble methods: The method “train” returns either a single model or a linear combi-
nation of models, so the formalism can include all ensemble methods.

We propose in the next section a new classification of multi-level inference methods, orthog-
onal to the classical Bayesian versus frequentist divide, referring to the way in which data are
processed rather than the means by which they are processed.

2.5. Advances in Multi-level Inference
We dedicate this section to reviewing the methods proposed in the collection of papers that
we have edited. We categorize multi-level inference modules, each implementing one level
of inference, into filter, wrapper, and embedded methods, borrowing from the conventional
classification of feature selection methods (Kohavi and John, 1997; Blum and Langley, 1997;
Guyon et al., 2006a). Filters are methods for narrowing down the model space, without training

4. We adopt a Matlab-style notation: the first argument is the object of which the function is a method; the function
“train” is overloaded, there is one for each algorithm. The notations are inspired and adapted from the conventions
of the Spider package and the CLOP packages (Saffari and Guyon, 2006).

29

GUYON SAFFARI DROR CAWLEY

the learning machine. Such methods include preprocessing, feature construction, kernel design,
architecture design, choice of prior or regularizers, choice of a noise model, and filter methods
for feature selection. They constitute the highest level of inference5. Wrapper methods consider
the learning machine as a black-box capable of learning from examples and making predictions
once trained. They operate with a search algorithm in hyper-parameter space (for example grid
search or stochastic search) and an evaluation function assessing the trained learning machine
performances (for example the cross-validation error or the Bayesian evidence). They are the
middle-ware of multi-level inference. Embedded methods are similar to wrappers, but they
exploit the knowledge of the learning machine algorithm to make the search more efficient and
eventually jointly optimize parameters and hyper-parameters, using multi-level optimization
algorithms. They are usually used at the lowest level of inference.

2.5.1. Filters

Filter methods include a broad class of techniques aiming to reduce the model space F prior
to training the learning machine. Such techniques may use “prior knowledge” or “domain
knowledge”, data from prior studies or from R&R (repeatability and reproducibility) studies,
and even the training data themselves. But they do not produce the final model used to make
predictions. Several examples of filter methods are found in the collection of papers we have
edited:

Preprocessing and feature construction. An important part of machine learning is to find a
good data representation, but choosing an appropriate data representation is very domain
dependent. In benchmark experiments, it has often been found that generating a large
number of low-level features yields better result than hand-crafting a few features incor-
porating a lot of expert knowledge (Guyon et al., 2007). The feature set can then be
pruned by feature selection. In the challenges we have organized (Clopinet, 2004-2009)
the data were generally already preprocessed to facilitate the work of the participants.
However, additional normalizations, space dimensionality reduction and discretization
were often performed by the participants. Of all space dimensionality reduction meth-
ods Principal Component Analysis (PCA) remains the most widely used. Several top-
ranking participants to challenges we organized used PCA, including Neal and Zhang
(2006), winners of the NIPS 2003 feature selection challenge, and Lutz (2006), winner
of the WCCI 2006 performance prediction challenge. Clustering is also a popular pre-
processing method of dimensionality reduction, championed by Saeed (2009) who used
a Bernoulli mixture model as an input to an artificial neural network. In his paper on data
grid models Boullé (2009) proposes a new method of data discretization. It can be used
directly as part of a learning machine based on data grids (stepwise constant predictors)
or as a preprocessing to other learning machines, such as the Naïve Bayes classifier. Of
particular interest in this paper is the use of data dependent priors.

Designing kernels and model architectures. Special purpose neural network architectures im-
plementing the idea of “weight sharing” such as Time Delay Neural Networks (Waibel,
1988) or two-dimensional convolutional networks (LeCun et al., 1989) have proved to be
very effective in speech and image processing. More recently a wide variety of special
purpose kernels have been proposed to incorporate domain knowledge in kernel learning
algorithms. Examples include kernels invariant under various transforms (Simard et al.,
1993; Pozdnoukhov and Bengio, 2006), string matching kernels (Watkins, 2000), and

5. Preprocessing is often thought of as a “low-level” operation. However, with respect to model selection, the selec-
tion of preprocessing happens generally in the “outer loop” of selection, hence it is at the highest level.

30

2. MODEL SELECTION: BEYOND THE BAYESIAN/FREQUENTIST DIVIDE

other sequence and tree kernels (Vishwanathan and Smola, 2003). Along these lines, in
our collection of papers, Chloé Agathe Azencott and Pierre Baldi have proposed two-
dimensional kernels for high-thoughput screening (Azencott and Baldi, 2009). Design
effort has also be put into general purpose kernels. For instance, in the paper of Adankon
and Cheriet (2009) , the SVM regularization hyper-parameter C (box-constraint) is incor-
porated in the kernel function. This facilitates the task of multi-level inference algorithms.

Defining regularizers or priors. Designing priors P(f) or regularizers Ω[f] or structuring
parameter space into parameters and several levels of hyper-parameters can also be thought
of as a filter method. Most priors commonly used do not embed domain knowledge, they
just enforce Ockham’s razor by favoring simple (smooth) functions or eliminating irrele-
vant features. Priors are also often chosen out of convenience to facilitate the closed-form
calculation of Bayesian integrals (for instance the use of so-called “conjugate priors”, see
e.g., Neal and Zhang, 2006). The 2-norm regularizer Ω[f] = � f�2

H for kernel ridge re-
gression, Support Vector Machines (SVM) and Least-Square Support Vector Machines
(LSSVM) have been applied with success by many top-ranking participants of the chal-
lenges we organized. Gavin Cawley was co-winner of the WCCI 2006 performance pre-
diction challenge using LSSVMs (Cawley, 2006). Another very successful regularizer
is the Automatic Relevance Determination (ARD) prior. This regularizer was used in
the winning entry of Radford Neal in the NIPS 2003 feature selection challenge (Neal
and Zhang, 2006). Gavin Cawley also made top ranking reference entries in the IJCNN
2007 ALvsPK challenge (Cawley and Talbot, 2007b) using a similar ARD prior. For
linear models, the 1-norm regularizer �w� is also popular (see e.g., Pranckeviciene and
Somorjai, 2009), but this has not been quite as successful in challenges as the 2-norm
regularizer or the ARD prior.

Noise modeling. While the prior (or the regularizer) embeds our prior or domain knowledge
of the model class, the likelihood (or the loss function) embeds our prior knowledge of
the noise model on the predicted variable y. In regression, the square loss corresponds
to Gaussian noise model, but other choices are possible. For instance, recently, Gavin
Cawley and Nicola Talbot implemented Poisson regression for kernel machines (Cawley
et al., 2007). For classification, the many loss functions proposed do not necessarily
correspond to a noise model, they are often just bounding the 0/1 loss and are used for
computational convenience. In the Bayesian framework, an sigmoidal function is often
used (like the logistic or probit functions) to map the output of a discriminant function
f (xk) to probabilities pk. Assuming target values yk ∈ {0,1}, the likelihood Πk pyk

k (1−
pk)1−yk corresponds to the cross-entropy cost function ∑k yk ln pk +(1−yk) ln(1− pk). A
clever piece-wise S-shaped function, flat on the asymptotes, was used in Chu et al. (2006)
to implement sparsity for a Bayesian SVM algorithm. Noise modeling is not limited to
noise models for the target y, it also concerns modeling noise on the input variables
x. Many authors have incorporated noise models on x as part of the kernel design, for
example, by enforcing invariance (Simard et al., 1993; Pozdnoukhov and Bengio, 2006).
A simple but effective means of using a noise model is to generate additional training data
by distorting given training examples. Additional “unsupervised” data is often useful to
fit a noise model on the input variables x. Repeatability and reproducibility (R&R) studies
may also provide data to fit a noise model.

Feature selection filters. Feature selection, as a filter method, allows us to reduce the dimen-
sionality of the feature space, to ease the computations performed by learning machines.
This is often a necessary step for computationally expensive algorithms such as neural

31

GUYON SAFFARI DROR CAWLEY

networks. Radford Neal for instance, used filters based on univariate statistical tests to
prune the feature space before applying his Bayesian neural network algorithm (Neal and
Zhang, 2006). Univariate filters were also widely used in the KDD cup 2009, which
involved classification tasks on a very large database, to cut down computations (Guyon
et al., 2009b). Feature selection filters are not limited to univariate filters. Markov blanket
methods, for instance, provide powerful feature selection filters (Aliferis et al., 2003). A
review of filters for feature selection can be found in Guyon et al. (2006a, Chapter 3).

2.5.2. Wrappers

Wrapper methods consider learning machines as black boxes capable of internally adjusting
their parameters α given some data D and some hyper-parameter values θ. No knowledge
either of the architecture, of the learning machines, or of their learning algorithm should be re-
quired to use a wrapper. Wrappers are applicable to selecting a classifier from amongst a finite
set of learning machines (θ is then a discrete index), or an infinite set (for continuous values of
θ). Wrappers can also be used to build ensembles of learning machines, including Bayesian en-
sembles. Wrappers use a search algorithm or a sampling algorithm to explore hyper-parameter
space and an evaluation function (a risk functional RD[f (θ)], a posterior probability P(f (θ)|D),
or any model selection index r[f (θ)]) to assess the performance of the sample of trained learn-
ing machines , and, either select one single best machine or create an ensemble of machine
voting to make predictions.

Search and sampling algorithms. Because the learning machines in the wrapper setting are
“black boxes”, we cannot sample directly from the posterior distribution P(f (θ)|D) (or
according to exp−RD[f (θ)] or exp−r[f (θ)]). We can only compute the evaluation func-
tion for given values of θ for which we run the learning algorithm of f (θ), which inter-
nally adjusts its parameters α. A search strategy defines which hyper-parameter values
will be considered and in which order (in case a halting criterion ends the search prema-
turely). Gavin Cawley, in his challenge winning entries, used the Nelder-Mead simplex
algorithm (Cawley and Talbot, 2007a). Monte-Carlo Markov Chain MCMC meth-
ods are used in Bayesian modeling to sample the posterior probability and have given
good results in challenges (Neal and Zhang, 2006). The resulting ensemble is a sim-
ple average of the sampled functions F(x) = (1/s)∑s

i=1 f (x|θk). Wrappers for feature
selection use all sort of techniques, but sequential forward selection or backward elimina-
tion methods are most popular (Guyon et al., 2006a, Chapter 4). Other stochastic search
methods include biologically inspired methods such as genetic algorithms and particle
swarm optimization. Good results have been obtained with this last method in challenges
(H. J. Escalante, 2009), showing that extensive search does not necessarily yield over-fit
solutions, if some regularization mechanism is used. The authors of that paper rely for
that purpose on weight decay and early stopping. Frequentist ensemble methods, includ-
ing Random Forests (Breiman, 2001) and Logitboost (Friedman et al., 2000) also gave
good results in challenges (Lutz, 2006; Tuv et al., 2009; Dahinden, 2009).

Evaluation functions. For Bayesian approaches, the standard evaluation function is the “evi-
dence”, that is the marginal likelihood (also called type-II likelihood) (Neal and Zhang,
2006), or, in other words, the likelihood at the second level of inference. For frequentist
approaches, the most frequently used evaluation function is the cross-validation estimator.
Specifically, K-fold cross-validation is most often used (H. J. Escalante, 2009; Dahinden,
2009; Lutz, 2006; Reunanen, 2007). The values K = 10 or K = 5 are typically used by
practitioners regardless of the difficulty of the problem (error rate, number of examples,

32

2. MODEL SELECTION: BEYOND THE BAYESIAN/FREQUENTIST DIVIDE

number of variables). Computational considerations motivate this choice, but the authors
report a relative insensitivity of the result in that range of values of K. The leave-one-out
(LOO) estimator is also used, but due to its high variance, it should rather be avoided,
except for computational reasons (see in Section 2.5.3 cases in which the LOO error is
inexpensive to compute). These estimators may be poor predictors of the actual learn-
ing machine performances, but they are decent model selection indices, provided that the
same data splits are used to compute the evaluation function for all models. For bag-
ging methods (like Random Forests, Breiman, 2001), the bootstrap estimator is a natural
choice: the “out-of-bag" samples, which are those samples not used for training, are
used to predict performance. Using empirical estimators at the second level on inference
poses the problem of possibly over-fitting them. Some authors advocate using evalua-
tion functions based on prediction risk bounds: Koo and Kil (2008) and Claeskens et al.
(2008) derive in this way information criteria for regression models (respectively called
“modulus of continuity information criterion” or MCIC and “kernel regression informa-
tion criterion” or KRIC) and Claeskens et al. (2008) and Pranckeviciene and Somorjai
(2009) propose information criteria for classification problems (respectively called “sup-
port vector machine information criterion” SVMIC and “transvariation intensity”). The
effectiveness of these new criteria is compared empirically in the papers to the classi-
cal “Akaike information criterion” or AIC (Akaike, 1973) and the “Bayesian information
criterion” or BIC (Schwarz, 1978).

2.5.3. Embedded Methods

Embedded methods are similar to wrappers. They need an evaluation function and a search
strategy to explore hyper-parameter space. But, unlike wrapper methods, they exploit specific
features of the learning machine architecture and/or learning algorithm to perform multi-level
inference. It is easy to appreciate that knowledge of the nature and structure of a learning
machine can allow us to search hyper-parameter space in a more efficient way. For instance,
the function f (x;α,θ) may be differentiable with respect to hyper-parameters θ and it may be
possible to use gradient descent to optimize an evaluation function r[f]. Embedded methods
have been attracting substantial attention within the machine learning community in the past
few years because of the mathematical elegance of some of the new proposed methods.

Bayesian embedded methods. In the Bayesian framework, the embedded search, sampling or
summation over parameters and hyper-parameters is handled in an elegant and consis-
tent way by defining priors both for parameters and hyper-parameters, and computing
the posterior, perhaps in two steps, as indicated in Equation (2.3). Of course, it is more
easily said than done and the art is to find methods to carry out this integration, particu-
larly when it is analytically intractable. Variational methods are often used to tackle that
problem. Variational methods convert a complex problem into a simpler problem, but the
simplification introduces additional “variational” parameters, which must then be opti-
mized, hence introducing another level of inference. Typically, the posterior is bounded
from above by a family of functions parameterized by given variational parameters. Opti-
mizing the variational parameters yields the best approximation of the posterior (see e.g.,
Seeger, 2008). Bayesian pragmatists optimize the evidence (also called type-II likelihood
or marginal likelihood) at the second level of inference, but non-purists sometimes have
a last recourse to cross-validation. The contributions of Boullé (2007, 2009) stand out
in that respect because they propose model selection methods for classification and re-
gression, which have no last recourse to cross-validation, yet performed well in recent
benchmarks (Guyon et al., 2008a, 2009b). Such methods have been recently extended to

33

GUYON SAFFARI DROR CAWLEY

the less studied problem of rank regression (Hue and Boullé, 2007). The methods used
are Bayesian in spirit, but make use of original data-dependent priors.

Regularized functionals. In the frequentist framework, the choice of a prior is replaced by the
choice of a regularized functional. Those are two-part evaluation functions including the
empirical risk (or the negative log-likelihood) and a regularizer (or a prior). For kernel
methods, a 2-norm regularizer is often used, yielding the classical penalized functional
Rreg[f] = Remp[f]+γ� f�2

F . Pranckeviciene and Somorjai (2009) explore the possibilities
offered by a 1-norm regularizer. Such approaches provide an embedded method of fea-
ture selection, since the constraints thus imposed on the weight vector drive some weights
to exactly zero. We emphasized in the introduction that, in some cases, decomposing the
inference problem into multiple levels allows us to conveniently regain the convexity of
the optimization problem involved in learning. Ye et al. (2008) propose a multiple ker-
nel learning (MKL) method, in which the optimal kernel matrix is obtained as a linear
combination of pre-specified kernel matrices, which can be brought back to a convex pro-
gram. Few approaches are fully embedded and a wrapper is often used at the last level
of inference. For instance, in kernel methods, the kernel parameters may be optimized
by gradient descent on the regularized functional, but then the regularization parameter is
selected by cross-validation. One approach is to use a bound on the generalization error
at the second level of inference. For instance, Guermeur (2007) proposes such a bound
for the multi-class SVM, which can be used to choose the values of the “soft margin
parameter” C and the kernel parameters. Cross-validation may be preferred by practi-
tioners because it has performed consistently well in benchmarks (Guyon et al., 2006b).
This motivated Kunapuli et al. (2009) to integrate the search for optimal parameters and
hyper-parameters into a multi-level optimization program, using a regularized functional
at the lower level, and cross-validation at the upper level. Another way of integrating a
second level of inference performed by cross-validation and the optimization of a regu-
larized functional at the first level of inference is to use a closed-form expression of the
leave-one-out error (or a bound) and optimize it by gradient descent or another classical
optimization algorithm. Such virtual leave-one-out estimators, requiring training a single
classifier on all the data (see e.g., Cawley and Talbot, 2007a; Debruyne et al., 2–8, in the
collection of papers we have assembled).

2.6. Advanced Topics and Open Problems
We have left aside many important aspects of model selection, which, space permitting, would
deserve a longer treatment. We briefly discuss them in this section.

2.6.1. Ensemble Methods

In Section 2.4, we have made an argument in favor of unifying model selection and ensemble
methods, stemming either from a Bayesian or frequentist perspective, in the common frame-
work of multi-level optimization. In Sections 2.5.1, 2.5.2 and 2.5.3, we have given examples
of model selection and ensemble methods following filter, wrapper or embedded strategies.
While this categorization has the advantage of erasing the dogmatic origins of algorithms, it
blurs some of the important differences between model selection and ensemble methods. En-
semble methods can be thought of as a way of circumventing model selection by voting among
models rather than choosing a single model. Recent challenges results have proved their effec-
tiveness (Guyon et al., 2009b). Arguably, model selection algorithms will remain important in

34

2. MODEL SELECTION: BEYOND THE BAYESIAN/FREQUENTIST DIVIDE

applications where model simplicity and data understanding prevail, but ever increasing com-
puter power has brought ensemble methods to the forefront of multi-level inference techniques.
For that reason, we would like to single out those papers of our collection that have proposed or
applied ensemble methods:

Lutz (2006) used boosted shallow decision trees for his winning entries in two consecu-
tive challenges. Boosted decision trees have often ended up among the top ranking methods in
other challenges (Guyon et al., 2006a, 2009b). The particular implementation of Lutz of the
Logitboost algorithm (Friedman et al., 2000) use a “shrinkage” regularization hyper-parameter,
which seems to be key to attain good performance, and is adjusted by cross-validation as well
as the total number of base learners. Dahinden (2009) successfully applied the Random For-
est (RF) algorithm (Breiman, 2001) in the performance prediction challenge (Guyon et al.,
2006b). She demonstrated that with minor adaptations (adjustment of the bias value for im-
proved handling of unbalanced classes), the RF algorithm can be applied without requiring user
intervention. RF continues to be a popular and successful method in challenges (Guyon et al.,
2009b). The top ranking models use very large ensembles of hundreds of trees. One of the
unique features of RF algorithms is that they subsample both the training examples and the fea-
tures to build base learners. Using random subsets of features seems to be a winning strategy,
which was applied by others to ensembles of trees using both boosting and bagging (Tuv et al.,
2009) and to other base learners (Nikulin, 2009). Boullé (2007) also adopts the idea of cre-
ating ensembles using base learners constructed with different subsets of features. Their base
learner is the naïve Bayes classifier and, instead of using random subsets, they select subsets
with a forward-backward method, using a maximum A Posteriori (MAP) evaluation function
(hence not requiring cross-validation). The base learners are then combined with an weight-
ing scheme based on an information theoretic criterion, instead on weighting the models with
the posterior probability as in Bayesian model averaging. This basically boils down to using
the logarithm of the posterior probabilities instead of the posterior probabilities themselves for
weighting the models. The weights have an interpretation in terms of model compressibility.
The authors show that this strategy outperforms Bayesian model averaging on several bench-
mark data sets. This can be understood by the observation that when the posterior distribution is
sharply peaked around the posterior mode, averaging is almost the same as selecting the MAP
model. Robustness is introduced by performing a more balanced weighting of the base learn-
ers. In contrast with the methods we just mentioned, which choose identical base learners (trees
of naïve Bayes), other successful challenge participants have built heterogeneous ensembles of
learning machines (including, for example, linear models, kernel methods, trees, naïve Bayes,
and neural networks), using cross-validation to evaluate their candidates for inclusion in the
ensemble (Wichard, 2007; IBM team, 2009). While Wichard (2007) evaluates classifiers inde-
pendently, IBM team (2009) uses a forward selection method, adding a new candidate in the
ensemble based on the new performance of the ensemble.

2.6.2. PAC Bayes Approaches

Unifying Bayesian and frequentist model selection procedures under the umbrella of multi-level
inference may shed new light on correspondences between methods and have a practical impact
on the design of toolboxes incorporating model selection algorithms. But there are yet more
synergies to be exploited between the Bayesian and the frequentist framework. In this section,
we would like to capture the spirit of the PAC Bayes approach and outline possible fruitful
directions of research.

The PAC learning framework (Probably Approximately Correct), introduced by Valiant
(1984) and later recognized to closely resemble the approach of the Russian school popularized

35

GUYON SAFFARI DROR CAWLEY

in the US by Vapnik (1979), has become the beacon of frequentist learning theoretic approaches.
It quantifies the generalization performance (the Correct aspect) of a learning machine via per-
formance bounds (the Approximate aspect) holding in probability (the Probable aspect):

Prob
�
(R[f]−Remp[f])≤ ε(δ)

�
≥ (1−δ) ,

In this equation, the confidence interval ε(δ) (Approximate aspect) bounds, with probability
(1−δ) (Probable aspect),the difference between the expected risk or generalization error R[f]
and the empirical risk6 Remp[f] (Correct aspect). Recently, many bounds have been proposed to
quantify the generalization performance of algorithms (see e.g., Langford, 2005, for a review).
The idea of deriving new algorithms, which optimize a bound ε(δ) (guaranteed risk optimiza-
tion) has been popularized by the success of SVMs (Boser et al., 1992) and boosting (Freund
and Schapire, 1996).

The PAC framework is rooted in the frequentist philosophy of defining probability in terms
of frequencies of occurrence of events and bounding differences between mathematical expecta-
tions and frequencies of events, which vanish with increasingly large sample sizes (law of large
numbers). Yet, since the pioneering work of Haussler et al. (1994), many authors have pro-
posed so-called PAC-Bayes bounds. Such bounds assess the performance of existing Bayesian
algorithms (see e.g., Seeger, 2003), or are used to derive new Bayesian algorithms optimizing a
guaranteed risk functional (see Germain et al. 2009 and references therein).

This is an important paradigm shift, which bridges the gap between the frequentist structural
risk minimization approach to model selection (Vapnik, 1998) and the Bayesian prior approach.
It erases the need for assuming that the model used to fit the data comes from a concept space
of functions that generated the data. Instead, priors may be used to provide a “structure” on a
chosen model space (called hypothesis space to distinguish it from the concept space), which
does not necessarily coincide with the concept space, of which we often know nothing. Re-
ciprocally, we can interpret structures imposed on a hypothesis space as our prior belief that
certain models are going to perform better than others (see, for instance, the examples at the
end of Section 2.3.1).

This opens the door to also regularizing the second level of inference by using performance
bounds on the cross-validation error, as was done for instance in Cawley and Talbot (2007a)
and Guyon (2009).

2.6.3. Open Problems

• Domain knowledge: From the earliest embodiments of Okcham’s razor using the num-
ber of free parameters to modern techniques of regularization and bi-level optimization,
model selection has come a long way. The problem of finding the right structure re-
mains, the rights prior or the right regularizer. Hence know-how and domain knowl-
edge are still required. But in a recent challenge we organized called “agnostic learning
vs. prior knowledge” (Guyon et al., 2008b) it appeared that the relatively small incremen-
tal improvements gained with prior knowledge came at the expense of important human
effort. In many domains, collecting more data is less costly than hiring a domain expert.
Hence there is pressure towards improving machine learning toolboxes and, in particular
equipping them with model selection tools. For the competitions we organized (Clop-
inet, 2004-2009), we made a toolbox available with state-of-the-art models (Saffari and
Guyon, 2006), which we progressively augmented with the best performing methods.

6. at the first level of inference, this would be the training error Rtr[f]; at the second level of inference this may be
the validation error Rva[f]

36

2. MODEL SELECTION: BEYOND THE BAYESIAN/FREQUENTIST DIVIDE

The Particle Swarm Optimization (PSO) model selection method can find the best mod-
els in the toolbox and reproduce the results of the challenges (H. J. Escalante, 2009).
Much remains to be done to incorporate filter and wrapper model selection algorithms in
machine learning toolboxes.

• Unsupervised learning: Multi-level optimization and model selection are also central
problems for unsupervised learning. When no target variable is available as “teaching
signal” one can still define regularized risk functionals and multi-level optimization prob-
lems (Smola et al., 2001). Hyper-parameters (e.g., “number of clusters”) can be adjusted
by optimizing a second level objective such as model stability (Ben-Hur et al., 2002),
which is an erzatz of cross-validation. The primary difficulty with model selection for
unsupervised learning is to validate the selected model. To this day, there is no consensus
on how to benchmark methods, hence it is very difficult to quantify progress in this field.
This is why we have so far shied away from evaluating unsupervised learning algorithms,
but this remains on our agenda.

• Semi-supervised learning: Very little has been done for model selection in semi-supervised
learning problems, in which only some training instances come with target values. Semi-
supervised tasks can be challenging for traditional model selection methods, such as
cross-validation, because the number of labeled data is often very small. Schuurmans
and Southey (2001) used the unlabeled data to test the consistency of a model, by defin-
ing a metric over the hypothesis space. Similarly, Madani et al. (2005) introduced the
co-validation method, which uses the disagreement of various models on the predictions
over the unlabeled data as a model selection tool. In some cases there is no performance
gain by using the unlabeled data for training (Singh et al., 2008). Deciding whether all
or part of the unlabeled data should be used for training (data selection) may also be
considered a model selection problem.

• Non i.i.d. data: The problem of non i.i.d. data raises a number of other questions because
if there are significant differences between the distribution of the training and the test
data, the cross-validation estimator may be worthless. For instance, in causal discovery
problems, training data come from a “natural” distribution while test data come from a
different “manipulated” distribution (resulting from some manipulations of the system
by an external agent, like clamping a given variable to given values). Several causal
graphs may be consistent with the “natural distribution” (not just with the training data,
with the true unknown distribution), but yield very different predictions of manipulated
data. Rather selecting a single model, it make more sense to select a model class. We
have started a program of data exchange and benchmarks to evaluate solutions to such
problems (Guyon et al., 2008a, 2009a).

• Computational considerations: The selection of the model best suited to a given appli-
cation is a multi-dimensional problem in which prediction performance is only one of the
dimensions. Speed of model building and processing efficiency of deployed models are
also important considerations. Model selection algorithms (or ensemble methods) which
often require many models to be trained (e.g., wrapper methods with extensive search
strategies and using cross-validation to validate models) may be unable to build solutions
in a timely manner. At the expense of some acceptable loss in prediction performance,
methods using greedy search strategies (like forward selection methods) and single-pass
evaluation functions (requiring the training of only a single model to evaluate a given
hyper-parameter choice), may considerably cut the training time. Greedy search meth-
ods include forward selection and backward elimination methods. Single-pass evaluation

37

GUYON SAFFARI DROR CAWLEY

functions include penalized training error functionals (regularized functionals, MAP esti-
mates) and virtual-leave-one-out estimators. The latter allows users to compute the leave-
one-out-error at almost no additional computational expense than training a single predic-
tor on all the training data (see e.g., Guyon et al., 2006a, Chapter 2, for a review). Other
tricks-of-the-trade include following regularization paths to sample the hyper-parameter
space more effectively (Rosset and Zhu, 2006; Hastie et al., 2004). For some models,
the evaluation function is piecewise linear between a few discontinuous changes occur-
ring for a few finite hyper-parameter values. The whole path can be reconstructed from
only the values of the evaluation function at those given points. Finally, Reunanen (2007)
proposed clever ways of organizing nested cross-validation evaluations in multiple level
of inference model selection using cross-indexing. The author also explored the idea of
spending more time to refine the evaluation of the most promising models. Further work
needs to be put into model selection methods, which simultaneously address multiple
objectives, including optimizing prediction performance and computational cost.

2.7. Conclusion
In the past twenty years, much effort has been expended towards finding the best regularized
functionals. The many embodiments of Ockham’s razor in machine learning have converged
towards similar regularizers. Yet, the problem of model selection remains because we need to
optimize the regularization parameter(s) and often we need to select among various preprocess-
ings, learning machines, and post-processings. In the proceedings of three of the challenges we
organized around the problem of model selection, we have collected a large number of papers,
which testify to the vivid activity of the field. Several researchers do not hesitate to propose
heretic approaches transcending the usual “frequentist” or Bayesian dogma. We have seen
the idea of using the Bayesian machinery to design regularizers with “data-dependent priors”
emerge (Boullé, 2007, 2009), much like a few years ago data-dependent performance bounds
(Bartlett, 1997; Vapnik, 1998) and PAC-Bayes bounds (Haussler et al., 1994; Seeger, 2003)
revolutionized the “frequentist” camp, up to then very fond of uniform convergence bounds and
the VC-dimension (Vapnik and Chervonenkis, 1971). We have also seen the introduction of
regularization of cross-validation estimators using Bayesian priors (Cawley and Talbot, 2007a).
Ensemble methods may be thought of as a way of circumventing model selection. Rather, we
think of model selection and ensemble methods as two options to perform multi-level inference,
which can be formalized in a unified way.

Within this general framework, we have categorized approaches into filter, wrapper and
embedded methods. These methods complement each other and we hope that in a not too distant
future, they will be integrated into a consistent methodology: Filters first can prune model space;
Wrappers can perform an outer level model selection to select pre/post processings and feature
subsets; Embedded methods can perform an inner level hyper-parameter selection integrated
within a bi-level optimization program. We conclude that we are moving towards a unified
framework for model selection and there is a beneficial synergy between methods, both from a
theoretical and from a practical perspective.

Acknowledgments
This project was supported by the National Science Foundation under Grant N0. ECS-0424142.
Amir Saffari was supported by the Austrian Joint Research Project Cognitive Vision under
projects S9103-N04 and S9104-N04. Any opinions, findings, and conclusions or recommenda-

38

2. MODEL SELECTION: BEYOND THE BAYESIAN/FREQUENTIST DIVIDE

tions expressed in this material are those of the authors and do not necessarily reflect the views
of the National Science Foundation.

Appendix A. Glossary
Automatic Relevance Determination (ARD) prior. The ARD prior was invented for neural

networks (MacKay, 1992): all network input variables and all neuron outputs (internal
features) are weighed by a scaling factor κi, before being independently weighted by
the network connections. A hyper-prior must be chosen to favor small values of the κi,
which makes the influence of irrelevant variables or features naturally fade away. For
kernel methods, ARD falls under the same framework as the � f�2

H regularizer, for a
special class of kernels using variable (feature) scaling factors. For instance, the ARD
prior is implemented by defining the Gaussian kernel (for positive hyper-parameters κi):

K(xh,xk) = exp

�
−

n

∑
j=1

κi(xh, j − xk, j)
2

�

instead of the regular Gaussian kernel K(xh,xk) = exp
�
−κ�xh −xk�2�.

Base learner. In an ensemble method, the individual learning machines that are part of the
ensemble.

Bagging. Bagging stands for bootstrap aggregating. Bagging is a parallel ensemble method (all
base learners are built independently from training data subsets). Several data subsets of
size m are drawn independently with replacement from the training set of m examples. On
average each subset thus built contains approximately 2/3 of the training examples. The
ensemble predictions are made by averaging the predictions of the baser learners. The
ensemble approximates ED(f (x,D)), where f (x,D) is a function from the model class
F , trained with m examples and ED(.) is the mathematical expectation over all training
sets of size m. The rationale comes from the bias/variance decomposition of the gener-
alization error. The “out-of-bag” samples (samples not used for learning for each data
subset drawn for training) may be used to create a bootstrap prediction of performance.

Bayesian learning. Under the Bayesian framework, it is assumed that the data were generated
from a double random process: (1) a model is first drawn according to a prior distribu-
tion in a concept space; (2) data are produced using the model. In the particular case of
supervised learning, as for maximum likelihood learning, a three-part data generative
model is assumed: P(x), f ∈ F , and a zero-mean noise model. But, it is also assumed
that the function f was drawn according to a prior distribution P(f). This allows us to
compute the probability of an output y given an input x, P(y|x) =

�
f∈F P(y|x, f)dP(f),

or its mathematical expectation E(y|x) =
�

f∈F f (x)dP(f), averaging out the noise. Af-
ter training data D are observed, the prior P(f) is replaced by the posterior P(f |D). The
mathematical expectation of y given x is estimated as: E(y|x,D) =

�
f∈F f (x)dP(f |D).

Hence, learning consists of calculating the posterior distribution P(f |D) and integrating
over it. The predictions are made according to E(y|x,D), a function not necessarily be-
longing to F . In the case of classification, E(y|x,D) does not take values in Y (although
thresholding the output just takes care of the problem). If we want a model in F , we can
use the Gibbs algorithm, which picks one sample in F according to the posterior distri-
bution P(f |D), or use the MAP learning approach. In Bayesian learning, analytically

39

GUYON SAFFARI DROR CAWLEY

integrating over the posterior distribution is often impossible and the integral may be ap-
proximated by finite sum of models, weighted by positive coefficients (see variational
methods) or by sampling models from the posterior distribution (see Weighted major-
ity algorithm and Monte-Carlo Markov Chain or MCMC). The resulting estimators
of Ê(y|x,D) are convex combinations of functions in F and, in that sense, Bayesian
learning is similar to ensemble methods.

Bias/variance decomposition. In the case of a least-square loss, the bias/variance decompo-
sition is given by ED[(f (x;D)−E[y|x])2] = (ED[f (x;D)]−E(y|x))2 +ED[(f (x;D)−
ED[f (x;D)])2]. The second term (the “variance” of the estimator f (x,D)) vanishes
if f (x;D) equals ED[f (x;D). The motivates the idea of using an approximation of
ED[f (x;D) as a predictor. In bagging the approximation is obtained by averaging over
functions trained from m examples drawn at random with replacement from the train-
ing set D (bootstrap method). The method works best if F is not biased (i.e., contains
E(y|x)). Most models with low bias have a high variance and vice versa, hence the
well-known bias/variance tradeoff.

Concept space. A space of data generative models from which the data are drawn. Not to be
confused with model space or hypothesis space.

Empirical risk. An estimator of the expected risk that is the average of the loss over a finite
number of examples drawn according to P(x,y): Remp = (1/m)∑m

k=1 L (f (xk),yk).

Ensemble methods. Methods of building predictors using multiple base learners, which vote
to make predictions. Predictions of y are made using a convex combination of functions
f j ∈ F : F(x) = ∑ j p j f j(x), where p j are positive coefficients. The two most promi-
nent ensemble methods are bagging (Breiman, 1996) and boosting (Freund and Schapire,
1996). Bagging is a parallel ensemble method (all trees are built independently from
training data subsets), while boosting is a serial ensemble method (trees complementing
each other are progressively added to decrease the residual error). Random Forests (RF)
(Breiman, 2001) are a variant of bagging methods in which both features and examples
are subsampled. Boosting methods come in various flavors including Adaboost, Gentle-
boost, and Logitboost. The original algorithm builds successive models (called “weak
learners”) by resampling data in a way that emphasizes examples that have proved hard-
est to learn. Newer versions use a weighting scheme instead of resampling (Friedman,
2000).

Expected risk. The mathematical expectation of a risk functional over the unknown probability
distribution P(x,y): R[f] =

�
L (f (x),y) dP(x,y). Also called generalization error.

Generalization error. See expected risk.

Greedy search strategy. A search strategy, which does not revisit partial decisions already
made, is called “greedy”. Examples include forward selection and backward elimination
in feature selection.

Guaranteed risk. A bound on the expected risk. See PAC learning and Structural Risk
Minimization (SRM).

Hypothesis space. A space of models, which are fit to data, not necessarily identical to the
concept space (which is often unknown).

40

2. MODEL SELECTION: BEYOND THE BAYESIAN/FREQUENTIST DIVIDE

Loss function. A function L (f (x),y), which measures the discrepancy between target values
y and model predictions f (x). Examples include the square loss (y− f (x))2 for regres-
sion of the 0/1 loss 1[f (x) �= y] for classification).

MAP learning. Maximum a posteriori (MAP) learning shares the same framework as Bayesian
learning, but it is further assumed that the posterior P(f |D) is concentrated and that
E(y|x,D) can be approximated by f ∗(x), with f ∗= argmax f P(f |D)= argmax f P(D| f)P(f)=
argmin f − lnP(D| f)− lnP(f). If we assume a uniform prior, we are brought back to
maximum likelihood learning. If both P(D| f) and P(f) are exponentially distributed
(P(y|x, f) = exp−L (f (x),y) and P(f) = exp−Ω[f]), then MAP learning is equivalent
to the minimization of a regularized risk functional.

Maximum likelihood learning. It is assumed that the data were generated by an input distribu-
tion P(x), a function f from a model space F coinciding with the concept space, and a
zero-mean noise model. For regression, for instance, if Gaussian noise ε ∼ N (0,σ2)
is assumed, y is distributed according to P(y|x, f) = N (f (x),σ2). In the simplest
case, P(x) and the noise model are not subject to training (the values of x are fixed
and the noise model is known). Learning then consists in searching for the function
f ∗, which maximizes the likelihood P(D| f), or equivalently (since P(x) is not subject
to training) f ∗ = argmax f P(y|X , f) = argmin f − lnP(y|X , f). With the i.i.d. assump-
tion, f ∗ = argmax f Πm

k=1P(yk|xk, f) = argmin f ∑m
k=1− lnP(yk|xk, f). For distributions

belonging to the exponential family P(y|x, f) = exp{−L (f (x),y)}, the maximum like-
lihood method is equivalent to the method of minimizing the empirical risk. In the case
of Gaussian noise, this corresponds to the method of least squares.

Model space. A space of predictive models, which are fit to data. Synonym of hypothesis
space. For Bayesian models, also generally coincides with the concept space, but not for
frequentists.

Monte-Carlo Markov Chain (MCMC) method. To approximate Bayesian integrals one can
sample from the posterior distribution P(f |D) following a Monte-Carlo Markov chain
(MCMC), then make predictions according to Ê(y|x,D) = ∑ j f j(x). In a MCMC, at
each step new candidate models f j ∈ F are considered, in a local neighborhood of the
model selected at the previous step. The new model is accepted if it provides a better fit
to the data according to the posterior distribution or, if not, a random decision is made
to accept it, following the Gibbs distribution (better models having a greater chance of
acceptance).

Over-fitting avoidance. Model selection is traditionally associated with the so-called problem
of over-fitting avoidance. Over-fitting means fitting the training examples well (i.e.,
obtaining large model likelihood or low empirical risk values, computed from training
data), but generalizing poorly on new test examples. Over-fitting is usually blamed on
too large a large number of free parameters to be estimated, relative to the available num-
ber of training examples. The most basic model selection strategy is therefore to restrict
the number of free parameters according to “strict necessity”. This heuristic strategy is
usually traced back in history to the principle known as Ockham’s razor “Plurilitas non
est ponenda sin necessitate” (William of Ockham, 14th century). In other words, of two
theories providing similarly good predictions, the simplest one should be preferred, that
is, shave off unnecessary parameters. Most modern model selection strategies claim some
affiliation with Ockham’s razor, but the number of free parameters is replaced by a mea-
sure of capacity or complexity of the model class, C[F]. Intuitively, model classes with

41

GUYON SAFFARI DROR CAWLEY

large C[F] may include the correct model, but it is hard to find. In this case, even models
with a low training error may have a large generalization error (high “variance”; over-
fitting problem). Conversely, model classes with small C[F] may yield “biased” models,
that is, with both high training and generalization error (under-fitting). See bias/variance
decomposition..

PAC learning. The “probably approximately correct” (PAC) learning procedures, seek a func-
tion minimizing a guaranteed risk Rgua[f] = Remp[f] + ε(C,δ) such that with (high)
probability (1−δ), R[f]≤ Rgua[f]. C is a measure of capacity or complexity.

Regularizers and regularization. The regularization method consists of replacing the mini-
mization of the empirical risk Remp[f] by that of Rreg[f] = Remp +Ω[f]. A regularizer
Ω[f] is a functional penalizing “complex” functions. If both Rtr[f] and Ω[f] are convex,
there is a unique minimum of Rreg[f] with respect to f . In MAP learning, − lnP(f) can
be thought of as a regularizer. One particularly successful regularizer is the 2-norm reg-
ularizer � f�2

H for model functions f (x) = ∑m
k=1 αkK(x,xk) belonging to a Reproducing

Kernel Hilbert Space H (kernel methods). In the particular case of the linear model
f (x) =w ·x, we have � f�2

H = �w�2, a commonly used regularized found in many al-
gorithms including ridge regression (Hoerl, 1962) and SVMs (Boser et al., 1992). In the
general case, � f�2

H = fK−1f = αT Kα, where f = [f (xk)]mk=1 is the vector of predic-
tions of the training examples, α= [αk]mk=1 and K = [K(xh,xk], h= 1, . . . ,m k = 1, . . . ,m.
Due to the duality between RKHS and stochastic processes (Wahba, 1990), the functions
in the RKHS can also be explained as a family of random variables in a Gaussian process,
assuming a prior P(f) proportional to exp(−γ� f�H) = exp(−γfK−1f) and the kernel
matrix K is interpreted as a covariance matrix K(xh,xk) = cov[f (xk), f (xk)].

Risk minimization. Given a model space or hypothesis space F of functions y = f (x),
and a loss function L (f (x),y), we want to find the function f ∗ ∈ F that minimizes
the expected risk R[f] =

�
L (f (x),y) dP(x,y). Since P(x,y) is unknown, only es-

timations of R[f] can be computed. The simplest estimator is the average of the loss
over a finite number of examples drawn according to P(x,y) called the empirical risk:
Remp = (1/m)∑m

k=1 L (f (xk),yk). The minimization of the empirical risk is the basis
of many machine learning approaches to selecting f ∗, but minimizing regularized risk
functionals is often preferred. See regularization. Also, related are the PAC learning
procedures and the method of Structural Risk Minimization (SRM).

Search strategy. There are optimal search strategies, which guarantee that the optimum of the
evaluation function will be found, including the exhaustive search method, for discrete
hyper-parameter spaces. The popular grid search method for continuous hyper-parameter
spaces performs an exhaustive search, up to a certain precision. A related stochastic
search method is uniform sampling. Uniformly sampling parameter space may be compu-
tationally expensive and inefficient. If we use a non-uniform distribution G(θ) to sample
hyper-parameter space, which resembles P(f (θ)|D), the search can be made more effi-
cient. This idea is exploited in rejection sampling and importance sampling: according
to these methods a Bayesian ensemble F(x) = ∑k wk f (x;θk) would use weight wk pro-
portional to P(f (θ)|D)/G(θ). Because of the computational burden of (near) optimum
strategies, other strategies are often employed, usually yielding only a local optimum.
These include sequential search strategies such as coordinate ascent or descent (mak-
ing small steps along coordinate axes) or pattern search (Momma and Bennett, 2002)
(making local steps according to a certain pattern), which, by accepting only moves that
improve the evaluation function, find the local optimum nearest to the starting point.

42

2. MODEL SELECTION: BEYOND THE BAYESIAN/FREQUENTIST DIVIDE

Some stochastic search methods accept moves not necessarily improving the value of the
evaluation function, like simulated annealing or Markov chain Monte Carlo (MCMC)
methods. Both methods accept all moves improving the evaluation function and some
moves that do not, for example, with probability exp−∆r/T , where T is a positive pa-
rameter (T = 1 for MCMC and progressively diminishes for simulated annealing). Such
stochastic methods search hyper-parameter space more intensively and do not become
stuck in the nearest local optimum of the evaluation function.

Semi-supervised learning. In semi-supervised learning, in addition to the labeled data, the
learning machine is given a (possibly large) set of unlabeled data. Such unlabeled data
may be used for training or model selection.

Structural Risk Minimization. The method of Structural Risk Minimization (SRM) provides
aeans of building regularized risk functionals (see Regularization), using the idea of
guaranteed risk minimization, but not requiring the calculation of the model class ca-
pacity or complexity, which is often unknown or hard to compute. In the risk minimiza-
tion framework, it is not assumed that the model space includes a function or “concept”,
which generated the data (see concept space and hypothesis space).

Supervised learning. Learning with teaching signal or target y.

Under-fitting. While over-fitting is the problem of learning the training data too well the ex-
pense of a large generalization error, under-fitting is the problem of having a too weak
model not even capable of learning the training data and also generalizing poorly.

Unsupervised learning. Learning in the absence of teaching signal or target y.

Weighted majority algorithm. To approximate Bayesian integrals one can draw samples f j
uniformly from the model space of functions F and make predictions according to
Ê(y|x,D) = ∑ j P(f j|D) f j(x).

References
M. Adankon and M. Cheriet. Unified framework for SVM model selection. In I. Guyon, et al.,

editor, Hands on Pattern Recognition. Microtome, 2009.

H. Akaike. Information theory and an extension of the maximum likelihood principle. In B.N.
Petrov and F. Csaki, editors, 2nd International Symposium on Information Theory, pages
267–281. Akademia Kiado, Budapest, 1973.

C. F. Aliferis, I. Tsamardinos, and A. Statnikov. HITON, a novel Markov blanket algorithm
for optimal variable selection. In 2003 American Medical Informatics Association (AMIA)
Annual Symposium, pages 21–25, 2003.

C.-A. Azencott and P. Baldi. Virtual high-throughput screening with two-dimensional kernels.
In I. Guyon, et al., editor, Hands on Pattern Recognition. Microtome, 2009.

P. L. Bartlett. For valid generalization the size of the weights is more important than the size
of the network. In M. C. Mozer, M. I. Jordan, and T. Petsche, editors, Advances in Neural
Information Processing Systems, volume 9, page 134, Cambridge, MA, 1997. MIT Press.

A. Ben-Hur, A. Elisseeff, and I. Guyon. A stability based method for discovering structure in
clustered data. In Pacific Symposium on Biocomputing, pages 6–17, 2002.

43

GUYON SAFFARI DROR CAWLEY

A. Blum and P. Langley. Selection of relevant features and examples in machine learning.
Artificial Intelligence, 97(1-2):245–271, December 1997.

B. Boser, I. Guyon, and V. Vapnik. A training algorithm for optimal margin classifiers. In
COLT, pages 144–152, 1992.

M. Boullé. Compression-based averaging of selective naive bayes classifiers. In I. Guyon
and A. Saffari, editors, JMLR, Special Topic on Model Selection, volume 8, pages 1659–
1685, Jul 2007. URL http://www.jmlr.org/papers/volume8/boulle07a/
boulle07a.pdf.

M. Boullé. Data grid models for preparation and modeling in supervised learning. In
I. Guyon, et al., editor, Hands on Pattern Recognition. Microtome, 2009.

L. Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.

L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

G. Cawley. Leave-one-out cross-validation based model selection criteria for weighted ls-svms.
In IJCNN, pages 1661–1668, 2006.

G. Cawley and N. Talbot. Preventing over-fitting during model selection via Bayesian regulari-
sation of the hyper-parameters. In I. Guyon and A. Saffari, editors, JMLR, Special Topic on
Model Selection, volume 8, pages 841–861, Apr 2007a. URL http://www.jmlr.org/
papers/volume8/cawley07a/cawley07a.pdf.

G. Cawley and N. Talbot. Over-fitting in model selection and subsequent selection bias in
performance evaluation. JMLR, submitted, 2009.

G. C. Cawley and N. L. C. Talbot. Agnostic learning versus prior knowledge in the design of
kernel machines. In Proc. IJCNN07, Orlando, Florida, Aug 2007b. INNS/IEEE.

G.C. Cawley, G.J. Janacek, and N.L.C. Talbot. Generalised kernel machines. In International
Joint Conference on Neural Networks, pages 1720–1725. IEEE, August 2007.

W. Chu, S. Keerthi, C. J. Ong, and Z. Ghahramani. Bayesian Support Vector Machines for
feature ranking and selection. In I. Guyon, et al., editor, Feature Extraction, Foundations and
Applications, 2006.

G. Claeskens, C. Croux, and J. Van Kerckhoven. An information criterion for variable selection
in Support Vector Machines. In I. Guyon and A. Saffari, editors, JMLR, Special Topic on
Model Selection, volume 9, pages 541–558, Mar 2008. URL http://www.jmlr.org/
papers/volume9/claeskens08a/claeskens08a.pdf.

Clopinet. Challenges in machine learning, 2004-2009. URL http://clopinet.com/
challenges.

C. Dahinden. An improved Random Forests approach with application to the performance
prediction challenge datasets. In I. Guyon, et al., editor, Hands on Pattern Recognition.
Microtome, 2009.

M. Debruyne, M. Hubert, and J. Suykens. Model selection in kernel based regression using the
influence function. In I. Guyon and A. Saffari, editors, JMLR, Special Topic on Model Selec-
tion, volume 9, pages 2377–2400, Oct 2–8. URL http://www.jmlr.org/papers/
volume9/debruyne08a/debruyne08a.pdf.

44

http://www.jmlr.org/papers/volume8/boulle07a/boulle07a.pdf
http://www.jmlr.org/papers/volume8/boulle07a/boulle07a.pdf
http://www.jmlr.org/papers/volume8/cawley07a/cawley07a.pdf
http://www.jmlr.org/papers/volume8/cawley07a/cawley07a.pdf
http://www.jmlr.org/papers/volume9/claeskens08a/claeskens08a.pdf
http://www.jmlr.org/papers/volume9/claeskens08a/claeskens08a.pdf
http://clopinet.com/challenges
http://clopinet.com/challenges
http://www.jmlr.org/papers/volume9/debruyne08a/debruyne08a.pdf
http://www.jmlr.org/papers/volume9/debruyne08a/debruyne08a.pdf

2. MODEL SELECTION: BEYOND THE BAYESIAN/FREQUENTIST DIVIDE

Y. Freund and R. E. Schapire. Experiments with a new boosting algorithm. In Proc. 13th
International Conference on Machine Learning, pages 148–146. Morgan Kaufmann, 1996.

J. Friedman. Greedy function approximation: A gradient boosting machine. Annals of Statistics,
29:1189–1232, 2000.

J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression, a statistical view of
boosting. Annals of Statistics, 28:337–374, 2000.

J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for generalized linear models
via coordinate descent. Journal of Statistical Software (to appear), 2009.

P. Germain, A. Lacasse, F. Laviolette, and M. Marchand. PAC-Bayesian learning of linear clas-
sifiers. In ICML ’09: Proceedings of the 26th Annual International Conference on Machine
Learning, pages 353–360, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-516-1.

Y. Guermeur. VC theory of large margin multi-category classifiers. In I. Guyon and
A. Saffari, editors, JMLR, Special Topic on Model Selection, volume 8, pages 2551–2594,
Nov 2007. URL http://www.jmlr.org/papers/volume8/guermeur07a/
guermeur07a.pdf.

I. Guyon. A practical guide to model selection. In J. Marie, editor, Machine Learning Summer
School. Springer, to appear, 2009.

I. Guyon, S. Gunn, M. Nikravesh, and L. Zadeh, Editors. Feature Extraction, Foundations
and Applications. Studies in Fuzziness and Soft Computing. With data, results and sample
code for the NIPS 2003 feature selection challenge. Physica-Verlag, Springer, 2006a. URL
http://clopinet.com/fextract-book/.

I. Guyon, A. Saffari, G. Dror, and J. Buhmann. Performance prediction challenge. In
IEEE/INNS conference IJCNN 2006, Vancouver, Canada, July 16-21 2006b.

I. Guyon, A. Saffari, G. Dror, and G. Cawley. Agnostic learning vs. prior knowledge challenge.
In IEEE/INNS conference IJCNN 2007, Orlando, Florida, August 12-17 2007.

I. Guyon, C. Aliferis, G. Cooper, A. Elisseeff, J.-P. Pellet, P. Spirtes, and A. Statnikov. Design
and analysis of the causation and prediction challenge. In JMLR W&CP, volume 3, pages 1–
33, WCCI2008 workshop on causality, Hong Kong, June 3-4 2008a. URL http://jmlr.
csail.mit.edu/papers/topic/causality.html.

I. Guyon, A. Saffari, G. Dror, and G. Cawley. Analysis of the IJCNN 2007 agnostic learning
vs. prior knowledge challenge. In Neural Networks, volume 21, pages 544–550, Orlando,
Florida, March 2008b.

I. Guyon, D. Janzing, and B. Schölkopf. Causality: objectives and assessment. In NIPS 2008
workshop on causality, volume 7. JMLR W&CP, in press, 2009a.

I. Guyon, V. Lemaire, M. Boullé, Gideon Dror, and David Vogel. Analysis of the KDD cup
2009: Fast scoring on a large orange customer database. In KDD cup 2009, in press, vol-
ume 8. JMLR W&CP, 2009b.

L. E. Sucar H. J. Escalante, M. Montes. Particle swarm model selection. In I. Guyon and
A. Saffari, editors, JMLR, Special Topic on Model Selection, volume 10, pages 405–440,
Feb 2009. URL http://www.jmlr.org/papers/volume10/escalante09a/
escalante09a.pdf.

45

http://www.jmlr.org/papers/volume8/guermeur07a/guermeur07a.pdf
http://www.jmlr.org/papers/volume8/guermeur07a/guermeur07a.pdf
http://clopinet.com/fextract-book/
http://jmlr.csail.mit.edu/papers/topic/causality.html
http://jmlr.csail.mit.edu/papers/topic/causality.html
http://www.jmlr.org/papers/volume10/escalante09a/escalante09a.pdf
http://www.jmlr.org/papers/volume10/escalante09a/escalante09a.pdf

GUYON SAFFARI DROR CAWLEY

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning, Data Mining,
Inference and Prediction. Springer Verlag, 2000.

T. Hastie, S. Rosset, R. Tibshirani, and J. Zhu. The entire regularization path for the support
vector machine. JMLR, 5:1391–1415, 2004. URL http://jmlr.csail.mit.edu/
papers/volume5/hastie04a/hastie04a.pdf.

D. Haussler, M. Kearns, and R. Schapire. Bounds on the sample complexity of Bayesian learn-
ing using information theory and the vc dimension. Machine Learning, 14(1):83–113, 1994.
ISSN 0885-6125.

A. E. Hoerl. Application of ridge analysis to regression problems. Chemical Engineering
Progress, 58:54–59, 1962.

C. Hue and M. Boullé. A new probabilistic approach in rank regression with optimal Bayesian
partitioning. In I. Guyon and A. Saffari, editors, JMLR, Special Topic on Model Selec-
tion, volume 8, pages 2727–2754, Dec 2007. URL http://www.jmlr.org/papers/
volume8/hue07a/hue07a.pdf.

IBM team. Winning the KDD cup orange challenge with ensemble selection. In KDD cup
2009, in press, volume 8. JMLR W&CP, 2009.

R. Kohavi and G. John. Wrappers for feature selection. Artificial Intelligence, 97(1-2):273–324,
December 1997.

I. Koo and R. M. Kil. Model selection for regression with continuous kernel functions using
the modulus of continuity. In I. Guyon and A. Saffari, editors, JMLR, Special Topic on
Model Selection, volume 9, pages 2607–2633, Nov 2008. URL http://www.jmlr.
org/papers/volume9/koo08b/koo08b.pdf.

G. Kunapuli, J.-S. Pang, and K. Bennett. Bilevel cross-validation-based model selection. In
I. Guyon, et al., editor, Hands on Pattern Recognition. Microtome, 2009.

J. Langford. Tutorial on practical prediction theory for classification. JMLR, 6:273–306, Mar
2005. URL http://jmlr.csail.mit.edu/papers/volume6/langford05a/
langford05a.pdf.

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. J. Jackel.
Backpropagation applied to handwritten zip code recognition. Neural Computation, 1:541 –
551, 1989.

R. W. Lutz. Logitboost with trees applied to the WCCI 2006 performance prediction challenge
datasets. In Proc. IJCNN06, pages 2966–2969, Vancouver, Canada, July 2006. INNS/IEEE.

D. MacKay. A practical Bayesian framework for backpropagation networks. Neural Computa-
tion, 4:448–472, 1992.

O. Madani, D. M. Pennock, and G. W. Flake. Co-validation: Using model disagreement to
validate classification algorithms. In NIPS, 2005.

M. Momma and K. Bennett. A pattern search method for model selection of Support Vector
Regression. In In Proceedings of the SIAM International Conference on Data Mining. SIAM,
2002.

46

http://jmlr.csail.mit.edu/papers/volume5/hastie04a/hastie04a.pdf
http://jmlr.csail.mit.edu/papers/volume5/hastie04a/hastie04a.pdf
http://www.jmlr.org/papers/volume8/hue07a/hue07a.pdf
http://www.jmlr.org/papers/volume8/hue07a/hue07a.pdf
http://www.jmlr.org/papers/volume9/koo08b/koo08b.pdf
http://www.jmlr.org/papers/volume9/koo08b/koo08b.pdf
http://jmlr.csail.mit.edu/papers/volume6/langford05a/langford05a.pdf
http://jmlr.csail.mit.edu/papers/volume6/langford05a/langford05a.pdf

2. MODEL SELECTION: BEYOND THE BAYESIAN/FREQUENTIST DIVIDE

R. Neal and J. Zhang. High dimensional classification with Bayesian neural networks and
dirichlet diffusion trees. In I. Guyon, et al., editor, Feature Extraction, Foundations and
Applications, 2006.

V. Nikulin. Classification with random sets, boosting and distance-based clustering. In
I. Guyon, et al., editor, Hands on Pattern Recognition. Microtome, 2009.

T. Poggio and F. Girosi. Regularization algorithms for learning that are equivalent to multilayer
networks. Science, 247(4945):978–982, February 1990.

A. Pozdnoukhov and S. Bengio. Invariances in kernel methods: From samples to objects.
Pattern Recogn. Lett., 27(10):1087–1097, 2006. ISSN 0167-8655.

E. Pranckeviciene and R. Somorjai. Liknon feature selection: Behind the scenes. In
I. Guyon, et al., editor, Hands on Pattern Recognition. Microtome, 2009.

J. Reunanen. Model selection and assessment using cross-indexing. In Proc. IJCNN07, Or-
lando, Florida, Aug 2007. INNS/IEEE.

S. Rosset and J. Zhu. Sparse, flexible and efficient modeling using L1 regularization. In
I. Guyon, et al., editor, Feature Extraction, Foundations and Applications, 2006.

S. Rosset, J. Zhu, and T. Hastie. Boosting as a regularized path to a maximum margin classifier.
Journal of Machine Learning Research, 5:941–973, 2004.

M. Saeed. Hybrid learning using mixture models and artificial neural networks. In
I. Guyon, et al., editor, Hands on Pattern Recognition. Microtome, 2009.

A. Saffari and I. Guyon. Quick start guide for CLOP. Technical report, Graz University of
Technology and Clopinet, May 2006. URL http://clopinet.com/CLOP/.

D. Schuurmans and F. Southey. Metric-based methods for adaptive model selection and regu-
larization. Machine Learning, Special Issue on New Methods for Model Selection and Model
Combination, 48:51–84, 2001.

G. Schwarz. Estimating the dimension of a model. The Annals of Statistics, 6(2):461–464,
1978.

M. Seeger. PAC-Bayesian generalisation error bounds for Gaussian process classification.
JMLR, 3:233–269, 2003. URL http://jmlr.csail.mit.edu/papers/volume3/
seeger02a/seeger02a.pdf.

M. Seeger. Bayesian inference and optimal design for the sparse linear model. JMLR, 9:759–
813, 2008. ISSN 1533-7928.

P. Simard, Y. LeCun, and J. Denker. Efficient pattern recognition using a new transformation
distance. In S. J. Hanson, J. D. Cowan, and C. L. Giles, editors, Advances in Neural Infor-
mation Processing Systems 5, pages 50–58, San Mateo, CA, 1993. Morgan Kaufmann.

A. Singh, R. Nowak, and X. Zhu. Unlabeled data: Now it helps, now it doesn’t. In NIPS, 2008.

A. Smola, S. Mika, B. Schölkopf, and R. Williamson. Regularized principal manifolds.
JMLR, 1:179–209, 2001. URL http://jmlr.csail.mit.edu/papers/volume1/
smola01a/smola01a.pdf.

47

http://clopinet.com/CLOP/
http://jmlr.csail.mit.edu/papers/volume3/seeger02a/seeger02a.pdf
http://jmlr.csail.mit.edu/papers/volume3/seeger02a/seeger02a.pdf
http://jmlr.csail.mit.edu/papers/volume1/smola01a/smola01a.pdf
http://jmlr.csail.mit.edu/papers/volume1/smola01a/smola01a.pdf

GUYON SAFFARI DROR CAWLEY

R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society, Series B, 58:267–288, 1994.

E. Tuv, A. Borisov, G. Runger, and K. Torkkola. Feature selection with ensembles, artificial
variables, and redundancy elimination. In I. Guyon and A. Saffari, editors, JMLR, Special
Topic on Model Selection, volume 10, pages 1341–1366, Jul 2009. URL http://www.
jmlr.org/papers/volume10/tuv09a/tuv09a.pdf.

L. Valiant. A theory of the learnable. Communications of the ACM,, 27(11):1134–1142, 1984.

V. Vapnik. Estimation of Dependences Based on Empirical Data [in Russian]. Nauka, Moscow,
1979. (English translation: Springer Verlag, New York, 1982).

V. Vapnik. Statistical Learning Theory. John Wiley and Sons, N.Y., 1998.

V. Vapnik and A. Chervonenkis. On the uniform convergence of relative frequencies of events
to their probabilities. Theory Probab. Appl., 16:264–180, 1971.

S. Vishwanathan and A. Smola. Fast kernels for string and tree matching. In Advances in
Neural Information Processing Systems 15, pages 569–576. MIT Press, 2003. URL http:
//books.nips.cc/papers/files/nips15/AA11.pdf.

G. Wahba. Spline Models for Observational Data, volume 59 of CBMS-NSF Regional Confer-
ence Series in Applied Mathematics. SIAM, Philadelphia, 1990.

A. Waibel. Consonant recognition by modular construction of large phonemic time-delay neural
networks. In NIPS, pages 215–223, 1988.

C. Watkins. Dynamic alignment kernels. In A.J. Smola, P.L. Bartlett, B. Schölkopf, and
D. Schuurmans, editors, Advances in Large Margin Classifiers, pages 39–50, Cambridge,
MA, 2000. MIT Press. URL http://www.cs.rhul.ac.uk/home/chrisw/dynk.
ps.gz.

P. Werbos. Backpropagation: Past and future. In International Conference on Neural Networks,
pages 343–353. IEEE, IEEE press, 1988.

J. Weston, A. Elisseff, B. Schoelkopf, and M. Tipping. Use of the zero norm with linear models
and kernel methods. JMLR, 3:1439–1461, 2003.

J. Wichard. Agnostic learning with ensembles of classifiers. In Proc. IJCNN07, Orlando,
Florida, Aug 2007. INNS/IEEE.

J. Ye, S. Ji, and J. Chen. Multi-class discriminant kernel learning via convex program-
ming. In I. Guyon and A. Saffari, editors, JMLR, Special Topic on Model Selection, vol-
ume 9, pages 719–758, Apr 2008. URL http://www.jmlr.org/papers/volume9/
ye08b/ye08b.pdf.

J. Zhu, S. Rosset, T. Hastie, and R. Tibshirani. 1-norm support vector machines. In NIPS, 2003.

48

http://www.jmlr.org/papers/volume10/tuv09a/tuv09a.pdf
http://www.jmlr.org/papers/volume10/tuv09a/tuv09a.pdf
http://books.nips.cc/papers/files/nips15/AA11.pdf
http://books.nips.cc/papers/files/nips15/AA11.pdf
http://www.cs.rhul.ac.uk/home/chrisw/dynk.ps.gz
http://www.cs.rhul.ac.uk/home/chrisw/dynk.ps.gz
http://www.jmlr.org/papers/volume9/ye08b/ye08b.pdf
http://www.jmlr.org/papers/volume9/ye08b/ye08b.pdf

Journal of Machine Learning Research 11(Jul):2079–2107, 2010 Submitted 10/09; Revised 3/10; Published 7/10

Chapter 3

On Over-fitting in Model Selection and Subsequent Selection
Bias in Performance Evaluation
Gavin C. Cawley GCC@CMP.UEA.AC.UK

Nicola L. C. Talbot NLCT@CMP.UEA.AC.UK

School of Computing Sciences
University of East Anglia
Norwich, United Kingdom NR4 7TJ

Editor: Isabelle Guyon

Abstract
Model selection strategies for machine learning algorithms typically involve the numerical op-
timisation of an appropriate model selection criterion, often based on an estimator of gener-
alisation performance, such as k-fold cross-validation. The error of such an estimator can be
broken down into bias and variance components. While unbiasedness is often cited as a ben-
eficial quality of a model selection criterion, we demonstrate that a low variance is at least as
important, as a non-negligible variance introduces the potential for over-fitting in model se-
lection as well as in training the model. While this observation is in hindsight perhaps rather
obvious, the degradation in performance due to over-fitting the model selection criterion can be
surprisingly large, an observation that appears to have received little attention in the machine
learning literature to date. In this paper, we show that the effects of this form of over-fitting
are often of comparable magnitude to differences in performance between learning algorithms,
and thus cannot be ignored in empirical evaluation. Furthermore, we show that some common
performance evaluation practices are susceptible to a form of selection bias as a result of this
form of over-fitting and hence are unreliable. We discuss methods to avoid over-fitting in model
selection and subsequent selection bias in performance evaluation, which we hope will be in-
corporated into best practice. While this study concentrates on cross-validation based model
selection, the findings are quite general and apply to any model selection practice involving
the optimisation of a model selection criterion evaluated over a finite sample of data, including
maximisation of the Bayesian evidence and optimisation of performance bounds.
Keywords: model selection, performance evaluation, bias-variance trade-off, selection bias,
over-fitting

3.1. Introduction
This paper is concerned with two closely related topics that form core components of best prac-
tice in both the real world application of machine learning methods and the development of
novel machine learning algorithms, namely model selection and performance evaluation. The
majority of machine learning algorithms are based on some form of multi-level inference, where
the model is defined by a set of model parameters and also a set of hyper-parameters (Guyon
et al., 2009), for example in kernel learning methods the parameters correspond to the coeffi-
cients of the kernel expansion and the hyper-parameters include the regularisation parameter,
the choice of kernel function and any associated kernel parameters. This division into param-
eters and hyper-parameters is typically performed for computational convenience; for instance

© 2010 G.C. Cawley & N.L.C. Talbot.

CAWLEY TALBOT

in the case of kernel machines, for fixed values of the hyper-parameters, the parameters are nor-
mally given by the solution of a convex optimisation problem for which efficient algorithms are
available. Thus it makes sense to take advantage of this structure and fit the model iteratively
using a pair of nested loops, with the hyper-parameters adjusted to optimise a model selec-
tion criterion in the outer loop (model selection) and the parameters set to optimise a training
criterion in the inner loop (model fitting/training). In our previous study (Cawley and Talbot,
2007), we noted that the variance of the model selection criterion admitted the possibility of
over-fitting during model selection as well as the more familiar form of over-fitting that occurs
during training and demonstrated that this could be ameliorated to some extent by regularisation
of the model selection criterion. The first part of this paper discusses the problem of over-fitting
in model selection in more detail, providing illustrative examples, and describes how to avoid
this form of over-fitting in order to gain the best attainable performance, desirable in practical
applications, and required for fair comparison of machine learning algorithms.

Unbiased and robust1 performance evaluation is undoubtedly the cornerstone of machine
learning research; without a reliable indication of the relative performance of competing algo-
rithms, across a wide range of learning tasks, we cannot have the clear picture of the strengths
and weaknesses of current approaches required to set the direction for future research. This
topic is considered in the second part of the paper, specifically focusing on the undesirable opti-
mistic bias that can arise due to over-fitting in model selection. This phenomenon is essentially
analogous to the selection bias observed by Ambroise and McLachlan (2002) in microarray
classification, due to feature selection prior to performance evaluation, and shares a similar
solution. We show that some, apparently quite benign, performance evaluation protocols in
common use by the machine learning community are susceptible to this form of bias, and thus
potentially give spurious results. In order to avoid this bias, model selection must be treated as
an integral part of the model fitting process and performed afresh every time a model is fitted to
a new sample of data. Furthermore, as the differences in performance due to model selection are
shown to be often of comparable magnitude to the difference in performance between learning
algorithms, it seems no longer meaningful to evaluate the performance of machine learning al-
gorithms in isolation, and we should instead compare learning algorithm/model selection proce-
dure combinations. However, this means that robust unbiased performance evaluation is likely
to require more rigorous and computationally intensive protocols, such a nested cross-validation
or “double cross” (Stone, 1974).

None of the methods or algorithms discussed in this paper are new; the novel contribution
of this work is an empirical demonstration that over-fitting at the second level of inference (i.e.,
model selection) can have a very substantial deleterious effect on the generalisation performance
of state-of-the-art machine learning algorithms. Furthermore the demonstration that this can
lead to a misleading optimistic bias in performance evaluation using evaluation protocols in
common use in the machine learning community is also novel. The paper is intended to be of
some tutorial value in promoting best practice in model selection and performance evaluation,
however we also hope that the observation that over-fitting in model selection is a significant
problem will encourage much needed algorithmic and theoretical development in this area.

The remainder of the paper is structured as follows: Section 3.2 provides a brief overview
of the kernel ridge regression classifier used as the base classifier for the majority of the ex-
perimental work and Section 3.3 describes the data sets used. Section 3.4 demonstrates the
importance of the variance of the model selection criterion, as it can lead to over-fitting in

1. The term “robust” is used here to imply insensitivity to irrelevant experimental factors, such as the sampling and
partitioning of the data to form training, validation and test sets; this is normally achieved by computationally ex-
pensive resampling schemes, for example, cross-validation (Stone, 1974) and the bootstrap (Efron and Tibshirani,
1994).

50

3. OVERFITTING IN MODEL SELECTION AND SELECTION BIAS IN EVALUATION

model selection, resulting in poor generalisation performance. A number of methods to avoid
over-fitting in model selection are also discussed. Section 3.5 shows that over-fitting in model
selection can result in biased performance evaluation if model selection is not viewed as an
integral part of the modelling procedure. Two apparently benign and widely used performance
evaluation protocols are shown to be affected by this problem. Finally, the work is summarised
in Section 3.6.

3.2. Kernel Ridge Regression
In this section, we provide a brief overview of the Kernel Ridge Regression (KRR) classifier
(Saunders et al., 1998), also known as the Least-Squares Support Vector Machine (Suykens
et al., 2002), Regularised Least Squares (Rifkin and Lippert, 2007), Regularisation Network
(Poggio and Girosi, 1990) etc., used as the base classifier in most of the empirical demon-
strations in the sequel. Assume we are given labeled training data, D = {(xi,yi)}�i=1, where
xi ∈ X ⊂ Rd is a vector of input features describing the ith example and yi ∈ {−1,+1} is an
indicator variable such that yi =+1 if the ith example is drawn from the positive class, C+, and
yi =−1 if from the negative class, C−. Further let us assume there are �+ positive examples and
�− = �− �+ negative examples. The Kernel Ridge Regression classifier aims to construct a lin-
ear model f (x) =w ·φ(x)+b in a fixed feature space, φ : X → F , that is able to distinguish
between examples drawn from C− and C+, such that

x ∈
�

C+ if f (x)≥ 0
C− otherwise .

However, rather than specifying the feature space, F , directly, it is induced by a kernel function,
K : X ×X →R, giving the inner product between the images of vectors in the feature space,
F , that is, K (x,x�) = φ(x) ·φ(x�). A common kernel function, used throughout this study,
is the Gaussian radial basis function (RBF) kernel

K (x,x�) = exp
�
−η�x−x��2� , (3.1)

where η is a kernel parameter controlling the sensitivity of the kernel function. However, the
interpretation of the kernel function as evaluating the inner product between points in an implied
feature space is valid for any kernel for which the kernel matrix K = [ki j = K (xi,x j)]

�
i, j=1 is

positive definite (Mercer, 1909), such that

aTKa> 0, ∀ a �= 0.

The model parameters (w,b) are given by the minimum of a regularised (Tikhonov and Arsenin,
1977) least-squares loss function,

L =
1
2
�w�2 +

1
2λ

�

∑
i=1

[yi −w ·φ(xi)−b]2 , (3.2)

where λ is a regularisation parameter controlling the bias-variance trade-off (Geman et al.,
1992). The accuracy of the kernel machine on test data is critically dependent on the choice of
good values for the hyper-parameters, in this case λ and η . The search for the optimal values
for such hyper-parameters is a process known as model selection. The representer theorem
(Kimeldorf and Wahba, 1971) states that the solution to this optimisation problem can be written
as an expansion of the form

w =
�

∑
i=1

αiφ(xi) =⇒ f (x) =
�

∑
i=1

αiK (xi,x)+b.

51

CAWLEY TALBOT

The dual parameters of the kernel machine, α, are then given by the solution of a system of
linear equations, �

K+λI 1
1T 0

��
α
b

�
=

�
y
0

�
. (3.3)

where y = (y1,y2, . . . ,y�)T , which can be solved efficiently via Cholesky factorisation of K+
λI , with a computational complexity of O(�3) operations (Suykens et al., 2002). The simplicity
and efficiency of the kernel ridge regression classifier makes it an ideal candidate for relatively
small-scale empirical investigations of practical issues, such as model selection.

3.2.1. Efficient Leave-One-Out Cross-Validation

Cross-validation (e.g., Stone, 1974) provides a simple and effective method for both model
selection and performance evaluation, widely employed by the machine learning community.
Under k-fold cross-validation the data are randomly partitioned to form k disjoint subsets of
approximately equal size. In the ith fold of the cross-validation procedure, the ith subset is used
to estimate the generalisation performance of a model trained on the remaining k− 1 subsets.
The average of the generalisation performance observed over all k folds provides an estimate
(with a slightly pessimistic bias) of the generalisation performance of a model trained on the
entire sample. The most extreme form of cross-validation, in which each subset contains only
a single pattern is known as leave-one-out cross-validation (Lachenbruch and Mickey, 1968;
Luntz and Brailovsky, 1969). An attractive feature of kernel ridge regression is that it is possible
to perform leave-one-out cross-validation in closed form, with minimal cost as a by-product of
the training algorithm (Cawley and Talbot, 2003). Let C represent the matrix on the left hand
side of (3.3), then the residual error for the ith training pattern in the ith fold of the leave-one-out
process is given by,

r(−i)
i = yi − ŷ(−i)

i =
αi

C−1
ii

,

where ŷ(− j)
i is the output of the kernel ridge regression machine for the ith observation in the jth

fold of the leave-one-out procedure and C−1
ii is the ith element of the principal diagonal of the

inverse of the matrix C. Similar methods have been used in least-squares linear regression for
many years, (e.g., Stone, 1974; Weisberg, 1985). While the optimal model parameters of the
kernel machine are given by the solution of a simple system of linear equations, (3.3), some form
of model selection is required to determine good values for the hyper-parameters, θ = (λ ,η),
in order to maximise generalisation performance. The analytic leave-one-out cross-validation
procedure described here can easily be adapted to form the basis of an efficient model selection
strategy (cf. Chapelle et al., 2002; Cawley and Talbot, 2003; Bo et al., 2006). In order to obtain
a continuous model selection criterion, we adopt Allen’s Predicted REsidual Sum-of-Squares
(PRESS) statistic (Allen, 1974),

PRESS(θ) =
�

∑
i=1

�
r(−i)

i

�2
.

The PRESS criterion can be optimised efficiently using scaled conjugate gradient descent (Williams,
1991) or Nelder-Mead simplex (Nelder and Mead, 1965) procedures. For full details of the
training and model selection procedures for the kernel ridge regression classifier, see Cawley
(2006). A public domain MATLAB implementation of the kernel ridge regression classifier,
including automated model selection, is provided by the Generalised Kernel Machine (GKM)
(Cawley et al., 2007) toolbox.2

2. Toolbox can be found at http://theoval.cmp.uea.ac.uk/\simgcc/projects/gkm.

52

3. OVERFITTING IN MODEL SELECTION AND SELECTION BIAS IN EVALUATION

3.3. Data Sets used in Empirical Demonstrations
In this section, we describe the benchmark data sets used in this study to illustrate the problem of
over-fitting in model selection and to demonstrate the bias this can introduce into performance
evaluation.

3.3.1. A Synthetic Benchmark

A synthetic benchmark, based on that introduced by Ripley (1996), is used widely in the next
section to illustrate the nature of over-fitting in model selection. The data are drawn from four
spherical bivariate Gaussian distributions, with equal probability. All four Gaussians have a
common variance, σ2 = 0.04. Patterns belonging to the positive classes are drawn from Gaus-
sians centred on [+0.4,+0.7] and [−0.3,+0.7]; the negative patterns are drawn from Gaussians
centred on [−0.7,+0.3] and [+0.3,+0.3]. Figure 3.1 shows a realisation of the synthetic bench-
mark, consisting of 256 patterns, showing the Bayes-optimal decision boundary and contours
representing an a-posteriori probability of belonging to the positive class of 0.1 and 0.9. The
Bayes error for this benchmark is approximately 12.38%. This benchmark is useful firstly as
the Bayes optimal decision boundary is known, but also because it provides an inexhaustible
supply of data, allowing the numerical approximation of various expectations.

x1

x 2

−1.5 −1 −0.5 0 0.5 1
−0.5

0

0.5

1

1.5

p(C+|x) = 0.9
p(C+|x) = 0.5
p(C+|x) = 0.1

(a)

x1

x 2

−1.5 −1 −0.5 0 0.5 1
−0.5

0

0.5

1

1.5

f(x) = +1
f(x) = 0
f(x) = −1

(b)

Figure 3.1: Realisation of the Synthetic benchmark data set, with Bayes optimal decision
boundary (a) and kernel ridge regression classifier with an automatic relevance de-
termination (ARD) kernel where the hyper-parameters are tuned so as to minimise
the true test MSE (b).

3.3.2. A Suite of Benchmarks for Robust Performance Evaluation

In addition to illustrating the nature of over-fitting in model selection, we need to demonstrate
that it is a serious concern in practical applications and show that it can result in biased perfor-
mance evaluation if not taken into consideration. Table 3.1 gives the details of a suite of thirteen
benchmark data sets, introduced by Rätsch et al. (2001). Each benchmark is based on a data set
from the UCI machine learning repository, augmented by a set of 100 pre-defined partitions to
form multiple realisations of the training and test sets (20 in the case of the larger image and
splice data sets). The use of multiple benchmarks means that the evaluation is more robust as

53

CAWLEY TALBOT

the selection of data sets that provide a good match to the inductive bias of a particular classifier
becomes less likely. Likewise, the use of multiple partitions provides robustness against sensi-
tivity to the sampling of data to form training and test sets. Results on this suite of benchmarks
thus provides a reasonable indication of the magnitude of the effects of over-fitting in model
selection that we might expect to see in practice.

Table 3.1: Details of data sets used in empirical comparison.

Data Set Training Testing Number of Input
Patterns Patterns Replications Features

banana 400 4900 100 2
breast cancer 200 77 100 9
diabetis 468 300 100 8
flare solar 666 400 100 9
german 700 300 100 20
heart 170 100 100 13
image 1300 1010 20 18
ringnorm 400 7000 100 20
splice 1000 2175 20 60
thyroid 140 75 100 5
titanic 150 2051 100 3
twonorm 400 7000 100 20
waveform 400 4600 100 21

3.4. Over-fitting in Model Selection
We begin by demonstrating that it is possible to over-fit a model selection criterion based on a
finite sample of data, using the synthetic benchmark problem, where ground truth is available.
Here we use “over-fitting in model selection” to mean minimisation of the model selection crite-
rion beyond the point at which generalisation performance ceases to improve and subsequently
begins to decline. Figure 3.1(b) shows the output of a kernel ridge regression classifier for the
synthetic problem, with the Automatic Relevance Determination (ARD) variant of the Gaussian
radial basis function kernel,

K (x,x�) = exp

�
−

d

∑
i=1

ηi(xi − x�i)
2

�
,

which has a separate scaling parameter, ηi, for each feature. A much larger training set of 4096
samples was used, and the hyper-parameters were tuned to minimise the true test mean squared
errors (MSE). The performance of this model, achieved an error rate of 12.50%, which suggests
that a model of this form is capable of approaching the Bayes error rate for this problem, at least
in principle, and so there is little concern of model mis-specification.

A further one thousand independent realisations of this benchmark were generated, each
consisting of 64 samples. A kernel ridge regression classifier, based on the ARD kernel, was
constructed for each realisation, with the hyper-parameters tuned so as to minimise a four-
fold cross-validation estimate of the mean squared error. The true generalisation performance
of each model was estimated numerically using the underlying generative model of the data

54

3. OVERFITTING IN MODEL SELECTION AND SELECTION BIAS IN EVALUATION

0 20 40 60 80 100
0.2

0.205

0.21

0.215

0.22

0.225

0.23

iteration

M
SE

X−Validation
Test

(a)

0 20 40 60 80 100
0.2

0.21

0.22

0.23

0.24

0.25

0.26

0.27

iteration

M
SE

X−Validation
Test

(b)

Figure 3.2: Evolution of the expected four-fold cross-validation and true test mean squared er-
ror as a function of the number of iterations (optimisation steps in the minimisation
of the model selection criterion) of the model selection process, for a kernel ridge
regression classifier trained on the synthetic benchmark data set (a) and (b) the
evolution of those statistics for a particular realisation of the data set.

set. Figure 3.2(a) shows the expected true test and cross-validation estimates of the mean
squared error averaged over all 1000 realisations of the benchmark. As would be expected,
the cross-validation estimate of the mean squared error, forming the model selection criterion,
is monotonically decreasing. However, the expected value of the true test MSE initially shows
a decrease, as the hyper-parameters are modified in a manner that provides genuine improve-
ments in generalisation, but after a relatively short time (approximately 30–40 iterations), the
test error begins to climb slowly once more as the hyper-parameters are tuned in ways that ex-
ploit the meaningless statistical peculiarities of the sample. This produces a close analog of the
classic plot used to illustrate the nature of over-fitting in training, for example, Figure 9.7 of the
book by Bishop (1995). Figure 3.2 (b) shows the same statistics for one particular realisation
of the data, demonstrating that the over-fitting can in some cases be quite substantial, clearly
in this case some form of early-stopping in the model selection process would have resulted in
improved generalisation. Having demonstrated that the classic signature of over-fitting during
training is also apparent in the evolution of cross-validation and test errors during model selec-
tion, we discuss in the next section the origin of this form of over-fitting in terms of the bias and
variance of the model selection criterion.

3.4.1. Bias and Variance in Model Selection

Model selection criteria are generally based on an estimator of generalisation performance eval-
uated over a finite sample of data, this includes resampling methods, such as split sample esti-
mators, cross-validation (Stone, 1974) and bootstrap methods (Efron and Tibshirani, 1994), but
also more loosely, the Bayesian evidence (MacKay, 1992; Rasmussen and Williams, 2006) and
theoretical performance bounds such as the radius-margin bound (Vapnik, 1998). The error of
an estimator can be decomposed into two components, bias and variance. Let G(θ) represent
the true generalisation performance of a model with hyper-parameters θ, and g(θ;D) be an
estimate of generalisation performance evaluated over a finite sample, D , of n patterns. The

55

CAWLEY TALBOT

expected squared error of the estimator can then be written in the form (Geman et al., 1992;
Duda et al., 2001),

ED

�
[g(θ;D)−G(θ)]2

�
= [ED {g(θ;D)−G(θ)}]2 + ED

��
g(θ;D)−ED �

�
g(θ;D �)

��2
�
,

where ED{·} represents an expectation evaluated over independent samples, D , of size n. The
first term, the squared bias, represents the difference between the expected value of the estimator
and the unknown value of the true generalisation error. The second term, known as the variance,
reflects the variability of the estimator around its expected value due to the sampling of the data
D on which it is evaluated. Clearly if the expected squared error is low, we may reasonably
expect g(·) to perform well as a model selection criterion. However, in practice, the expected
squared error may be significant, in which case, it is interesting to ask whether the bias or the
variance component is of greatest importance in reliably achieving optimal generalisation.

It is straightforward to demonstrate that leave-one-out cross-validation provides an almost
unbiased estimate of the true generalisation performance (Luntz and Brailovsky, 1969), and this
is often cited as being an advantageous property of the leave-one-out estimator in the setting of
model selection (e.g., Vapnik, 1998; Chapelle et al., 2002). However, for the purpose of model
selection, rather than performance evaluation, unbiasedness per se is relatively unimportant,
instead the primary requirement is merely for the minimum of the model selection criterion to
provide a reliable indication of the minimum of the true test error in hyper-parameter space. This
point is illustrated in Figure 3.3, which shows a hypothetical example of a model selection cri-
terion that is unbiased (by construction) (a) and another that is clearly biased (b). Unbiasedness
provides the assurance that the minimum of the expected value of the model selection criterion,
ED{g(θ;D)} coincides with the minimum of the test error, G(θ). However, in practice, we
have only a finite sample of data, Di, over which to evaluate the model selection criterion, and
so it is the minimum of g(θ;Di) that is of interest. In Figure 3.3(a), it can be seen that while
the estimator is unbiased, it has a high variance, and so there is a large spread in the values of θ
at which the minimum occurs for different samples of data, and so g(θ;Di) is likely to provide
a poor model selection criterion in practice. On the other hand, Figure 3.3(b) shows a criterion
with lower variance, and hence is the better model selection criterion, despite being biased, as
the minima of g�(θ;Di) for individual samples lie much closer to the minimum of the true test
error. This demonstrates that while unbiasedness is reassuring, as it means that the form of
the model selection criterion is correct on average, the variance of the criterion is also vitally
important as it is this that ensures that the minimum of the selection criterion evaluated on a
particular sample will provide good generalisation.

3.4.2. The Effects of Over-fitting in Model Selection

In this section, we investigate the effect of the variance of the model selection criterion using
a more realistic example, again based on the synthetic benchmark, where the underlying
generative model is known and so we are able to evaluate the true test error. It is demonstrated
that over-fitting in model selection can cause both under-fitting and over-fitting of the training
sample. A fixed training set of 256 patterns is generated, and used to train a kernel ridge
regression classifier, using the simple RBF kernel (3.1), with hyper-parameter settings defining
a fine grid spanning reasonable values of the regularisation and kernel parameters, λ and η
respectively. The smoothed error rate (Bo et al., 2006),

SER(θ) =
1

2n

n

∑
i=1

[1− yi tanh{γ f (xi)}]

56

3. OVERFITTING IN MODEL SELECTION AND SELECTION BIAS IN EVALUATION

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1
er

ro
r r

at
e

θ

test error
EDg(θ;D)
g(θ;Di)

(a)

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

er
ro

r r
at

e

θ

test error
EDg’(θ;D)
g’(θ;Di)

(b)

Figure 3.3: Hypothetical example of an unbiased (a) and a biased (b) model selection crite-
rion. Note that the biased model selection criterion (b) is likely to provide the
more effective model selection criterion as it has a lower variance, even though it
is significantly biased. For clarity, the true error rate and the expected value of the
model selection criteria are shown with vertical displacements of −0.6 and −0.4
respectively.

is used as the statistic of interest, in order to improve the clarity of the figures, where γ is a
parameter controlling the amount of smoothing applied (γ = 8 is used throughout, however the
precise value is not critical). Figure 3.4(a) shows the true test smoothed error rate as a function
of the hyper-parameters. As these are both scale parameters, a logarithmic representation is
used for both axes. The true test smoothed error rate is an approximately unimodal function of
the hyper-parameters, with a single distinct minimum, indicating the hyper-parameter settings
giving optimal generalisation.

In practical applications, however, the true test error is generally unknown, and so we must
rely on an estimator of some sort. The simplest estimator for use in model selection is the error
computed over an independent validation set, that is, the split-sample estimator. It seems en-
tirely reasonable to expect the split-sample estimator to be unbiased. Figure 3.4(b) shows a plot
of the mean smoothed error rate using the split-sample estimator, over 100 random validation
sets, each of which consists of 64 patterns. Note that the same fixed training set is used in each
case. This plot is very similar to the true smoothed error, shown in Figure 3.4(a), demonstrating
that the split sample estimator is indeed approximately unbiased.

While the split-sample estimator is unbiased, it may have a high variance, especially as in
this case the validation set is (intentionally) relatively small. Figure 3.5 shows plots of the split-
sample estimate of the smoothed error rate for six selected realisations of a validation set of 64
patterns. Clearly, the split-sample error estimate is no longer as smooth, or indeed unimodal.
More importantly, the hyper-parameter values selected by minimising the validation set error,
and therefore the true generalisation performance, depends on the particular sample of data used
to form the validation set. Figure 3.6 shows that the variance of the split-sample estimator can
result in models ranging from severely under-fit (a) to severely over-fit (f), with variations in
between these extremes.

57

CAWLEY TALBOT

log2η

lo
g 2
λ

−8 −6 −4 −2 0 2 4 6 8

−10

−8

−6

−4

−2

0

2

4

6

8

(a)

log2η

lo
g 2
λ

−8 −6 −4 −2 0 2 4 6 8

−10

−8

−6

−4

−2

0

2

4

6

8

(b)

Figure 3.4: Plot of the true test smoothed error rate (a) and mean smoothed error rate over 100
random validation sets of 64 samples (b), for a kernel ridge regression classifier as a
function of the hyper-parameters. In each case, the minimum is shown by a yellow
cross, +.

log2η

lo
g 2
λ

−5 0 5

−10

−8

−6

−4

−2

0

2

4

6

8

(a)
log2η

lo
g 2
λ

−5 0 5

−10

−8

−6

−4

−2

0

2

4

6

8

(b)
log2η

lo
g 2
λ

−5 0 5

−10

−8

−6

−4

−2

0

2

4

6

8

(c)

log2η

lo
g 2
λ

−5 0 5

−10

−8

−6

−4

−2

0

2

4

6

8

(d)
log2η

lo
g 2
λ

−5 0 5

−10

−8

−6

−4

−2

0

2

4

6

8

(e)
log2η

lo
g 2
λ

−5 0 5

−10

−8

−6

−4

−2

0

2

4

6

8

(f)

Figure 3.5: Contour plot of the split-sample estimate of the smoothed error rate for a kernel
ridge regression machine as a function of the hyper-parameters, for six random
realisations of the validation set. The minimum is shown by a cross, +.

58

3. OVERFITTING IN MODEL SELECTION AND SELECTION BIAS IN EVALUATION

x1

x 2

−1.5 −1 −0.5 0 0.5 1
−0.5

0

0.5

1

1.5

(a)
x1

x 2

−1.5 −1 −0.5 0 0.5 1
−0.5

0

0.5

1

1.5

(b)
x1

x 2

−1.5 −1 −0.5 0 0.5 1
−0.5

0

0.5

1

1.5

(c)

x1

x 2

−1.5 −1 −0.5 0 0.5 1
−0.5

0

0.5

1

1.5

(d)
x1

x 2

−1.5 −1 −0.5 0 0.5 1
−0.5

0

0.5

1

1.5

(e)
x1

x 2

−1.5 −1 −0.5 0 0.5 1
−0.5

0

0.5

1

1.5

(f)

Figure 3.6: Kernel ridge regression models of the synthetic benchmark, using hyper-parameters
selected according to the smoothed error rate over six random realisations of the
validation set (shown in Figure 3.5). The variance of the model selection criterion
can result in models ranging from under-fit, (a) and (b), through well-fitting, (c)
and (d), to over-fit (e) and (f).

59

CAWLEY TALBOT

Figure 3.7(a) shows a scatter plot of the validation set and true error rates for kernel ridge re-
gression classifiers for the synthetic benchmark, with split-sample based model selection using
100 random realisations of the validation set. Clearly, the split-sample based model selection
procedure normally performs well. However, there is also significant variation in performance
with different samples forming the validation set. We can also see that the validation set error is
strongly biased, having been directly minimised during model selection, and (of course) should
not be used for performance estimation.

0 0.05 0.1 0.15 0.2 0.25
0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

validation SER

tru
e

SE
R

(a)

0 0.05 0.1 0.15 0.2 0.25
0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

validation SER

tru
e

SE
R

(b)

Figure 3.7: Scatter plots of the true test smoothed error rate as a function of the validation set
smoothed error rate for 100 randomly generated validation sets of (a) 64 and (b)
256 patterns.

Note that in this section we have deliberately employed a split-sample based model selec-
tion strategy with a relatively high variance, due to the limited size of the validation set. A
straightforward way to reduce the variance of the model selection criterion is simply to in-
crease the size of the validation sample over which it is evaluated. Figure 3.8 shows the optimal
hyper-parameter settings obtained using 100 realisations of validation sets of 64 (a) and 256 (b)
samples. It can be clearly seen that the use of a larger validation set has resulted in a tighter clus-
tering of hyper-parameter values around the true optimum, note also that the hyper-parameters
are concentrated along the bottom of a broad valley in hyper-parameter space, so even when
the selected values are different from the optimal value, they still lie in positions giving good
generalisation. This is further illustrated in Figure 3.7(b), where the true smoothed error rates
are much more tightly clustered, with fewer outliers, for the larger validation sets than obtained
using smaller validation sets, shown in Figure 3.7(a).

The variation in performance for different realisations of the benchmark suggests that eval-
uation of machine learning algorithms should always involve multiple partitions of the data
to form training/validation and test sets, as the sampling of data for a single partition of the
data might arbitrarily favour one classifier over another. This is illustrated in Figure 3.9, which
shows the test error rates for Gaussian Process and Kernel Logistic Regression classifiers (GPC
and KLR respectively), for 100 random realisations of the banana benchmark data set used
in Rätsch et al. (2001) (see Section 3.5.1 for details). On 64 realisations of the data GPC out-
performs KLR, but on 36 KLR out-performs GPC, even though the GPC is better on average
(although the difference is not statistically significant in this case). If the classifiers had been
evaluated on only one of the latter 36 realisations, it might incorrectly be concluded that the

60

3. OVERFITTING IN MODEL SELECTION AND SELECTION BIAS IN EVALUATION

log2η

lo
g 2
λ

−8 −6 −4 −2 0 2 4 6 8

−10

−8

−6

−4

−2

0

2

4

6

8

(a)

log2η

lo
g 2
λ

−8 −6 −4 −2 0 2 4 6 8

−10

−8

−6

−4

−2

0

2

4

6

8

(b)

Figure 3.8: Contour plot of the mean validation set smoothed error rate over 100 randomly
generated validation sets of (a) 64 and (b) 256 patterns. The minimum of the mean
validation set error is marked by a yellow cross, and the minimum for each realisa-
tion of the validation set marked by a red cross.

KLR classifier is superior to the GPC for that benchmark. However, it should also be noted that
a difference in performance between two algorithms is unlikely to be of practical significance,
even if it is statistically significant, if it is smaller than the variation in performance due to the
random sampling of the data, as it is probable that a greater improvement in performance would
be obtained by further data collection than by selection of the optimal classifier.

3.4.3. Is Over-fitting in Model Selection Really a Genuine Concern in Practice?

In the preceding part of this section we have demonstrated the deleterious effects of the vari-
ance of the model selection criterion using a synthetic benchmark data set, however this is not
sufficient to establish that over-fitting in model selection is actually a genuine concern in practi-
cal applications or in the development of machine learning algorithms. Table 3.2 shows results
obtained using kernel ridge regression (KRR) classifiers, with RBF and ARD kernel functions
over the thirteen benchmarks described in Section 3.3.2. In each case, model selection was
performed independently for each realisation of each benchmark by minimising the PRESS
statistic using the Nelder-Mead simplex method (Nelder and Mead, 1965). For the majority of
the benchmarks, a siginicantly lower test error is achieved (according to the Wilcoxon signed
ranks test) using the basic RBF kernel; the ARD kernel only achieves statistical superiority on
one of the thirteen (image). This is perhaps a surprising result as the models are nested, the
RBF kernel being a special case of the ARD kernel, so the optimal performance that can be
achieved with the ARD kernel is guaranteed to be at least equal to the performance achievable
using the RBF kernel. The reason for the poor performance of the ARD kernel in practice is
because there are many more kernel parameters to be tuned in model selection and so many
degrees of freedom available in optimising the model selection criterion. If the criterion used
has a non-negligible variance, this includes optimisations exploiting the statistical peculiarities
of the particular sample of data over which it is evaluated, and hence there will be more scope
for over-fitting. Table 3.2 also shows the mean value of the PRESS statistic, following model
selection, the fact that the majority of ARD models display a lower value for the PRESS statistic

61

CAWLEY TALBOT

0.09 0.095 0.1 0.105 0.11 0.115 0.12
0.09

0.095

0.1

0.105

0.11

0.115

0.12

0.09 0.095 0.1 0.105 0.11 0.115 0.12
0.09

0.095

0.1

0.105

0.11

0.115

0.12

GPC error rate

KL
R

 e
rro

r r
at

e

0.09 0.095 0.1 0.105 0.11 0.115 0.12
0.09

0.095

0.1

0.105

0.11

0.115

0.12

GPC error rate

KL
R

 e
rro

r r
at

e

0.09 0.095 0.1 0.105 0.11 0.115 0.12
0.09

0.095

0.1

0.105

0.11

0.115

0.12

GPC error rate

KL
R

 e
rro

r r
at

e

Figure 3.9: Scatter plots of the test set error for Gaussian process and Kernel Logistic regres-
sion classifiers (GPC and KLR respectively) for 100 realisations of the banana
benchmark.

than the corresponding RBF model, while exhibiting a higher test error rate, is a strong indica-
tion of over-fitting the model selection criterion. This is a clear demonstration that over-fitting
in model selection can be a significant problem in practical applications, especially where there
are many hyper-parameters or where only a limited supply of data is available.

Table 3.3 shows the results of the same experiment performed using expectation-propagation
based Gaussian process classifiers (EP-GPC) (Rasmussen and Williams, 2006), where the hyper-
parameters are tuned independently for each realisation, for each benchmark individually by
maximising the Bayesian evidence. While the leave-one-out cross-validation based PRESS cri-
terion is known to exhibit a high variance, the variance of the evidence (which is also evaluated
over a finite sample of data) is discussed less often. We find again here that the RBF covariance
function often out-performs the more general ARD covariance function, and again the test error
rate is often negatively correlated with the evidence for the models. This indicates that over-
fitting the evidence is also a significant practical problem for the Gaussian process classifier.

3.4.4. Avoiding Over-fitting in Model Selection

It seems reasonable to suggest that over-fitting in model selection is possible whenever a model
selection criterion evaluated over a finite sample of data is directly optimised. Like over-fitting
in training, over-fitting in model selection is likely to be most severe when the sample of data
is small and the number of hyper-parameters to be tuned is relatively large. Likewise, assum-
ing additional data are unavailable, potential solutions to the problem of over-fitting the model
selection criterion are likely to be similar to the tried and tested solutions to the problem of over-
fitting the training criterion, namely regularisation (Cawley and Talbot, 2007), early stopping
(Qi et al., 2004) and model or hyper-parameter averaging (Cawley, 2006; Hall and Robinson,
2009). Alternatively, one might minimise the number of hyper-parameters, for instance by

62

3. OVERFITTING IN MODEL SELECTION AND SELECTION BIAS IN EVALUATION

Table 3.2: Error rates of kernel ridge regression (KRR) classifier over thirteen benchmark data
sets (Rätsch et al., 2001), using both standard radial basis function (RBF) and au-
tomatic relevance determination (ARD) kernels. Results shown in bold indicate an
error rate that is statistically superior to that obtained with the same classifier using
the other kernel function, or a PRESS statistic that is significantly lower.

Data Set Test Error Rate PRESS
RBF ARD RBF ARD

banana 10.610 ± 0.051 10.638 ± 0.052 60.808 ± 0.636 60.957 ± 0.624
breast cancer 26.727 ± 0.466 28.766 ± 0.391 70.632 ± 0.328 66.789 ± 0.385
diabetis 23.293 ± 0.169 24.520 ± 0.215 146.143 ± 0.452 141.465 ± 0.606
flare solar 34.140 ± 0.175 34.375 ± 0.175 267.332 ± 0.480 263.858 ± 0.550
german 23.540 ± 0.214 25.847 ± 0.267 228.256 ± 0.666 221.743 ± 0.822
heart 16.730 ± 0.359 22.810 ± 0.411 42.576 ± 0.356 37.023 ± 0.494
image 2.990 ± 0.159 2.188 ± 0.134 74.056 ± 1.685 44.488 ± 1.222
ringnorm 1.613 ± 0.015 2.750 ± 0.042 28.324 ± 0.246 27.680 ± 0.231
splice 10.777 ± 0.144 9.943 ± 0.520 186.814 ± 2.174 130.888 ± 6.574
thyroid 4.747 ± 0.235 4.693 ± 0.202 9.099 ± 0.152 6.816 ± 0.164
titanic 22.483 ± 0.085 22.562 ± 0.109 48.332 ± 0.622 47.801 ± 0.623
twonorm 2.846 ± 0.021 4.292 ± 0.086 32.539 ± 0.279 35.620 ± 0.490
waveform 9.792 ± 0.045 11.836 ± 0.085 61.658 ± 0.596 56.424 ± 0.637

Table 3.3: Error rates of expectation propagation based Gaussian process classifiers (EP-GPC),
using both standard radial basis function (RBF) and automatic relevance determina-
tion (ARD) kernels. Results shown in bold indicate an error rate that is statistically
superior to that obtained with the same classifier using the other kernel function or
evidence that is significantly higher.

Data Set Test Error Rate -Log Evidence
RBF ARD RBF ARD

banana 10.413 ± 0.046 10.459 ± 0.049 116.894 ± 0.917 116.459 ± 0.923
breast cancer 26.506 ± 0.487 27.948 ± 0.492 110.628 ± 0.366 107.181 ± 0.388
diabetis 23.280 ± 0.182 23.853 ± 0.193 230.211 ± 0.553 222.305 ± 0.581
flare solar 34.200 ± 0.175 33.578 ± 0.181 394.697 ± 0.546 384.374 ± 0.512
german 23.363 ± 0.211 23.757 ± 0.217 359.181 ± 0.778 346.048 ± 0.835
heart 16.670 ± 0.290 19.770 ± 0.365 73.464 ± 0.493 67.811 ± 0.571
image 2.817 ± 0.121 2.188 ± 0.076 205.061 ± 1.687 123.896 ± 1.184
ringnorm 4.406 ± 0.064 8.589 ± 0.097 121.260 ± 0.499 91.356 ± 0.583
splice 11.609 ± 0.180 8.618 ± 0.924 365.208 ± 3.137 242.464 ± 16.980
thyroid 4.373 ± 0.219 4.227 ± 0.216 25.461 ± 0.182 18.867 ± 0.170
titanic 22.637 ± 0.134 22.725 ± 0.133 78.952 ± 0.670 78.373 ± 0.683
twonorm 3.060 ± 0.034 4.025 ± 0.068 45.901 ± 0.577 42.044 ± 0.610
waveform 10.100 ± 0.047 11.418 ± 0.091 105.925 ± 0.954 91.239 ± 0.962

63

CAWLEY TALBOT

treating kernel parameters as simply parameters and optimising them at the first level of infer-
ence and have a single regularisation hyper-parameter controlling the overall complexity of the
model. For very small data sets, where the problem of over-fitting in both learning and model
selection is greatest, the preferred approach would be to eliminate model selection altogether
and opt for a fully Bayesian approach, where the hyper-parameters are integrated out rather
than optimised (e.g., Williams and Barber, 1998). Another approach is simply to avoid model
selection altogether using an ensemble approach, for example the Random Forest (RF) method
(Breiman, 2001). However, while such methods often achieve state-of-the-art performance, it is
often easier to build expert knowledge into hierarchical models, for example through the design
of kernel or covariance functions, so unfortunately approaches such as the RF are not a panacea.

While the problem of over-fitting in model selection is of the same nature as that of over-
fitting at the first level of inference, the lack of mathematical tractability appears to have limited
the theoretical analysis of model selection via optimisation of a model selection criterion. For
example, regarding leave-one-out cross-validation, Kulkarni et al. (1998) comment “In spite
of the practical importance of this estimate, relatively little is known about its properties. The
available theory is especially poor when it comes to analysing parameter selection based on
minimizing the deleted estimate.” (our emphasis). While some asymptotic results are avail-
able (Stone, 1977; Shao, 1993; Toussaint, 1974), these are not directly relevant to the situation
considered here, where over-fitting occurs due to optimising the values of hyper-parameters
using a model selection criterion evaluated over a finite, often quite limited, sample of data.
Estimates of the variance of the cross-validation error are available for some models (Luntz
and Brailovsky, 1969; Vapnik, 1982), however Bengio and Grandvalet (2004) have shown there
is no unbiased estimate of the variance of (k-fold) cross-validation. More recently bounds on
the error of leave-one-out cross-validation based on the idea of stability have been proposed
(Kearns and Ron, 1999; Bousquet and Elisseeff, 2002; Zhang, 2003). In this section, we have
demonstrated that over-fitting in model selection is a genuine problem in machine learning, and
hence is likely to be an area that could greatly benefit from further theoretical analysis.

3.5. Bias in Performance Estimation
Avoiding potentially significant bias in performance evaluation, arising due to over-fitting in
model selection, is conceptually straightforward. The key is to treat both training and model
selection together, as integral parts of the model fitting procedure and ensure they are never
performed separately at any point of the evaluation process. We present two examples of po-
tentially biased evaluation protocols that do not adhere to this principle. The scale of the bias
observed on some data sets is much larger than difference in performance between learning
algorithms, and so one could easily draw incorrect inferences based on the results obtained.
This highlights the importance of this issue in empirical studies. We also demonstrate that the
magnitude of the bias depends on the learning and model selection algorithms involved in the
comparison and that combinations that are more prone to over-fitting in model selection are
favored by biased protocols. This means that studies based on potentially biased protocols are
not internally consistent, even if it is acknowledged that a bias with respect to other studies may
exist.

3.5.1. An Unbiased Performance Evaluation Methodology

We begin by describing an unbiased performance protocol, that correctly accounts for any over-
fitting that may occur in model selection. Three classifiers are evaluated using an unbiased
protocol, in which model selection is performed separately for each realisation of each data set.

64

3. OVERFITTING IN MODEL SELECTION AND SELECTION BIAS IN EVALUATION

This is termed the “internal” protocol as the model selection process is performed independently
within each fold of the resampling procedure. In this way, the performance estimate includes a
component properly accounting for the error introduced by over-fitting the model selection cri-
terion. The classifiers used were as follows: RBF-KRR—kernel ridge regression with a radial
basis function kernel, with model selection based on minimisation of Allen’s PRESS statistic,
as described in Section 3.2. RBF-KLR—kernel logistic regression with a radial basis function
kernel and model selection based on an approximate leave-one-out cross-validation estimate of
the log-likelihood (Cawley and Talbot, 2008). EP-GPC—expectation-propagation based Gaus-
sian process classifier, with an isotropic squared exponential covariance function, with model
selection based on maximising the marginal likelihood (e.g., Rasmussen and Williams, 2006).
The mean error rates obtained using these classifiers under an unbiased protocol are shown in
Table 3.4. In this case, the mean ranks of all methods are only minimally different, and so
there is little if any evidence for a statistically significant superiority of any of the classifiers
over any other. Figure 3.10 shows a critical difference diagram (Demšar, 2006), providing a
graphical illustration of this result. A critical difference diagram displays the mean rank of a
set of classifiers over a suite of benchmark data sets, with cliques of classifiers with statistically
similar performance connected by a bar. The critical difference in average ranks required for a
statistical superiority of one classifier over another is also shown, labelled “CD”.

CD

3 2 1

1.9231 RBF−KRR (internal)
2 EP−GPC (internal)

2.0769RBF−KLR (internal)

Figure 3.10: Critical difference diagram (Demšar, 2006) showing the average ranks of three
classifiers with internal model selection protocol.

It is not unduly surprising that there should be little evidence for any statistically significant
superiority, as all three methods give rise to structurally similar models. The models though dif-
fer significantly in their model selection procedures, the EP-GPC is based on stronger statistical
assumptions, and so can be expected to excel where these assumptions are justified, but poorly
where the model is mis-specified (e.g., the ringnorm benchmark). The cross-validation based
model selection procedures, on the other hand, are more pragmatic and being based on much
weaker assumptions might be expected to provide a more consistent level of accuracy.

3.5.2. An Example of Biased Evaluation Methodology

The performance evaluation protocol most often used in conjunction with the suite of bench-
mark data sets, described in Section 3.3.2, seeks to perform model selection independently for
only the first five realisation of each data set. The median values of the hyper-parameters over
these five folds are then determined and subsequently used to evaluate the error rates for each
realisation. This “median” performance evaluation protocol was introduced in the same paper
that popularised this suite of benchmark data sets (Rätsch et al., 2001) and has been widely

65

CAWLEY TALBOT

Table 3.4: Error rate estimates of three classifiers over a suite of thirteen benchmark data sets:
The results for each method are presented in the form of the mean error rate over test
data for 100 realisations of each data set (20 in the case of the image and splice
data sets), along with the associated standard error.

Data Set GPC KLR KRR
(internal) (internal) (internal)

banana 10.413 ± 0.046 10.567 ± 0.051 10.610 ± 0.051
breast cancer 26.506 ± 0.487 26.636 ± 0.467 26.727 ± 0.466
diabetis 23.280 ± 0.182 23.387 ± 0.180 23.293 ± 0.169
flare solar 34.200 ± 0.175 34.197 ± 0.170 34.140 ± 0.175
german 23.363 ± 0.211 23.493 ± 0.208 23.540 ± 0.214
heart 16.670 ± 0.290 16.810 ± 0.315 16.730 ± 0.359
image 2.817 ± 0.121 3.094 ± 0.130 2.990 ± 0.159
ringnorm 4.406 ± 0.064 1.681 ± 0.031 1.613 ± 0.015
splice 11.609 ± 0.180 11.248 ± 0.177 10.777 ± 0.144
thyroid 4.373 ± 0.219 4.293 ± 0.222 4.747 ± 0.235
titanic 22.637 ± 0.134 22.473 ± 0.103 22.483 ± 0.085
twonorm 3.060 ± 0.034 2.944 ± 0.042 2.846 ± 0.021
waveform 10.100 ± 0.047 9.918 ± 0.043 9.792 ± 0.045

adopted (e.g., Mika et al., 1999; Weston, 1999; Billings and Lee, 2002; Chapelle et al., 2002;
Chu et al., 2003; Stewart, 2003; Mika et al., 2003; Gold et al., 2005; Peña Centeno and D.,
2006; Andelić et al., 2006; An et al., 2007; Chen et al., 2009). The original motivation for this
protocol was that the internal model selection protocol was prohibitively expensive using work-
stations available (Rätsch, 2006), which was perfectly reasonable at the time, but is no longer
true.3 The use of the median, however, can be expected to introduce an optimistic bias into the
performance estimates obtained using this “median” protocol. Firstly all of the training data
comprising the first five realisations have been used during the model selection process for the
classifiers used in every fold of the re-sampling. This means that some of the test data for each
fold is no longer statistically “pure” as it has been seen during model selection. Secondly, and
more importantly, the median operation acts as a variance reduction step, so the median of the
five sets of hyper-parameters is likely to be better on average than any of the five from which
it is derived. Lastly, as the hyper-parameters are now fixed, there is no longer scope for over-
fitting the model selection criterion due to peculiarities of the sampling of data for the training
and test partitions in each realisation.

We begin by demonstrating that the results using the internal and median protocols are not
commensurate, and so the results obtained using different methods are not directly comparable.
Table 3.5 shows the error rate obtained using the RBF-KRR classifier with the internal and me-
dian performance evaluation protocols and the resulting bias, that is, the difference between the
mean error rates obtained with the internal and median protocols. It is clearly seen that the me-
dian protocol introduces a positive bias on almost all benchmarks (twonorm and waveform
being the exceptions) and that the bias can be quite substantial on some benchmarks. Indeed,
for several benchmarks, breast cancer, german, heart and thyroid in particular, the
bias is larger than the typical difference in performance between classifiers evaluated using an
unbiased protocol. Demšar (2006) recommends the Wilcoxon signed ranks test for determina-

3. All of the experimental results presented in this paper were obtained using a single modern Linux workstation.

66

3. OVERFITTING IN MODEL SELECTION AND SELECTION BIAS IN EVALUATION

Table 3.5: Error rate estimates of three classifiers over a suite of thirteen benchmark data sets:
The results for each method are presented in the form of the mean error rate over test
data for 100 realisations of each data set (20 in the case of the image and splice data
sets), along with the associated standard error.

Data Set KRR KRR Bias
(internal) (median)

banana 10.610 ± 0.051 10.384 ± 0.042 0.226 ± 0.034
breast cancer 26.727 ± 0.466 26.377 ± 0.441 0.351 ± 0.195
diabetis 23.293 ± 0.169 23.150 ± 0.157 0.143 ± 0.074
flare solar 34.140 ± 0.175 34.013 ± 0.166 0.128 ± 0.082
german 23.540 ± 0.214 23.380 ± 0.220 0.160 ± 0.067
heart 16.730 ± 0.359 15.720 ± 0.306 1.010 ± 0.186
image 2.990 ± 0.159 2.802 ± 0.129 0.188 ± 0.095
ringnorm 1.613 ± 0.015 1.573 ± 0.010 0.040 ± 0.010
splice 10.777 ± 0.144 10.763 ± 0.137 0.014 ± 0.055
thyroid 4.747 ± 0.235 4.560 ± 0.200 0.187 ± 0.100
titanic 22.483 ± 0.085 22.407 ± 0.102 0.076 ± 0.077
twonorm 2.846 ± 0.021 2.868 ± 0.017 -0.022 ± 0.014
waveform 9.792 ± 0.045 9.821 ± 0.039 -0.029 ± 0.020

tion of the statistical significance of the superiority of one classifier over another over multiple
data sets. Applying this test to the data shown for EP-GPC (internal), RBF-KLR (internal) and
RBF-KRR (median), from Tables 3.4 and 3.5, reveals that the RBF-KRR (median) classifier
is statistically superior to the remaining classifiers, at the 95% level of significance. A critical
difference diagram, summarising this result is shown in Figure 3.12. However, the difference in
performance is entirely spurious as it is purely the result of reducing the effects of over-fitting
in model selection and does not reflect the true operational performance of the combination of
classifier and model selection method. It is clear then that results obtained using the internal
and median protocols are not directly comparable, and so reliable inferences cannot be drawn
by comparison of results from different studies, using biased and unbiased protocols.

3.5.2.1. IS THE BIAS SOLELY DUE TO INADVERTENT RE-USE OF TEST SAMPLES?

One explanation for the observed bias of the median protocol is that some of the training sam-
ples for the first five realisations of the benchmark, which have been used in tuning the hyper-
parameters, also appear in the test sets for other realisations of the benchmark used for perfor-
mance analysis. In this section, we demonstrate that this inadvertent re-use of test samples is
not the only cause of the bias. One hundred replications of the internal and median protocol
were performed using the synthetic benchmark, for which an inexhaustible supply of i.i.d.
data is available. However, in this case in each realisation, 100 training sets of 64 patterns and
a large test set of 4096 samples were generated, all mutually disjoint. This means the only
remaining source of bias is the amelioration of over-fitting in model selection by the reduction
of variance by taking the median of the hyper-parameters over the first five folds (cf. Hall and
Robinson, 2009). Figure 3.11 shows the mean test errors for the internal and median protocols
over 100 replications, showing a very distinct optimistic bias in the median protocol (statisti-
cally highly significant according to the Wilcoxon signed ranks test, p < 0.001), even though
there is absolutely no inadvertent re-use of test data.

67

CAWLEY TALBOT

0.13 0.14 0.15 0.16
0.125

0.13

0.135

0.14

0.145

0.15

0.155

0.16

0.165

Error rate (internal)

Er
ro

r r
at

e
(m

ed
ia

n)

Figure 3.11: Mean error rates for the internal and median evaluation protocols for the
synthetic benchmark, without inadvertent re-use of test data.

3.5.2.2. IS THE MEDIAN PROTOCOL INTERNALLY CONSISTENT?

Having established that the median protocol introduces an optimistic bias, and that the results
obtained using the internal and median protocols do not give comparable results, we next turn
our attention to whether the median protocol is internally consistent, that is, does the median
protocol give the correct rank order of the classifiers? Table 3.6 shows the performance of three
classifiers evaluated using the median protocol; the corresponding critical difference diagram is
shown in Figure 3.13. In this case the difference in performance between classifiers is not statis-
tically significant according to the Friedman test, however it can clearly be seen that the bias of
the median protocol has favored one classifier, namely the RBF-KRR, much more strongly than
the others. It seems feasible then that the bias of the median protocol may be sufficient in other
cases to amplify a small difference in performance, due perhaps to an accidentally favorable
choice of data sets, to the point where it spuriously appears to be statistically significant. This
suggests that the median protocol may be unreliable and perhaps should be deprecated.

CD

3 2 1

1.2308 RBF−KRR (median)
2.3846 EP−GPC (internal)

2.3846RBF−KLR (internal)

Figure 3.12: Critical difference diagram (Demšar, 2006) showing the average ranks of three
classifiers, EP-GPC and RBF-KLR with internal model selection protocol and
RBF-KLR using the optimistically biased median protocol (cf. Figure 3.10).

68

3. OVERFITTING IN MODEL SELECTION AND SELECTION BIAS IN EVALUATION

Table 3.6: Error rate estimates of three classifiers over a suite of thirteen benchmark data sets:
The results for each method are presented in the form of the mean error rate over test
data for 100 realisations of each data set (20 in the case of the image and splice data
sets), along with the associated standard error.

Data Set EP-GPC RBF-KLR RBF-KRR
(median) (median) (median)

banana 10.371 ± 0.045 10.407 ± 0.047 10.384 ± 0.042
breast cancer 26.117 ± 0.472 26.130 ± 0.474 26.377 ± 0.441
diabetis 23.333 ± 0.191 23.300 ± 0.177 23.150 ± 0.157
flare solar 34.150 ± 0.170 34.212 ± 0.176 34.013 ± 0.166
german 23.160 ± 0.216 23.203 ± 0.218 23.380 ± 0.220
heart 16.400 ± 0.273 16.120 ± 0.295 15.720 ± 0.306
image 2.851 ± 0.102 3.030 ± 0.120 2.802 ± 0.129
ringnorm 4.400 ± 0.064 1.574 ± 0.011 1.573 ± 0.010
splice 11.607 ± 0.184 11.172 ± 0.168 10.763 ± 0.137
thyroid 4.307 ± 0.217 4.040 ± 0.221 4.560 ± 0.200
titanic 22.490 ± 0.095 22.591 ± 0.135 22.407 ± 0.102
twonorm 3.241 ± 0.039 3.068 ± 0.033 2.868 ± 0.017
waveform 10.163 ± 0.045 9.888 ± 0.042 9.821 ± 0.039

Table 3.7: Results of a statistical analysis of the bias introduced by the median protocol into the
test error rates for RBF-KRR and RBF-EP-GPC, using the Wilcoxon signed ranks
test.

Data Set RBF-KRR RBF-EP-GPC Wilcoxon
bias bias p-value

banana 0.226 ± 0.034 0.043 ± 0.012 < 0.05
breast cancer 0.351 ± 0.195 0.390 ± 0.186 0.934
diabetis 0.143 ± 0.074 -0.053 ± 0.051 < 0.05
flare solar 0.128 ± 0.082 0.050 ± 0.090 0.214
german 0.160 ± 0.067 0.203 ± 0.051 0.458
heart 1.010 ± 0.186 0.270 ± 0.120 < 0.05
image 0.188 ± 0.095 -0.035 ± 0.032 0.060
ringnorm 0.040 ± 0.010 0.006 ± 0.002 < 0.05
splice 0.014 ± 0.055 0.002 ± 0.014 0.860
thyroid 0.187 ± 0.100 0.067 ± 0.064 0.159
titanic 0.076 ± 0.077 0.147 ± 0.090 0.846
twonorm -0.022 ± 0.014 -0.180 ± 0.032 < 0.05
waveform -0.029 ± 0.020 -0.064 ± 0.022 0.244

Next, we perform a statistical analysis to determine whether there is a statistically signifi-
cant difference in the magnitude of the biases introduced by the median protocol for different
classifiers, for each benchmark data set.4 First the bias introduced by the use of the median pro-
tocol was computed for the RBF KRR and RBF EP-GPC classifiers as the difference between

4. We are grateful to an anonymous reviewers for suggesting this particular form of analysis.

69

CAWLEY TALBOT

the test set error estimated by the internal and median protocols. The Wilcoxon signed rank test
was then used to determine whether there is a statistically significant difference in the bias, over
the 100 realisations of the benchmark (20 in the case of the image and splice benchmarks)
. The results obtained are shown in Table 3.7, the p-value is below 0.05 for five of the thirteen
benchmarks, indicating that in each case the median protocol is significantly biased in favour of
the RBF KRR classifier. Clearly, as the median protocol does not impose a commensurate bias
on the estimated test error rates for different classifiers, it does not provide a reliable protocol
for comparing the performance of machine learning algorithms.

CD

3 2 1

1.5385 RBF−KRR (median)
2.2308 EP−GPC (median)

2.2308RBF−KLR (median)

Figure 3.13: Critical difference diagram showing the average ranks of three classifiers with the
median model selection protocol (cf. Figure 3.10).

In the final illustration of this section, we show that the magnitude of the bias introduced
by the median protocol is greater for model selection criteria with a high variance. This means
the median protocol favors most the least reliable model selection procedures and as a result
does not provide a reliable indicator even of relative performance of classifier-model selection
procedures combinations. Again the RBF-KRR model is used as the base classifier, however in
this case a repeated split-sample model selection criterion is used, where the data are repeatedly
split at random to form disjoint training and validation sets in proportions 9:1, and the hyper-
parameters tuned to optimise the average mean-squared error over the validation sets. In this
way, the variance of the model selection criterion can be controlled by varying the number of
repetitions, with the variance decreasing as the number of folds becomes larger. Figure 3.14(a)
shows a plot of the average ranks of EP-GPC and RBF-KLR classifiers, with model selection
performed as in previous experiments, and RBF-KRR with repeated split-sample model selec-
tion, as a function of the number of folds. In each case the unbiased internal evaluation protocol
was used. Clearly if the number of folds is small (five or less), the RBF-KRR model performs
poorly, due to over-fitting in model selection due to the high variance of the criterion used.
However, as the number of folds increases, the variance of the model selection criterion falls,
and the performances of all three algorithms are very similar. Figure 3.14(b) shows the corre-
sponding result using the biased median protocol. The averaging of hyper-parameters reduces
the apparent variance of the model selection criterion, and this disguises the poor performance
of the RBF-KRR model when the number of folds is small. This demonstrates that the bias
introduced by the median protocol favors most the worst model selection criterion, which is a
cause for some concern.

70

3. OVERFITTING IN MODEL SELECTION AND SELECTION BIAS IN EVALUATION

2 4 6 8 10 12 14 16 18 20
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

number of folds

m
ea

n
ra

nk

EP−GPC
RBF−KLR
RBF−KRR

(a)

2 4 6 8 10 12 14 16 18 20
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

number of folds

m
ea

n
ra

nk

EP−GPC
RBF−KLR
RBF−KRR

(b)

Figure 3.14: Mean ranks of three classifiers as a function of the number of folds used in the
repeated split sample model selection procedure employed by the kernel ridge
regression (RBF-KRR) machine, using (a) the unbiased internal protocol and (b)
the biased median protocol.

3.5.3. Another Example of Biased Evaluation Methodology

In a biased evaluation protocol, occasionally observed in machine learning studies, an initial
model selection step is performed using all of the available data, often interactively as part of a
“preliminary study”. The data are then repeatedly re-partitioned to form one or more pairs of
random, disjoint design and test sets. These are then used for performance evaluation using the
same fixed set of hyper-parameter values. This practice may seem at first glance to be fairly
innocuous, however the test data are no longer statistically pure, as they have been “seen” by the
models in tuning the hyper-parameters. This would not present a serious problem were it not for
the danger of over-fitting in model selection, which means that in practice the hyper-parameters
will inevitably be tuned to an extent in ways that take advantage of the statistical peculiarities
of this particular set of data rather than only in ways that favor improved generalisation. As a
result the hyper-parameter settings retain a partial “memory” of the data that now form the test
partition. We should therefore expect to observe an optimistic bias in the performance estimates
obtained in this manner.

Table 3.8 shows a comparison of 10-fold cross-validation estimates of the test error rate, for
kernel ridge regression with a Gaussian radian basis function kernel, obtained using protocols
where the model selection stage is either external or internal to the cross-validation procedure.
In the external protocol, model selection is performed once using the entire design set, as de-
scribed above. In the internal protocol, the model selection step is performed separately in each
fold of the cross-validation. The internal cross-validation procedure therefore provides a more
realistic estimate of the performance of the combination of model selection and learning algo-
rithm that is actually used to construct the final model. The table also shows the relative bias
(i.e., the mean difference between the internal and external cross-validation protocols). The ex-
ternal protocol clearly exhibits a consistently optimistic bias with respect to the more rigorous
internal cross-validation protocol, over all thirteen benchmarks. Furthermore, the bias is statis-
tically significant (i.e., larger than twice the standard error of the estimate) for all benchmarks,
apart from splice and twonorm. In many cases, the bias is of similar magnitude to the

71

CAWLEY TALBOT

Table 3.8: Error rate estimates for kernel ridge regression over thirteen benchmark data sets,
for model selection schemes that are internal and external to the cross-validation
process. The results for each approach and the relative bias are presented in the
form of the mean error rate over for 100 realisations of each data set (20 in the case
of the image and splice data sets), along with the associated standard error.

Data Set External Internal Bias
banana 10.355 ± 0.146 10.495 ± 0.158 0.140 ± 0.035
breast cancer 26.280 ± 0.232 27.470 ± 0.250 1.190 ± 0.135
diabetis 22.891 ± 0.127 23.056 ± 0.134 0.165 ± 0.050
flare solar 34.518 ± 0.172 34.707 ± 0.179 0.189 ± 0.051
german 23.999 ± 0.117 24.217 ± 0.125 0.219 ± 0.045
heart 16.335 ± 0.214 16.571 ± 0.220 0.235 ± 0.073
image 3.081 ± 0.102 3.173 ± 0.112 0.092 ± 0.035
ringnorm 1.567 ± 0.058 1.607 ± 0.057 0.040 ± 0.014
splice 10.930 ± 0.219 11.170 ± 0.280 0.240 ± 0.152
thyroid 3.743 ± 0.137 4.279 ± 0.152 0.536 ± 0.073
titanic 22.167 ± 0.434 22.487 ± 0.442 0.320 ± 0.077
twonorm 2.480 ± 0.067 2.502 ± 0.070 0.022 ± 0.021
waveform 9.613 ± 0.168 9.815 ± 0.183 0.203 ± 0.064

typical difference observed between competitive learning algorithms (cf. Table 3.4). In some
cases, for example, banana and thyroid benchmarks, the bias is of a surprising magnitude,
likely to be large enough to conceal even the true difference between even state-of-the-art and
uncompetitive learning algorithms. This clearly shows that the external cross-validation proto-
col exhibits a consistent optimistic bias, potentially of a very substantial magnitude even when
the number of hyper-parameters is small (in this case only two), and so should not be used in
practice.

3.6. Conclusions
In this paper, we have discussed the importance of bias and variance in model selection and
performance evaluation, and demonstrated that a high variance can lead to over-fitting in model
selection, and hence poor performance, even when the number of hyper-parameters is relatively
small. Furthermore, we have shown that a potentially severe form of selection bias can be intro-
duced into performance evaluation by protocols that have been adopted in a number of existing
empirical studies. Fortunately, it seems likely that over-fitting in model selection can be over-
come using methods that have already been effective in preventing over-fitting during training,
such as regularisation or early stopping. Little attention has so far been focused on over-fitting
in model selection, however in this paper we have shown that it presents a genuine pitfall in the
practical application of machine learning algorithms and in empirical comparisons. In order to
overcome the bias in performance evaluation, model selection should be viewed as an integral
part of the model fitting procedure, and should be conducted independently in each trial in or-
der to prevent selection bias and because it reflects best practice in operational use. Rigorous
performance evaluation therefore requires a substantial investment of processor time in order
to evaluate performance over a wide range of data sets, using multiple randomised partition-
ings of the available data, with model selection performed separately in each trial. However,

72

3. OVERFITTING IN MODEL SELECTION AND SELECTION BIAS IN EVALUATION

it is straightforward to fully automate these steps, and so requires little manual involvement.
Performance evaluation according to these principles requires repeated training of models us-
ing different sets of hyper-parameter values on different samples of the available data, and so
is also well-suited to parallel implementation. Given the recent trend in processor design to-
wards multi-core designs, rather than faster processor speeds, rigorous performance evaluation
is likely to become less and less time-consuming, and so there is little justification for the con-
tinued use of potentially biased protocols.

Acknowledgments
The authors would like to thank Gareth Janacek, Wenjia Wang and the anonymous reviewers for
their helpful comments on earlier drafts of this paper, and the organisers and participants of the
WCCI-2006 Performance Prediction Challenge and workshop that provided the inspiration for
our work on model selection and performance prediction. G. C. Cawley is supported by the En-
gineering and Physical Sciences Research Council (EPSRC) grant EP/F010508/1 - Advancing
Machine Learning Methodology for New Classes of Prediction Problems.

References
D. M. Allen. The relationship between variable selection and prediction. Technometrics, 16:

125–127, 1974.

C. Ambroise and G. J. McLachlan. Selection bias in gene extraction on the basis of microarray
gene-expression data. Proceedings of the National Academy of Sciences, 99(10):6562–6566,
May 14 2002. doi: 10.1073/pnas.102102699.

S. An, W. Liu, and S. Venkatesh. Fast cross-validation algorithms for least squares support
vector machines and kernel ridge regression. Pattern Recognition, 40(8):2154–2162, August
2007. doi: 10.1016/j.patcog.2006.12.015.

E. Andelić, M. Schafföner, M. Katz, S. E. Krüger, and A. Wendermuth. Kernel least-squares
models using updates of the pseudoinverse. Neural Computation, 18(12):2928–2935, De-
cember 2006. doi: 10.1162/neco.2006.18.12.2928.

Y. Bengio and Y. Grandvalet. No unbiased estimator of the variance of k-fold cross-validation.
5:1089–1105, 2004.

S. A. Billings and K. L. Lee. Nonlinear Fisher discriminant analysis using a minimum squared
error cost function and the orthogonal least squares algorithm. Neural Networks, 15(2):263–
270, March 2002. doi: 10.1016/S0893-6080(01)00142-3.

C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press, 1995.

L. Bo, L. Wang, and L. Jiao. Feature scaling for kernel Fisher discriminant analysis using
leave-one-out cross validation. Neural Computation, 18(4):961–978, April 2006. doi: 10.
1162/neco.2006.18.4.961.

O. Bousquet and A. Elisseeff. Stability and generalization. Journal of Machine Learning Re-
search, 2:499–526, 2002.

L. Breiman. Random forests. Machine Learning, 45(1):5–32, October 2001. doi: 10.1023/A:
1010933404324.

73

CAWLEY TALBOT

G. C. Cawley. Leave-one-out cross-validation based model selection criteria for weighted LS-
SVMs. In Proceedings of the IEEE/INNS International Joint Conference on Neural Networks
(IJCNN-06), pages 1661–1668, Vancouver, BC, Canada, July 16–21 2006. doi: 10.1109/
IJCNN.2006.246634.

G. C. Cawley and N. L. C. Talbot. Efficient leave-one-out cross-validation of kernel Fisher
discriminant classifiers. Pattern Recognition, 36(11):2585–2592, November 2003. doi: 10.
1016/S0031-3203(03)00136-5.

G. C. Cawley and N. L. C. Talbot. Preventing over-fitting during model selection via Bayesian
regularisation of the hyper-parameters. Journal of Machine Learning Research, 8:841–861,
April 2007.

G. C. Cawley and N. L. C. Talbot. Efficient approximate leave-one-out cross-validation for
kernel logistic regression. Machine Learning, 71(2–3):243–264, June 2008. doi: 10.1007/
s10994-008-5055-9.

G. C. Cawley, G. J. Janacek, and N. L. C. Talbot. Generalised kernel machines. In Pro-
ceedings of the IEEE/INNS International Joint Conference on Neural Networks (IJCNN-07),
pages 1720–1725, Orlando, Florida, USA, August 12–17 2007. doi: 10.1109/IJCNN.2007.
4371217.

O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee. Choosing multiple parameters for
support vector machines. Machine Learning, 46(1–3):131–159, January 2002. doi: 10.1023/
A:1012450327387.

H. Chen, P. Tino, and X. Yao. Probabilistic classification vector machines. IEEE Transactions
on Neural Networks, 20(6):901–914, June 2009. doi: 10.1109/TNN.2009.2014161.

W. Chu, S. S. Keerthi, and C. J. Ong. Bayesian trigonometric support vector classifier. Neural
Computation, 15(9):2227–2254, September 2003. doi: 10.1162/089976603322297368.

J. Demšar. Statistical comparisons of classifiers over multiple data sets. Journal of Machine
Learning Research, 7:1–30, 2006.

R. O. Duda, P. E. Hart, and D. G. Stork. Pattern classification. John Wiley and Sons, second
edition, 2001.

B. Efron and R. J. Tibshirani. Introduction to the bootstrap. Monographs on Statistics and
Applied Probability. Chapman & Hall, 1994.

S. Geman, E. Bienenstock, and R. Doursat. Neural networks and the bias/variance dilemma.
Neural Computation, 4(1):1–58, January 1992. doi: 10.1162/neco.1992.4.1.1.

C. Gold, A. Holub, and P. Sollich. Bayesian approach to feature selection and parameter tuning
for support vector machine classifiers. Neural Networks, 18(5):693–701, July/August 2005.
doi: 10.1016/j.neunet.2005.06.044.

I. Guyon, A. Saffari, G. Dror, and G. Cawley. Model selection: Beyond the Bayesian/frequentist
divide. Journal of Machine Learning Research, 11:61–87, 2009.

P. Hall and A. P. Robinson. Reducing the variability of crossvalidation for smoothing parameter
choice. Biometrika, 96(1):175–186, March 2009. doi: doi:10.1093/biomet/asn068.

74

3. OVERFITTING IN MODEL SELECTION AND SELECTION BIAS IN EVALUATION

M. Kearns and D. Ron. Algorithmic stability and sanity-check bounds for leave-one-out
cross-validation. Neural Computation, 11(6):1427–1453, August 1999. doi: 10.1162/
089976699300016304.

G. S. Kimeldorf and G. Wahba. Some results on Tchebycheffian spline functions. Journal of
Mathematical Analysis and Applications, 33:82–95, 1971.

S. R. Kulkarni, G. Lugosi, and S. S. Venkatesh. Learning pattern classification — a survey.
IEEE Transactions on Information Theory, 44(6):2178–2206, October 1998.

P. A. Lachenbruch and M. R. Mickey. Estimation of error rates in discriminant analysis. Tech-
nometrics, 10(1):1–12, February 1968.

A. Luntz and V. Brailovsky. On estimation of characters obtained in statistical procedure of
recognition (in Russian). Techicheskaya Kibernetica, 3, 1969.

D. J. C. MacKay. Bayesian interpolation. Neural Computation, 4(3):415–447, May 1992. doi:
10.1162/neco.1992.4.3.415.

J. Mercer. Functions of positive and negative type and their connection with the theory of
integral equations. Philosophical Transactions of the Royal Society of London, Series A, 209:
415–446, 1909.

S. Mika, G. Rätsch, J. Weston, B. Schölkopf, and K.-R. Müller. Fisher discriminant analysis
with kernels. In Neural Networks for Signal Processing IX, Proceedings of the 1999 IEEE
Signal Processing Society Workshop, pages 41–48, Maddison, WI, USA, 21–25 August 1999.
doi: 10.1109/NNSP.1999.788121.

S. Mika, G. Rätsch, J. Weston, B. Schölkpf, and K.-R. Müller. Contructing descriptive and
discriminative nonlinear features: Rayleigh coefficients in kernel feature spaces. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 25(5):623–628, May 2003. doi:
10.1109/TPAMI.2003.1195996.

J. A. Nelder and R. Mead. A simplex method for function minimization. Computer Journal, 7:
308–313, 1965.

T. Peña Centeno and Lawrence N. D. Optimising kernel parameters and regularisation co-
efficients for non-linear discriminant analysis. Journal of Machine Learning Research, 7:
455–491, February 2006.

T. Poggio and F. Girosi. Networks for approximation and learning. Proceedings of the IEEE,
78(9):1481–1497, September 1990. doi: 10.1109/5.58326.

Y. Qi, T. P. Minka, R. W. Picard, and Z. Ghahramani. Predictive automatic relevance determina-
tion by expectation propagation. In Proceedings of the Twenty First International Conference
on Machine Learning (ICML-04), pages 671–678, Banff, Alberta, Canada, July 4–8 2004.

C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. Adaptive
Computation and Machine Learning. MIT Press, 2006.

G. Rätsch, 2006. Personal communication.

G. Rätsch, T. Onoda, and K.-R. Müller. Soft margins for AdaBoost. Machine Learning, 42(3):
287–320, March 2001. doi: 10.1023/A:1007618119488.

75

CAWLEY TALBOT

R. M. Rifkin and R. A. Lippert. Notes on regularized least squares. Technical Report MIT-
CSAIL-TR-2007-025, Computer Science and Artificial Intelligence Laboratory, MIT, May
2007.

B. D. Ripley. Pattern Recognition and Neural Networks. Cambridge University Press, 1996.

C. Saunders, A. Gammerman, and V. Vovk. Ridge regression learning algorithm in dual vari-
ables. In Proceedings of the Fifteenth International Conference on Machine Learning (ICML-
98), pages 515–521. Morgan Kaufmann, 1998.

J. Shao. Linear model selection by cross-validation. Journal of the American Statistical Society,
88:486–494, 1993.

I. Stewart. On the optimal parameter choice for ν-support vector machines. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 25(10):1274–1284, October 2003. doi: 10.
1109/TPAMI.2003.1233901.

M. Stone. Cross-validatory choice and assessment of statistical predictions. Journal of the
Royal Statistical Society, Series B (Statistical Methodology), 36(2):111–147, 1974.

M. Stone. Asymptotics for and against cross-validation. Biometrika, 64(1):29–35, April 1977.
doi: 10.1093/biomet/64.1.29.

J. A. K. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor, and J. Vanderwalle. Least
squares support vector machine. World Scientific Publishing Company, Singapore, 2002.
ISBN 981-238-151-1.

A. N. Tikhonov and V. Y. Arsenin. Solutions of ill-posed problems. John Wiley, New York,
1977.

G. Toussaint. Bibliography on estimation of misclassification. IEEE Transactions on Informa-
tion Theory, IT-20(4):472–479, July 1974.

V. N. Vapnik. Estimation of dependences based on empirical data. Springer, 1982.

V. N. Vapnik. Statistical learning theory. Adaptive and learning systems for signal processing,
communications and control series. Wiley, 1998.

S. Weisberg. Applied linear regression. Probability and Mathematical Statistics. John Wiley &
Sons, second edition, 1985.

J. Weston. Leave-one-out support vector machines. In Proceedings of the Sixteenth Interna-
tional Joint Conference on Artificial Intelligence (IJCAI-99), pages 727–733, San Fransisco,
CA, USA, 1999. Morgan Kaufmann.

C. K. I. Williams and D. Barber. Bayesian classification with Gaussian processes. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 20(12):1342–1351, December 1998.
doi: 10.1109/34.735807.

P. M. Williams. A Marquardt algorithm for choosing the step size in backpropagation learning
with conjugate gradients. Technical Report CSRP-229, University of Sussex, February 1991.

T. Zhang. Leave-one-out bounds for kernel machines. Neural Computation, 15(6):1397–1437,
June 2003. doi: 10.1162/089976603321780326.

76

Part II

Data representation

Overview

Every pattern recognition problem starts with data encoding and preprocessing. In our chal-
lenges, we alleviated the task of the participants by providing data already preprocessed as
feature vectors. Here are some examples of feature coding we used:

• Categorical variables were represented with a simple disjunctive code. For 4 levels, were
get 4 features taking values 1 0 0 0, 0 1 0 0, 0 0 1 0, or 0 0 0 1.

• Images of handwritten digits were represented as pixel maps, after centering and scaling
the digit.

• Pharmaceutical molecules were represented as binary features indicating presence or ab-
sence of certain groups of atoms.

• Texts from newsgroups were represented as features indicating the frequency of appear-
ance of word.

In this part of the book, we selected a few techniques employed by the participants to improve
upon the data representations provided in the challenges, to illustrate various aspects of prepro-
cessing.

In Chapter 4, Mehreen Saeed proposes to use clustering methods to simplify the data
representation and reduce dimensionality before performing supervised learning. It has been a
long time debate whether it is beneficial to perform unsupervised preprocessing to reduce
data dimensionality. In addition to clustering, such techniques include Principal Component
Analysis (PCA), Independent Component Analysis (ICA) and many other principal subspace
methods, linear or non-linear. While space dimensionality reduction has gained a lot of pop-
ularity in the recent years, in supervised learning challenges, their have not prevailed as pre-
processing methods. This seems to be largely due to the fact that modern supervised learning
techniques are robust against overfitting and embed their own “implicit” space dimensionality
reduction, without performing “hard decisions” discarding dimensions at an early stage. For
instance, the popular “ridge regression” method penalizes dimensions corresponding to small
eigen values of the data correlation matrix, thus performing an implicit selection according
to principal components, like PCA. Yet the excellent performance of Mehreen Saeed in the
ALvsPK challenge (first on NOVA, third on SYLVA in the agnostic track) reveal that well con-
ducted unsupervised learning may yield good results, with the additional benefit of gaining in
data understanding and ease of visualization.

In Chapter 5, Marc Boullé presents advanced discretization techniques providing a uni-
fied framework for representing data as piecewise constant distributions, including methods for
optimally discretizing continuous variables and for grouping values of variables, which are al-
ready discrete (including categorical variables). The paper follows a new methodology based
on data dependent Bayesian priors. Discretization may be performed as a preprocessing step to
classification techniques requiring discrete variables, such as the Naive Bayes algorithm. The
benefits of discretization include data compression, which may play a role in overfitting avoid-
ance, similarly to space dimensionality reduction. In this paper, “data grids” are obtained in a

79

supervised manner and may be used directly for classification, or as preprocessing to other clas-
sifiers. Data grids lend themseves to deriving simple rules of classification, like decision trees,
facilitating the understanding of the classification process. Marc Boullé consistently obtained
good results with his methods, ranking first on ADA and SYLVA in the performance prediction
challenge.

In Chapter 6, Chloé-Agathe Azencott and Pierre Baldi shows the benefit using low level
representations. In the ALvsPK challenge, the participants of the “agnostic learning” (AL)
track used the data representations provided by the organizers (all low-level feature represen-
tations) and those of the “prior knowedge” (PK) track constructed their own representation,
starting from raw data, and using their own domain knowledge. All the top ranking participant
in the PK track ended up using low level representation, namely many easy-to-extract features
not incorporating a lot of domain knowledge. To win first place on the HIVA dataset in the prior
knowledge track, Azencott and Baldi used features encoding molecular connectivity, detecting
the presence of certain molecule subgraphs. In contrast, other participants who used higher
level features crafted by phamacology experts, did not obtain as good results. Similarly, on
NOVA (text processing) the winner in the PK track used a bag-of-word representation, a variant
of the low-level representation proposed in the AL track by the organizers. No use was made of
word semantics nor grammatical constructs.

80

Chapter 4

Hybrid Learning Using Mixture Models and Artificial Neural
Networks
Mehreen Saeed MEHREEN.SAEED@NU.EDU.PK

Department of Computer Science
National University of Computer and Emerging Sciences
Lahore Campus, Pakistan.

Editor: Isabelle Guyon, Gavin Cawley, Gideon Dror and Amir Saffari

Abstract
This chapter describes a hybrid approach to learning using mixture models and artificial neu-
ral networks. Mixture models provide a semi-parametric approach for density estimation of
data. We show how these mixtures can be used for feature transformation, producing a huge
reduction in the dimensionality of the initial input space. The transformed features are fed into
a neural network for classification. We have explored the potential of using Bernoulli mixture
models for binary data and Gaussian mixtures for continuous data. The hybrid learning model
was applied to five datasets which were launched as part of the “Agnostic vs. Prior Knowledge”
challenge organized by the International Joint Conference on Neural Networks in 2007. Our
model achieved the best result on the NOVA dataset in the agnostic learning track and good
results on the other four datasets.
Keywords: Bernoulli mixture models, Gaussian mixture models, artificial neural networks,
hybrid learning, dimensionality reduction

4.1. Introduction
Hybrid learning involves the integration of an unsupervised learning technique with a super-
vised learning method. Learning takes place in two stages. In the first stage an unsupervised
method is used to determine data clusters. The data clusters can be determined using any ap-
propriate clustering method, e.g., partitional or agglomerative technique. In the second stage
a transformation of data is performed using the learned clusters and a supervised learning al-
gorithm is used to learn a function that discriminates between different class labels (Alpaydin,
2005). The supervised layer can be built from any suitable learning method like neural net-
works, support vector machines and decision trees, etc.

The use of hybrid models for learning is not new. A radial basis function (RBF) network is
an example of a hybrid model that uses local RBF functions at the input layer and its output is
used in supervised learning of labels or classes (Moody and Darken, 1989). Mixture of experts
is another example where a function is approximated using very simple local approximation
functions (Jacobs et al., 1991). The potential of combining generative models with discrimi-
native classifiers has also been discussed by Jaakkola and Haussler (1998), Ulusoy and Bishop
(2005) and Lasserre et al. (2006). They argue that both models have different properties and
characteristics and therefore their advantages can be exploited by combining them into a hybrid
model.

This chapter describes how we can construct a hybrid learning model by building the unsu-
pervised layer using mixture models and the supervised layer using artificial neural networks.

© M. Saeed.

SAEED

Mixture models involving Gaussian distributions have been used extensively for density esti-
mation in both supervised and unsupervised pattern classification. Our learning approach is not
restricted to Gaussian mixture models, as used traditionally, but also uses Bernoulli mixtures to
learn the data clusters. We argue that Gaussian mixtures are not suitable for all types of data.
When the data is discrete or binary a different probability distribution is more appropriate for its
density estimation. Also, adding a supervised learning technique on top of the mixture models
gives us dimensionality reduction and improves classification accuracy. Hence, we propose to
combine a generative model with a discriminative classifier.

Using the hybrid learning approach we model the binary features in an unconventional man-
ner. The importance of binary features cannot be denied as in many machine learning problems
different nominal/categorical attributes are converted into numeric data which is often a feature
vector of binary values. So, typically if there is an l-category attribute, it is converted into l
numbers where one of the l numbers is 1 and the rest are 0s. For example, a three-category at-
tribute such as small, medium, large will be represented by (0,0,1), (0,1,0) and (1,0,0) using
the above scheme. This scheme is normally known to give better results as compared to using
a single number to represent a nominal attribute (Chang and Lin, 2001). Instead of using the
traditional Gaussian mixture models, we use Bernoulli mixture models when the data is binary
and Gaussian mixture models when the data is composed of continuous features.

The use of Bernoulli mixture models for solving different problems involving binary vari-
ables is not new. The basic formula for a Bernoulli mixture model was proposed by Duda and
Hart (1973). They have been successfully used for OCR tasks by Juan and Vidal (2004) and
Grim et al. (2000). They have been used in supervised text classification tasks (for example,
Juan and Vidal, 2002). Mixture models including Bernoulli mixture models have also been used
for supervised dimensionality reduction task (Sajama and Orlitsky, 2005).

The organization of this chapter is as follows: In Section 4.2 of this chapter we give an
overview of the mixture models and the expectation maximization technique used to estimate
the parameters of these models. We describe how these mixtures can be used for classification.
In this section we also give a brief overview of artificial neural networks. In Section 4.3 we
discuss our hybrid approach for combining mixture models with a discriminative classifier such
as an artificial neural network. This section also details how our approach can be used for
feature transformation and dimensionality reduction. The simulation results of applying this
technique on various datasets are presented in Section 4.4 and the final conclusions are drawn
in Section 4.5.

4.2. Mixture Models and Expectation Maximization Algorithm
In this section we describe mixture density models and the use of expectation maximization
algorithm for finding the parameters of these models. Before we explain mixture models we
would like to point out that expectation maximization (EM) is a general optimization technique
for finding maximum likelihood solutions for models that use hidden or latent variables. The
name expectation maximization was coined by Dempster et al. and today it is used in many
learning applications in the computer vision, natural language processing, psychometrics, etc.,
domains. Wikipedia (http://www.wikipedia.org/) describes EM as a description of a
class of related algorithms or a ‘meta algorithm’ which is used to devise particular algorithms.
For example, Baum-Welch algorithm is an example of EM which is used for maximum likeli-
hood estimation in hidden Markov models. Generally, we can say that EM is an iterative method
in which the likelihood of the entire data or some subset of data, increases. Duda et al. have
used it for estimating the parameters of a distribution from a training set that has missing data
(2000). Bishop has described the use of this algorithm for estimating parameters of mixture

82

http://www.wikipedia.org/

4. HYBRID LEARNING USING MIXTURE MODELS AND ARTIFICIAL NEURAL NETWORKS

densities and Bayesian linear regression (2006). In this book chapter we will restrict our use of
EM for data clustering and finding the parameters of mixture models.

A finite mixture model assumes that the data is generated by a set of parametric probability
distributions instead of being generated by a single distribution. If we have labeled data then we
can generate mixture distributions for each class label. To keep the notation simple we suppress
the class indices from the equations and assume that right now we are dealing with just one
class, and therefore, only one set of mixture distributions. We will deal with multiple classes
later.

Suppose we have a sample of training data, X = {x1,x2, . . . ,xm}, consisting of m input vec-
tors. Each input vector x is an n-dimensional vector of attributes, hence, xk = {xk1,xk2, . . . ,xkn}.
If we want to estimate D mixture components from this data, then a finite mixture model is de-
scribed by a probability (density) function given by:

p(x) =
D

∑
d=1

P(d)p(x|d)

Here P(d) is the prior of each mixture and p(x|d) is its component-conditional probability
(density) function. This model is termed a generative model which selects the dth component
distribution with probability P(d), such that ∑d P(d) = 1, and then generates x according to
p(x|d).

Learning the parameters of a finite mixture model is a statistical parameter estimation prob-
lem. We use expectation maximization (EM) algorithm to estimate these parameters from a
sample of training data X . The expectation maximization algorithm determines the parameters
of a model by maximizing the log likelihood function of data given by:

L (Θ|X) =
m

∑
k=1

log
� D

∑
d=1

P(d)p(xk|d)
�

(4.1)

Here Θ denotes the parameters of the EM algorithm. It consists of the priors, P(i), of each
mixture and the parameters, θi, of each mixture distribution, i.e.,

Θ = {P(i),θi}D
i=1

The EM algorithm assumes that the observed data is incomplete and associates a vector of
latent variables zk = {zk1,zk2, . . . ,zkD} with each data point. The latent variables are indicator
variables, with zki = 1 indicating that the ith mixture component generated the kth data point.

The EM optimization takes place iteratively in two steps. In step 1, also called the expec-
tation step (E-Step), we estimate the expected values of the hidden variables assuming that the
model parameters θi are known. In step 2, also called the maximization step (M-Step), we esti-
mate the parameter values θi to maximize the likelihood of data, given by Equation (4.1), on the
basis of the latent variables calculated in the E-step. This is done iteratively until the parameters
converge to stable values.

The form of E-step is the same for more or less all distributions and it is given by:

zkd =
P(d)p(xk|d)

∑D
j=1 P(j)p(xk| j)

(∀d,1 ≤ d ≤ D,∀k,1 ≤ k ≤ m)

The M-step determines the maximum likelihood estimate of the priors, of each distribution, as
given below:

P(d) =
1
m

m

∑
k=1

zkd (∀d,1 ≤ d ≤ D)

83

SAEED

Also, in this step the parameters of the particular probability distribution are estimated. These
parameters depend on the probability (density) function being used. We describe the M-step for
Bernoulli and Gaussian mixtures next.

4.2.1. Multivariate Bernoulli Mixtures

A Bernoulli mixture model assumes that each component of the model is an n-dimensional
multivariate Bernoulli probability distribution, each component or mixture having its own set
of parameters. The form of this distribution for a single vector xk ∈ {0,1}n in the dth distribution
is given by (Bishop, 2006):

p(xk|d) =
n

∏
i=1

pxki
di (1− pdi)

1−xki

Here pdi ∈ [0,1] is the probability of success of the ith component of vector xk for the dth mix-
ture, i.e., pdi = p(xki = 1|d),∀k,1 ≤ k ≤ m,∀i,1 ≤ i ≤ n,∀d,1 ≤ d ≤ D. Also, we are assuming
that the n-dimensional vector x has n independent component attributes so that the overall prob-
ability is the product of the independent uni-dimensional Bernoulli probability functions. Here
the parameter θ to be determined is the probability of success for each attribute of vector x, i.e.,
θ = p.

To start the EM algorithm we initialize the probabilities with random values. The M-step
finds the maximum likelihood estimate of the probability of success of each vector component
as given below:

pd =
∑m

k=1 zkdxk

∑m
k=1 zkd

(∀d,1 ≤ d ≤ D)

In the experiments described in Section 4.4 we have used the Laplacian prior to smooth the
probability estimates, hence, the probability values are estimated as below:

pd =
1+∑m

k=1 zkdxk

2+∑m
k=1 zkd

(∀d,1 ≤ d ≤ D)

4.2.2. Multivariate Gaussian Mixtures

The n-dimensional multivariate Gaussian distribution has two parameters to be determined,
namely, mean vector and covariance matrix, i.e., θ = (µ;Σ). The form of the dth multivariate
Gaussian mixture component for a vector xk ∈ Rn is given by:

p(xk|d) =
1�

(2π)n|Σd |
e−(xk−µd)

tΣ−1
d (xk−µd)

Here µd and Σd are the mean vector and the covariance matrix for the dth mixture respectively.
The M-step estimates these parameters as given below:

µd =
∑m

k=1 zkdxk

∑m
k=1 zkd

Σd =
∑m

k=1 zkd(xk −µd)(xk −µd)t

∑m
k=1 zkd

(∀d,1 ≤ d ≤ D)

We have restricted the covariance matrix to a diagonal matrix of the variances of individual
features to prevent singularity during computation.

84

4. HYBRID LEARNING USING MIXTURE MODELS AND ARTIFICIAL NEURAL NETWORKS

4.2.3. Classification Using Mixture Models

Finding the mixture components is an unsupervised learning technique that finds the various
clusters within data. Each cluster is represented by a particular probability distribution. Now
we extend our terminology to include the class labels assigned to each example point. Suppose
we have a set of C labeled classes Q = {q1,q2, . . . ,qC} with prior for the cth class being P(qc)
then the class conditional probability function for the cth class having Dc mixture components
is given by:

p(x|qc) =
Dc

∑
d=1

p(x|d,qc)P(d|qc)

The posterior probabilities for each class are calculated using Bayes’ Rule and the vector x is
assigned the label of the class which has the maximum posterior probability, i.e.,

y�(x) = argmax
qc

P(qc)p(x|qc)

= argmax
qc

P(qc)
Dc

∑
d=1

P(d|qc)p(x|d,qc) (4.2)

We can estimate the class priors from the data as the ratio of training examples of that class
to the total number of training examples. From Equation (4.2) we can see that the winning
class is determined by the class conditional probabilities p(x|qc) and the class priors P(qc).
Also, the class conditional probabilities are determined by the weighted sum of the conditional
probability functions of the mixture component for that class p(x|d,qc) weighted by the prior of
that mixture with respect to that class P(d|qc). Hence, classification takes place using a linear
discriminant function ψ of p(x|d,qc) and the weights P(d|qc), i.e.,

y�(x) = ψ
�

p(x|d,qc),P(d|qc)
�

(4.3)

4.2.4. Artificial Neural Networks

An artificial neural network (ANN) is a model of learning inspired by the biological neural net-
works. It consists of interconnected group of artificial neurons that act as non-linear processing
units and exhibit a complex global behavior. ANNs have been successfully applied to a wide
variety of applications involving regression, classification or data processing. There is an im-
mense amount of literature available on neural networks. The reader is referred to any standard
text book on machine learning, e.g., Bishop (2006), Alpaydin (2005) and Mitchell (1997). In
this section, we restrict the discussion of neural networks to the models of classification that we
have used for our work.

An ANN consists of several layers of neurons. Each neuron takes inputs from neurons in
the preceding layer and produces an output via a non-linear activation function. So if a neuron
i receives n inputs {x j}n

j=1 from the previous layer, then its output oi is given by:

oi = f (
n

∑
j=1

w jix j)

where f (.) represents a non-linear activation function such as the sigmoid function and w ji is
the weight or strength of the connection between neuron i and the jth neuron in its predecessor
layer.

An ANN always has an input layer, an output layer and can have multiple hidden layers.
For our work we employed fully connected feedforward nets with just one hidden layer. Each

85

SAEED

neuron acts as a local processing unit but together the entire network is capable of modeling
complex relationships between the inputs and the outputs. The training of the network takes
place by iteratively adjusting the weights or connection strengths, based upon some error cri-
terion. We trained the network using back propagation training algorithm guided by scaled
conjugate gradient descent search. Also, we determined the network structure, i.e., the number
of units in the hidden layer via cross validation. The simulations were run using the imple-
mentation of neural networks provided by Challenge Learning Object Package (CLOP) library
(Saffari and Guyon, 2006).

4.3. Hybrid Learning

Figure 4.1: Hybrid learning model

Section 4.2.3 describes a mechanism for classification if only mixture models are used.
We propose to combine the mixture modeling approach with a neural network model for hy-
brid learning. Our hybrid learning model is shown in Figure 4.1. The first step involved in
this approach is the determination of data clusters using expectation maximization described in
Section 4.2. For C classes, a set S of data clusters is determined:

S = {si j}i=C, j=Di
i=1, j=1

Each member, si j, of S represents the jth cluster or sub-class for the ith class, e.g., the ith class has
Di clusters associated with it, given by: si = {si1,si2, . . . ,siDi

}. Next, the conditional probability
p(x|si j) of the vector x is determined in each cluster. This, in effect, is equivalent to performing
a transformation T : X �−→ Φ of the input vector xk ∈ Rn (xk ∈ {0,1}n in case of a binary feature

86

4. HYBRID LEARNING USING MIXTURE MODELS AND ARTIFICIAL NEURAL NETWORKS

vector) to a new feature vector φk ∈ [0,1]N , where the vector φk is given by:

φk = [{p(xk|si j}i=C, j=Di
i=1, j=1]t

Also, N =∑C
i=1 Di. The transformed set of feature vectors Φ is then used to train a discriminative

classifier for learning the class separations. Hence, in this hybrid approach we propose that the
label of the class is some function of the class conditional probabilities, p(xk|si j), determined
by each mixture component. Any suitable discriminative classifier can be trained to learn this
function. In our present work, we mainly focused on using artificial neural networks in the
supervised layer to perform classification on the transformed vector. However, any suitable
supervised learning algorithm can perform this step.

In the hybrid learning approach that we have used, we are assuming that the data for each
class is being generated by a set of sub-classes represented by mixture models. This method is
similar to RBF networks, where the input to the neural network is a set of RBF functions, the
centers of which can be found using a suitable clustering method. The novel thing about this
approach is that binary data is being modeled by multivariate Bernoulli mixtures and Gaussians
are being used to model the continuous data. In case the input data has both continuous and
binary attributes we split the input vector x into two vectors, v1 and v2, i.e., x = [v1 v2]. Vector
v1 is composed of only binary attributes and v2 consists of only continuous attributes, i.e.,
v1 ∈ {0,1}a, v2 ∈ Rb and a+ b = n. Vectors v1 are used to determine Bernoulli mixtures for
all classes and v2 are used to determine Gaussian mixtures for all classes. Also, instead of
using a linear model of classification as depicted by Equation (4.3), we are using a non-linear
discriminant function g to determine the classification, i.e.,

y�(x) = g(p(x|d,qc))

This non-linear mapping is found using a discriminative classifier. An important characteristic
of this model is the assumption that the data of each class is being generated by different source
distributions instead of just one distribution. This is a realistic and reasonable assumption for
real life data. This enables us to capture the various interesting characteristics and properties of
data. Also, an immense reduction in dimensionality of the input vector results via this approach
(described later in Section 4.3.1). In this chapter we don’t address the problem of how many
mixture components can fall in one class. For the current set of experiments, we determine
this number using a cross validation approach. The details of the simulations are given in
Section 4.4.

4.3.1. Transformation of Input Space and Dimensionality Reduction

The hybrid learning approach, described in Section 4.3, is appealing because it not only gives
us improved accuracy of classification but it gives us means for input transformation and di-
mensionality reduction. Once we have the mixture models we determine the class conditional
probabilities of each data point with respect to the mixture densities of all classes. If the total
number of mixture components for all the classes is N = ∑C

i=1 Di then we have performed a
transformation of data equivalent to:

T : X �−→ Φ X ∈ Rn Φ ∈ RN

If the inequality N < n holds true, then we have reduced the size of our feature vector for input
to a discriminative classifier.

The fact that the hybrid learning approach achieves a huge dimensionality reduction of data
is particularly useful in creating different views of data and making the data more manageable

87

SAEED

−500 −400 −300 −200 −100 0
−500

−450

−400

−350

−300

−250

−200

−150

−100

−50

0

Conditional Probabilities (log scale) for
Bernoulli Mixture 1 for +ve Class

Co
nd

iti
on

al
 P

ro
ba

bi
lit

ie
s (

lo
g

sc
al

e)
 fo

r
Be

rn
ou

lli
 M

ix
tu

re
 1

 fo
r −

ve
 C

la
ss

+ve class
−ve class

Class boundary

−24 −22 −20 −18 −16 −14 −12 −10 −8 −6
−22

−20

−18

−16

−14

−12

−10

−8

−6

Conditional Probabilities (log scale) for
Bernoulli Mixture 1 for +ve Class

Co
nd

iti
on

al
 P

ro
ba

bi
lit

ie
s (

lo
g

sc
al

e)
 fo

r
Be

rn
ou

lli
 M

ix
tu

re
 1

 fo
r −

ve
 C

la
ss

+ve class
−ve class

Class boundary

Figure 4.2: Plots for a subset of training data for Nova (left) and SYLVA (right) datasets after
feature transformation. A possible class boundary has been marked by hand.

88

4. HYBRID LEARNING USING MIXTURE MODELS AND ARTIFICIAL NEURAL NETWORKS

for further processing. For example, Figure 4.2 shows the plot of a subset of training and vali-
dation data for two datasets, namely, the NOVA dataset and the SYLVA dataset used in IJCNN’s
agnostic learning track. These datasets are described in Section 4.4. For the NOVA dataset we
had 7,131 features after initial input attribute elimination and we generated 2 Bernoulli mixtures
for the positive class and 2 for the negative class. The graph shows the plot of conditional prob-
abilities for mixture 1 of positive class against that of the negative class. It is very interesting to
see that there is a clear linear separation of the transformed features for both the negative and
positive class for the NOVA dataset. The same two features are plotted for the SYLVA dataset.
Again, we can see a clear separation of the two class labels when the transformed features are
used.

Table 4.1 shows the percentage reduction of dimensionality of the input space for various
datasets. Their detailed simulation results are presented in Section 4.4. The table shows the
total input attributes and the attributes left after initial attribute elimination step (described in
Section 4.4.2). Columns 4 and 5 show the number of mixture distributions generated for the
positive and negative class labels. The total mixture distributions is N which determine the size
of the new feature space. The last column shows the reduction in dimensionality of the input
space with respect to the total attributes after elimination. This percentage is as low as 99.9%
for the NOVA dataset.

The optimum number of mixtures (Column 4 and 5 of Table 4.1) for each dataset was either
determined by cross validation or the EM algorithm automatically determined this number. On
datasets like ADA and GINA we had to use cross validation. In case of NOVA and SYLVA
datasets, the EM algorithm found some Bernoulli mixtures with almost zero priors. In such
cases we retained only those mixtures with non-zero priors. For these datasets we observed that
the number of non-zero prior mixtures did not change with a changing value of D specified by
the user (D is the number, input to the EM algorithm, specifying the number of mixtures to be
generated). Hence we can conclude from our observations that for certain types of datasets EM
algorithm determines the optimum number of clusters present in the data.

Table 4.1: Dimensionality reduction on various datasets. n is the total number of initial at-
tributes, N is the number of transformed features. Columns 4 and 5 show the mix-
tures for positive and negative class separately

Dataset n After
elimination

Bernoulli
mixtures

Gaussian
mixtures

N Reduction

ADA 48 48 3+6 15+15 39 19%
GINA 970 433 35+35 - 70 83%
HIVA 1617 574 8+7 - 15 97%
NOVA 16969 7131 2+2 - 4 99.9%
SYLVA 216 216 1+1 3+3 8 96%

4.4. Experimental Results
In this section we describe in detail the results obtained using various datasets. The datasets
were used for the “Agnostic Learning vs. Prior Knowledge” challenge, organized by IJCNN
(2007a). There are 5 datasets, namely, ADA, GINA, NOVA, SYLVA and HIVA. All these
datasets have two possible class labels. For our simulations we have used the datasets from the

89

SAEED

agnostic learning track. As we are using the data from the agnostic learning track, we don’t
have any feature information. We give a brief summary of these datasets, as given by Guyon
et al. (2007), in Table 4.2. It can be seen that the above datasets are taken from different sources
and can be used as a test bed for various learning algorithms. Also, because these datasets were
launched as part of a machine learning competition, they serve as a benchmark for comparison
between different techniques. The evaluation of results described in this section is based on the
balanced error rate (BER) which is the average of the error rates on positive and negative class
labels (Guyon et al., 2007).

Table 4.2: Datasets used (Guyon et al., 2007) (Column 4, 5 and 6 show the total examples in the
training, validation and test sets. The last column shows the percentage of positive
examples)

Dataset (domain) Type Attributes Train Valid Test Pos%
ADA (marketing) mixed 48 4,147 415 41,471 24.8%
GINA (handwriting) continuous 970 3,153 315 31,532 49.2%
HIVA (medicine) binary 1,617 3,845 384 38,449 3.5%
NOVA (text-mining) binary 16,969 1,754 175 17,537 28.5%
SYLVA (ecology) mixed 216 13,086 1,309 1,30,857 6.2%

4.4.1. Overall Hybrid Learning Model

The overall learning model is shown in Figure 4.3. The first step involved is that of attribute
elimination. We call it attribute elimination to distinguish it from feature transformation and di-
mensionality reduction. The next step is the estimation of mixture densities for various classes
and feature transformation. The transformed features are used for training with a discrimi-
native classifier which gives us the predicted label. To run the simulations we added objects
to the Challenge Learning Object Package (CLOP) library (Saffari and Guyon, 2006). For
pre-processing, cross-validation and neural network learning we used the objects provided by
CLOP. For mixture modeling we wrote our code in C++ and provided an interface to it in
Matlab.

4.4.2. Initial Attribute Elimination

We adopted a very simple counting procedure for reducing the dimensionality of the input space.
There are many raw data features which don’t convey substantial information about their class
and seem redundant. The attributes, whether continuous or binary, for which the percentage
of non-zero entries for both the positive and negative classes, was less than a certain threshold
were omitted. This threshold was determined empirically using cross validation. The rule for
the initial elimination of attributes is then given by the following:

If ∑m
k=1 I(xk,i �= 0 and yk =+1)

∑m
k=1 I(yk =+1)

≤ threshold and

∑m
k=1 I(xk,i �= 0 and yk =−1)

∑m
k=1 I(yk =−1)

≤ threshold

then eliminate input variable xi (4.4)

90

4. HYBRID LEARNING USING MIXTURE MODELS AND ARTIFICIAL NEURAL NETWORKS

Figure 4.3: Overall model

where the function I(R) = 1 when the rule R holds. Although, this method of feature elimi-
nation may seem like an ad-hoc method at the first glance, it has an intuitive appeal and justi-
fication based on information theory. For all the datasets we have a two way classification and
if we consider only two possibilities for the value of an input attribute (zero or non-zero), the
information gain, ∆i, for attribute i (∀i,1 ≤ i ≤ n) is given by (E is the entropy):

∆i = E(X)− ∑m
k=1 I(xk,i �= 0)

m
Ei(xk,i �=0)−

∑m
k=1 I(xk,i = 0)

m
Ei(xk,i=0) (4.5)

Hence, the features that satisfy Rule (4.4) will have low information gain. Note that not all
features with low information gain as given by Equation (4.5) will be removed in this step.
Apart from ADA and SYLVA, this method of feature elimination when applied to the datasets
yielded good results.

4.4.3. Simulations for Finding Mixture Parameters and Number of Clusters

The EM algorithm was written in C++ to determine the parameters of the Gaussian mixture
models and Bernoulli mixture models. The number of mixture components, D, to be determined
is pre-defined by the user. The EM algorithm doesn’t give us any means for determining the
optimum number of mixture distributions or clusters. When running this algorithm for Bernoulli
mixture models it was observed that the priors of some of the mixture components were reduced
to zero after some iterations. For example, we started with the initial parameter D = 10 on the
NOVA dataset for the positive class and the number of resulting mixtures with non-zero priors
was 2. For most of the simulations we observed that the mixtures with non-zero priors was 2,
even with different starting values of D. Similarly, in SYLVA’s case, most of the simulations
resulted in only one or two mixture distributions with non-zero priors. Hence, in such cases
the EM algorithm results in a fewer number of mixture distributions compared to the initially
specified number. For our hybrid learning model we only retain the distributions with non-zero
priors. This gives us a way of determining the number of clusters needed for each class. This is
shown in detail for different datasets in the next sections.

91

SAEED

4.4.4. NOVA Dataset

Table 4.3: Results for the NOVA dataset. The second column (initial Bernoullies) shows the
value of D, the initial clusters, specified by the user for the EM algorithm. The third
column (Bernoulli mixtures) shows the number of clusters left with non-zero priors
after running the EM algorithm. For the last row entry, a layer of 5 boosting units
was used, each unit represented by 2-layer neural network having 25 hidden units.

No. Initial Bernoulli NN/w Train Valid Test
Bernoullies mixtures units BER BER BER

1. 15+15 2+2 15 0.038 0.028 0.046
2. 20+20 2+3 20 0.037 0.028 0.048
3. 20+20 2+3 15 0.037 0.028 0.048
4. 20+20 2+3 8 0.037 0.028 0.049
5. 10+10 2+3 25 boost (5) 0.037 0.028 0.050

Here, we present the results achieved for agnostic learning with the NOVA dataset. The
NOVA dataset has 16,969 binary features. Table 4.3 shows the results of the entries submitted
to the challenge. The initial step of feature elimination described in Section 4.4.2 was applied to
the dataset with a threshold value of 0.3%. This eliminates 9,838 features leaving behind only
7,131 features. These features were used to generate Bernoulli mixture models for feature trans-
formation. The second column shows the initial D parameter input to the EM algorithm for the
number of Bernoulli mixtures (see Section 4.4.3). The third column shows how many clusters
were left with non-zero priors. For this dataset we almost always ended up with 2 or 3 mixtures,
depending upon the initial values of the EM algorithm. The features were pre-processed using
the ‘shift-n-scale’ and ‘standardize’ functions from CLOP. The resulting data was then trained
using a 2 layer neural network. Column 4 shows the number of units comprising the hidden
layer. The final labels were post-processed using the bias option with transduction as provided
in CLOP. The topmost entry is the winning entry for the NOVA dataset in the agnostic learning
track. The last entry shows the results obtained by using a boosting layer of 5 units, each unit
being composed of a neural network having 25 hidden units. There is not much difference in
accuracy for different parameter values.

4.4.5. SYLVA Dataset

Table 4.4 shows the results obtained on the SYLVA dataset. The topmost entry was ranked third
in the agnostic learning track. The SYLVA dataset has both binary and continuous attributes
for which we generated Bernoulli and Gaussian mixtures respectively. It was interesting to
observe that for this dataset we always ended up with either 1 or 2 Bernoulli mixtures with
non-zero priors, depending upon the initial parameters used by the EM algorithm (see Sec-
tion 4.4.3). This observation leads us to conclude that the positive and negative examples can
be modeled by just 1 or 2 Bernoulli distributions for the binary attributes. Section 4.3.1 shows
the separation obtained by the features resulting from the Bernoulli mixtures. After generat-
ing Bernoulli mixtures the features were pre-processed using the standardize, shift-n-scale and
normalize options provided by CLOP. Also, the labels generated by the neural network model
were post-processed using the bias option 1. The first 3 entries show the results obtained by
using a 2-layer neural network at the supervised layer. The fourth entry shows the results ob-

92

4. HYBRID LEARNING USING MIXTURE MODELS AND ARTIFICIAL NEURAL NETWORKS

tained by using support vector machines as the discriminative classifier, where the kernel was
calculated using Kullback-Leibler (KL) divergence. The fifth entry uses a boosting layer of 20
units, each unit being made of 2-layer neural network with 5 hidden units. Neural networks
achieve a higher accuracy as compared to the other two discriminative methods. However, the
difference in accuracy is not very significant.

Table 4.4: Results for the SYLVA dataset. Entry 5 shows a supervised layer made from boost-
ing 20 units, each unit being composed of a 2-layer neural network having 5 hidden
units.

No. Bernoulli Gaussian NN/w Other Train Valid Test
mixtures mixtures units classifier BER BER BER

1. 1+1 3+3 3 - 0.0072 0.0053 0.0094
2. 1+1 6+6 10 - 0.0069 0.0061 0.0096
3. 1+1 6+6 10 - 0.0078 0.0065 0.0104
4. 1+1 2+2 - SVM 0.0094 0.0057 0.0124
5. 2+2 6+6 - 5 boost (20) 0.0083 0.0053 0.0131

4.4.6. GINA Dataset

Table 4.5: Results for the GINA dataset

No. Bernoulli NN/W Boosting Train Valid Test
mixtures units units BER BER BER

1. 35+35 15 5 0.010 0 0.049
2. 25+25 20 5 0.014 0.006 0.050
3. 25+25 15 5 0.014 0.006 0.051
4. 15+15 15 5 0.023 0.013 0.052
5. 20+20 20 5 0.010 0.006 0.052

The results obtained on the GINA dataset are given in Table 4.5. For this dataset the attribute
elimination threshold was kept at 40%, (method described in Section 4.4.2) which reduced our
initial attributes from 970 to 433. This dataset has continuous attributes. As we want to fit
Bernoulli mixtures to this dataset, we treated all the non-zero entries in this dataset as success
and all the zero values as failure, resulting in binary attributes. Even though this results in
information loss but surprisingly it still gives us good results. For pre-processing, shift-n-scale
and standardize methods of CLOP were used. Also, the output labels of the neural network
were post processed using the bias algorithm with the transduction option. The topmost entry
was ranked fifth in the agnostic learning track. For the supervised layer we used the boosting
method, with each unit being made of a 2-layer neural network. Boosting gave us better results
as compared to using a single 2-layer neural network. The difference in results for various
values of the parameters is not very significant in this case.

93

SAEED

4.4.7. HIVA Dataset

The results obtained on the HIVA dataset are shown in Table 4.6. The threshold used for the
initial attribute elimination step was 10%. So the initial input space was reduced from 1617 to
574. The inputs to the neural network were first pre-processed using shift-n-scale, standardize
and normalize options from CLOP. Also post-processing of output labels was done using bias
option 4. For the second entry we used boosting with 20 units, each unit being composed of a
2-layer neural network having 3 hidden units. For this dataset also, there is not much difference
between the error rates, when using different values of initial parameters.

Table 4.6: Results on the HIVA dataset

No. Bernoulli NN/w Train Valid Test
mixtures units BER BER BER

1. 8+7 7 0.218 0.237 0.305
2. 9+4 3 boost (20) 0.172 0.185 0.309
3. 8+7 20 0.151 0.110 0.309
4. 8+7 40 0.148 0.132 0.317
5. 8+7 35 0.166 0.147 0.319

4.4.8. ADA Dataset

Table 4.7 shows the results obtained on the ADA dataset. We found this dataset the most difficult
to train as this was the only dataset on which a simple neural network with 2 layers performed
as well as the other methods (row number 2, 3 and 4). The hybrid learning approach doesn’t
seem to give much benefit in this case.

Table 4.7: Results on the ADA dataset

No. Eliminate Bernoulli Gaussian NN/w Train Valid Test
threshold mixtures mixtures units BER BER BER

1. 0 3+6 15+15 15 0.180 0.190 0.181
2. 0 - - 7 0.174 0.188 0.181
3. 0 - - 7 0.177 0.188 0.181
4. 0 - - 3 0.170 0.174 0.185
5. 1% 7+8 15+15 7 0.190 0.201 0.187

4.4.9. Comparison With Other Methods

In this section we compare the performance of the hybrid learning model with other methods.
First we will discuss the results obtained from the individual mixture model, individual neural
network model and the hybrid model. Then we’ll compare the classification results of the hybrid
model with the best models on the challenge datasets.

Table 4.8 shows the results of applying three different algorithms to the challenge datasets.
The third column shows the BER when only mixture models are used for classification (details
are given in Section 4.2.3). BER obtained by applying neural networks is shown in the fourth
column and the last column shows the BER of the hybrid learning model. All the error rates

94

4. HYBRID LEARNING USING MIXTURE MODELS AND ARTIFICIAL NEURAL NETWORKS

Table 4.8: Comparison of hybrid learning approach with individual mixture model and neural
network model. The table shows the balanced error rate of classification on the test
set of the various datasets

No. Dataset Mixture models Neural network Hybrid learning
1. ADA 0.264 0.1871 0.181
2. GINA 0.1379 0.1173 0.049
3. HIVA 0.3493 0.2961 0.305
4. NOVA 0.1241 0.1453 0.0456
5. SYLVA 0.0156 0.0119 0.0094

pertain to the test cases of the corresponding datasets. We can see from the table that for GINA,
NOVA and SYLVA the hybrid learning model achieves a significant improvement in accuracy
as compared to the individual mixture models or the neural network model. For ADA, the
performance of the hybrid approach is almost the same as the neural network model but better
than the individual mixture model. In case of HIVA, the mixture models have the worst accuracy
and the neural networks perform slightly better than the hybrid model.

The results of the “Agnostic vs. Prior Knowledge” (2007a) challenge can be found on
http://clopinet.com/isabelle/Projects/agnostic/Results.html. Table 4.9
shows a comparison of our method with the winning entries in the agnostic learning track. This
comparison is based on the balanced error rates on the test dataset. It can be seen from the
table that apart from ADA and HIVA, our method achieves good results on the datasets. The
winner of the overall agnostic learning track is Lutz (2006) who has used boosting techniques
for classification. His entries are also ranked best on the ADA, GINA and SYLVA datasets. The
last row of the table shows an overall comparison of our method with the winning entry. We
can see that the difference in test BERs for the overall result of the two methods is not very
significant.

4.4.10. Discussion of Results

In this section we presented the results obtained by applying hybrid learning model on the five
different datasets of the agnostic track of the “Agnostic vs. Prior Knowledge” challenge. All the
five datasets have been taken from different domains and some have both binary and continuous
features and some have only binary features. Our approach for solving the classification prob-
lem on these datasets consists of mainly three stages. The first step involves the elimination of
attributes which do not have a high information gain. In the second step we use finite Gaussian
or Bernoulli mixture models for unsupervised clustering of data. Using these mixture models
we transform the original input space into a low dimensional probability space. In the third
phase, the transformed features are fed to an artificial neural network for classification.

The main motivation behind our technique is to use unsupervised technique to capture the
important properties of data using mixture models and classify the data using the non-linear
discriminative function provided by artificial neural networks. Hence, the model combines the
generative power of mixture models with the discriminative ability of neural networks. Mixture
models provide a semi-parametric approach for modeling the density of data when the distri-
bution of data is not unimodal. We have successfully demonstrated their ability to attain a high
reduction in the original dimensionality of data, hence making the data more manageable for

95

http://clopinet.com/isabelle/Projects/agnostic/Results.html

SAEED

Table 4.9: Comparison of hybrid learning approach with other methods (IJCNN, 2007b). Note
that the best entry for a dataset is not necessarily the best overall entry.

Best method Hybrid learning
Dataset Method Test BER Test BER Rank
ADA LogitBoost with trees 0.166 0.181 9

(Lutz, 2006)
GINA LogitBoost/Doubleboost 0.0339 0.0495 5

(Lutz, 2006)
HIVA RBF SVM 0.2827 0.305 10

(Franc, 2007)
NOVA Hybrid learning 0.0456 0.0456 1

(Saeed, 2007)
SYLVA LogitBoost with trees 0.0062 0.0094 3

(Lutz, 2006)
Overall LogitBoost with trees 0.1117 0.1194 6

(Lutz, 2006)

input to a classifier. The reduction in dimensionality is as low as 99.9% on the NOVA dataset,
97% and 96% on the HIVA and SYLVA datasets respectively.

Empirical results demonstrate that the hybrid learning model is a simple yet, effective
method for agnostic learning where the attributes involved are raw low level features. We
conducted experiments to compare the BER of the hybrid learning algorithm with individual
mixture models and neural network models and found that the combined model performs sig-
nificantly better than the individual models in case of GINA, SYLVA and NOVA. The perfor-
mance of this method is almost the same as neural networks in case of ADA and slightly worse
than neural networks in case of HIVA. In all cases the hybrid model has a much better accuracy
rate as compared to the mixture model classifiers.

The effectiveness of the hybrid learning model has been supported by empirical results on
the five challenge datasets. According to the August, 2007 ranking of the challenge partici-
pants our method achieved the best performance on the NOVA dataset, was ranked third on the
SYLVA dataset, fifth on the GINA dataset and ninth, tenth on the ADA and HIVA datasets re-
spectively. In the overall performance one of our entries was ranked sixth. The best participant
had a BER of 11.17% and our entry had an overall BER of 11.94%. The difference between the
BER of these two entries is not very significant.

4.5. Conclusions
In this chapter we have presented a hybrid learning method using mixture models and artificial
neural networks. The hybrid learning approach, described in this chapter, combines the gen-
erative model with a discriminative approach. This method is particularly intuitive as it first
models the data using mixture models. The mixture models assume that the entire data is gen-
erated from various sources and, hence, this method can capture the various properties of data
using different component distributions. These mixture models are used to perform a feature
transformation of the input vector. The transformed features are then used to train a discrimina-

96

4. HYBRID LEARNING USING MIXTURE MODELS AND ARTIFICIAL NEURAL NETWORKS

tive classifier. In this chapter we have also shown how mixture models can be used for feature
transformation and dimensionality reduction of the input space.

Our hybrid learning approach was applied to 5 datasets which were launched as part of
the “Agnostic vs. Prior Knowledge” challenge, by IJCNN 2007, in the agnostic learning track.
This method has the winning entry on the NOVA dataset. Also, our entries were ranked third
and fifth for the SYLVA and GINA datasets. The entries sent to the challenge show that this
method is comparable to the other methods. Work is on going to devise methods for finding the
optimum number of mixture models for different types of datasets. Also, we are exploring the
potential of other mixture distributions to be used in the hybrid learning approach.

Acknowledgments
I would like to thank Dr. Haroon Babri and Mr. Kashif Javed of University of Engineering
and Technology, Lahore, for reviewing and providing valuable comments and feedback on this
chapter. I also thank Isabelle Guyon for all her technical help during the challenge.

References
Agnostic learning vs. prior knowledge challenge, 2007a. See http://www.agnostic.
inf.ethz.ch.

Agnostic learning vs. prior knowledge competition results, 2007b. See http://clopinet.
com/isabelle/Projects/agnostic/Results.html.

Ehem Alpaydin. Introduction to Machine Learning. Prentice-Hall of India Private Limited,
2005.

Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support vector machines, 2001.
Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

Arthur Dempster, Nan Laird, and Donald Rubin. Maximum likelihood from incomplete data
via the EM algorithm. Journal of the Royal Statistical Society, 39(1):1–38, 1977.

Richard O. Duda and Peter E. Hart. Pattern Classification and Scene Analysis. Wiley, 1973.

Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification. John Wiley and
Sons, inc, 2000.

Vojtech Franc. Modified multi-class SVM formulation; Efficient LOO computation, 2007. Fact
sheet available at http://clopinet.com/isabelle/Projects/agnostic/.

Jiri Grim, Pavel Pudil, and Petr Somol. Multivariate structural Bernoulli mixtures for recogni-
tion of handwritten numerals. In Proceedings of International Conference on Pattern Recog-
nition (ICPR’00), 2000.

Isabelle Guyon, Amir Saffari, Gideon Dror, and Gavin Cawley. Agnostic learning vs. prior
knowledge challenge. In Proceedings of International Joint Conference on Neural Networks,
August 2007.

97

http://www.agnostic.inf.ethz.ch
http://www.agnostic.inf.ethz.ch
http://clopinet.com/isabelle/Projects/agnostic/Results.html
http://clopinet.com/isabelle/Projects/agnostic/Results.html
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://clopinet.com/isabelle/Projects/agnostic/

SAEED

Tommi S. Jaakkola and David Haussler. Exploiting generative models in discriminative classi-
fiers. In Proceedings of the 1998 conference on Advances in neural information processing
systems II, pages 487–493, 1998.

Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan, and Geoffrey E. Hinton. Adaptive
mixture of local experts. Neural Computation, 3:79–87, 1991.

Alfons Juan and Enrique Vidal. On the use of Bernoulli mixture models for text classification.
Pattern Recognition, 35(12):2705–2710, December 2002.

Alfons Juan and Enrique Vidal. Bernoulli mixture models for binary images. In Proceedings of
17th International Conference on Pattern Recognition (ICPR-04), 2004.

Julia A. Lasserre, Christopher M. Bishop, and Thomas P. Minka. Principled hybrids of genera-
tive and discriminative models. In Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition, CVPR, New York, 2006.

Roman W. Lutz. Logitboost with trees applied to the WCCI 2006 performance prediction
challenge datasets. In Proceedings of International Joint Conference on Neural networks,
pages 2966–2969, Vancouver, Canada, July 2006. Available at http://stat.ethz.
ch/~lutz/publ.

Tom Mitchell. Machine Learning. McGraw Hill, 1997.

John Moody and Christian Darken. Fast learning in networks of locally-tuned processing units.
Neural Computation, 1:281–294, 1989.

Mehreen Saeed. Hybrid approach for learning, 2007. Fact sheet available at http://
clopinet.com/isabelle/Projects/agnostic/.

Amir Saffari and Isabelle Guyon. Quick Start Guide For CLOP, May 2006. Available at
http://ymer.org/research/files/clop/QuickStartV1.0.pdf.

Sajama and Alon Orlitsky. Supervised dimensionality reduction using mixture models. In Pro-
ceedings of the 22nd international conference on machine learning, pages 768–775, Bonn,
Germany, 2005.

Ilkay Ulusoy and Christopher M. Bishop. Generative versus discriminative methods for ob-
ject recognition. In Proceedings of IEEE International Conference on Computer Vision and
Pattern Recognition, CVPR, San Diego, 2005.

98

http://clopinet.com/isabelle/Projects/agnostic/
http://clopinet.com/isabelle/Projects/agnostic/
http://ymer.org/research/files/clop/QuickStartV1.0.pdf

Chapter 5

Data Grid Models for Preparation and Modeling in
Supervised Learning
Marc Boullé MARC.BOULLE@ORANGE-FTGROUP.COM

France Telecom R&D
2, avenue Pierre Marzin
22300 Lannion, France

Editor: Isabelle Guyon

Abstract
This paper introduces a new method to automatically, rapidly and reliably evaluate the class
conditional probability of any subset of variables in supervised learning. It is based on a par-
titioning of each input variable into intervals in the numerical case and into groups of values
in the categorical case. The cross-product of the univariate partitions forms a multivariate par-
tition of the input representation space into a set of cells. This multivariate partition, called
data grid, is a piecewise constant nonparametric estimator of the class conditional probabil-
ity. The best data grid is searched using a Bayesian model selection approach and an efficient
combinatorial algorithm.

We also extend data grids to joint density estimation in unsupervised learning and apply
this extension to the problem of coclustering the instances and variables of a sparse binary
dataset.

We finally present three classification techniques, exploiting the maximum a posteriori data
grid, an ensemble of data grids, or a coclustering data grid, and report results in the Agnostic
Learning vs. Prior Knowledge Challenge, where our method achieved the best performance
on two of the datasets. These experiments demonstrate the value of using data grid models in
machine learning tasks, for conditional density estimation, data preparation, supervised classi-
fication, clustering and rule based explanation.

5.1. Introduction
Univariate partitioning methods have been studied extensively in the past, mainly in the context
of decision trees (Kass, 1980; Breiman et al., 1984; Quinlan, 1993; Zighed and Rakotomalala,
2000). Supervised discretization methods split the numerical domain into a set of intervals and
supervised value grouping methods partition the input values into groups. Fine grained par-
titions allow an accurate discrimination of the output values, whereas coarse grain partitions
tend to be more reliable. When the size of the partition is a free parameter, the trade-off be-
tween information and reliability is an issue. In the MODL approach, supervised discretization
(Boullé, 2006) (or value grouping (Boullé, 2005)) is considered as a nonparametric model of
dependence between the input and output variables. The best partition is found using a Bayesian
model selection approach.

In this paper, we describe an extension of the MODL approach to the supervised bivariate
case for pairs of input variables (Boullé, 2007a)1, and introduce its generalization to any subset

1. The method is available as a shareware, downloadable at http://perso.rd.francetelecom.fr/
boulle/

© M. Boullé.

http://perso.rd.francetelecom.fr/boulle/
http://perso.rd.francetelecom.fr/boulle/

BOULLÉ

of variables of any types, numerical, categorical or mixed types. Each input variable is parti-
tioned, into intervals in the numerical case and into groups of values in the categorical case. The
cross-product of the univariate partitions forms a multi-dimensional data grid. The correlation
between the cells of this data grid and the output values allows the joint predictive informa-
tion to be quantified. The trade-off between information and reliability is established using a
Bayesian model selection approach. We also extend these models to the unsupervised case,
where the data grids are nonparametric models of dependence between all the variables, with
a piecewise constant estimation of the joint probability distribution. Sophisticated algorithms
are necessary to explore the search space of data grid models. They have to strike a balance
between the quality of the optimization and the computation time. Several optimization heuris-
tics, including greedy search, meta-heuristic and post-optimization, are introduced to efficiently
search the best possible data grid.

The paper is organized as follows. Section 5.2 summarizes the MODL method in the uni-
variate supervised discretization and value grouping cases. Section 5.3 extends the approach to
the multivariatiate case and Section 5.4 describes the generalization of such models to unsuper-
vised learning and coclustering. Section 5.5 presents the optimization algorithms. Section 5.6
evaluates the data grid models on artificial datasets. Section 5.7 reports experiments performed
on the agnostic learning vs. prior knowledge challenge datasets (Guyon et al., 2007) and ana-
lyzes their interest for classification and explanation. Finally, Section 5.8 gives a summary and
discusses future work.

5.2. The MODL Supervised Discretization and Value Grouping Methods
For the convenience of the reader, this section summarizes the MODL approach in the uni-
variate case, detailed in (Boullé, 2006) for supervised discretization, and in (Boullé, 2005) for
supervised value grouping.

5.2.1. Discretization

The objective of supervised discretization is to induce a list of intervals which partitions the
numerical domain of a continuous input variable, while keeping the information relative to the
output variable. A trade-off must be found between information quality (homogeneous intervals
in regard to the output variable) and statistical quality (sufficient sample size in every interval
to ensure generalization).

In the MODL approach, the discretization is turned into a model selection problem. First,
a space of discretization models is defined. The parameters of a specific discretization model
are the number of intervals, the bounds of the intervals and the frequencies of the output values
in each interval. Then, a prior distribution is proposed on this model space. This prior exploits
the hierarchy of the parameters: the number of intervals is first chosen, then the bounds of the
intervals and finally the frequencies of the output values. The prior is uniform at each stage
of the hierarchy. Finally, we assume that the multinomial distributions of the output values in
each interval are independent from each other. A Bayesian approach is applied to select the
best discretization model, which is found by maximizing the probability p(Model|Data) of the
model given the data. Using the Bayes rule and since the probability p(Data) is constant under
varying the model, this is equivalent to maximizing p(Model)p(Data|Model).

Let N be the number of instances, J the number of output values, I the number of input
intervals. Ni denotes the number of instances in the interval i and Ni j the number of instances
of output value j in the interval i. In the context of supervised classification, the number of

100

5. DATA GRID MODELS FOR PREPARATION AND MODELING IN SUPERVISED LEARNING

instances N and the number of classes J are supposed to be known. A discretization model M
is then defined by the parameter set

�
I,{Ni}1≤i≤I ,

�
Ni j

�
1≤i≤I,1≤ j≤J

�
.

Using the definition of the model space and its prior distribution, Bayes formula can be used
to calculate the exact prior probabilities of the models and the probability of the data given a
model. Taking the negative log of the probabilities, this provides the evaluation criterion given
in Formula 5.1.

logN + log
�

N + I −1
I −1

�
+

I

∑
i=1

log
�

Ni + J−1
J−1

�
+

I

∑
i=1

log
Ni!

Ni1!Ni2! . . .NiJ!
(5.1)

The first term of the criterion stands for the choice of the number of intervals and the second
term for the choice of the bounds of the intervals. The third term corresponds to the parameters
of the multinomial distribution of the output values in each interval and the last term represents
the conditional likelihood of the data given the model, using a multinomial term. Therefore
“complex” models with large numbers of intervals are penalized.

Once the evaluation criterion is established, the problem is to design a search algorithm in
order to find a discretization model that minimizes the criterion. In (Boullé, 2006), a standard
greedy bottom-up heuristic is used to find a good discretization. In order to further improve
the quality of the solution, the MODL algorithm performs post-optimizations based on hill-
climbing search in the neighborhood of a discretization. The neighbors of a discretization are
defined with combinations of interval splits and interval merges. Overall, the time complexity
of the algorithm is O(JN logN).

The MODL discretization method for supervised classification provides the most proba-
ble discretization given the data. Extensive comparative experiments report high performance
(Boullé, 2006).

5.2.2. Value Grouping

Categorical variables are analyzed in a way similar to that for numerical variables, using a par-
titioning model of the input values. In the numerical case, the input values are constrained to be
adjacent and the only considered partitions are the partitions into intervals. In the categorical
case, there are no such constraints between the values and any partition into groups of values
is possible. The problem is to improve the reliability of the estimation of the class conditional
probabilities owing to a reduced number of groups of values, while keeping the groups as in-
formative as possible. Producing a good grouping is harder with large numbers of input values
since the risk of overfitting the data increases. In the extreme situation where the number of
values is the same as the number of instances, overfitting is obviously so important that efficient
grouping methods should produce one single group, leading to the elimination of the variable.

Again, let N be the number of instances, V the number of input values, J the number of
output values and I the number of input groups. Ni denotes the number of instances in the group
i, and Ni j the number of instances of output value j in the group i. The Bayesian model selection
approach is applied like in the discretization case and provides the evaluation criterion given in
Formula 5.2. This formula has a similar structure as that of Formula 5.1. The two first terms
correspond to the prior distribution of the partitions of the input values, into groups of values in
Formula 5.2 and into intervals in Formula 5.1. The two last terms are the same in both formula.

logV + logB(V, I)+
I

∑
i=1

log
�

Ni + J−1
J−1

�
+

I

∑
i=1

log
Ni!

Ni1!Ni2! . . .NiJ!
(5.2)

101

BOULLÉ

B(V, I) is the number of divisions of V values into I groups (with eventually empty groups).
When I =V , B(V, I) is the Bell number. In the general case, B(V, I) can be written as B(V, I) =
∑I

i=1 S(V, i), where S(V, i) is the Stirling number of the second kind (see Abramowitz and Ste-
gun, 1970), which stands for the number of ways of partitioning a set of V elements into i
nonempty sets. In (Boullé, 2005), a standard greedy bottom-up heuristic is proposed to find a
good partition of the input values. Several pre-optimization and post-optimization steps are in-
corporated, in order to both ensure an algorithmic time complexity of O(JN log(N)) and obtain
accurate value groupings.

5.3. Supervised Data Grids Models for any Subset of Variables
In this section, we describe the extension of the MODL approach to pairs of variables introduced
in (Boullé, 2007a) and generalize it to any subset of input variables variables for supervised
learning, in the numerical, categorical and mixed type case. We first introduce the approach
using an illustrative example for the case of supervised bivariate discretization, then summa-
rizes the principles of the extension in the general case, and present the evaluation criterion of
such models. Finally, we relate our modeling approach to information theory and discuss the
robustness of our method.

5.3.1. Interest of the joint partitioning of two input variables

Figure 5.1 gives a multiple scatter plot (per class value) of the input variables V1 and V7 of
the wine dataset (Blake and Merz, 1996). This diagram shows the conditional probability of
the output values given the pair of input variables. The V1 variable taken alone cannot separate
Class 1 from Class 3 for input values greater than 13. Similarly, the V7 variable is a mixture of
Class 1 and Class 2 for input values greater than 2. Taken jointly, the two input variables allow
a better separation of the class values.

0

1

2

3

4

5

6

11 12 13 14 15

V1

V7

Class 1
Class 2
Class 3

]2.18, +∞[(0, 23, 0) (59, 0, 4)
]1.235, 2.18] (0, 35, 0) (0, 5, 6)
]-∞, 1.235] (0, 4, 11) (0, 0, 31)

V7xV1]-∞, 12.78]]12.78, +∞[

Figure 5.1: Multiple scatterplot (per class value) of the input variables V1 and V7 of the wine
dataset. The optimal MODL supervised bivariate partition of the input variables is
drawn on the multiple scatterplot, and the triplet of class frequencies per data grid
cell is reported in the right table

Extending the univariate case, we partition the dataset on the cross-product of the input
variables to quantify the relationship between the input and output variables. Each input variable
is partitioned into a set of parts (intervals in the numerical case). The cross-product of the
univariate input partitions defines a data grid, which partitions the instances into a set of data

102

5. DATA GRID MODELS FOR PREPARATION AND MODELING IN SUPERVISED LEARNING

cells. Each data cell is defined by a pair of parts. The connection between the input variables
and the output variable is evaluated using the distribution of the output values in each cell of
the data grid. It is worth noting that the considered partitions can be factorized on the input
variables. For instance in Figure 5.1, the V1 variable is discretized into 2 intervals (one bound
at 12.78) and the V7 variable into 3 intervals (two bounds at 1.235 and 2.18). The instances of
the dataset are distributed in the resulting bidimensional data grid. In each cell of the data grid,
we consider the empirical distribution of the output values. For example, the cell defined by the
intervals]12.78,+∞[on V1 and]2.18,+∞[on V7 contains 63 instances. These 63 instances are
distributed on 59 instances for Class 1 and 4 instances for Class 3. Coarse grain data grids tend
to be reliable, whereas fine grain data grids allow a better separation of the output values. In our
example, the MODL optimal data grid is drawn on the multiple scatter plot on Figure 5.1.

5.3.2. Principles of the Extension to Data Grid Models

The MODL approach has been studied in the case of univariate supervised partitioning for
numerical variables (Boullé, 2006) and categorical variables (Boullé, 2005). The extension to
the multivariate case applies the same principles as those described in Section 5.3.1. Each input
variable is partitioned, into intervals in the numerical case and into groups of values in the
categorical case. Taking the cross-product of the univariate partitions, we obtain a data grid of
input cells, the content of which characterizes the distribution of the output values. Compared to
the bivariate case, we introduce a new level in the hierarchy of the model parameters, related to
variable selection. Indeed, a multivariate data grid model implicitly handles variables selection,
where the selected variables that bring predictive information are partitioned in at least two
parts. The other variables, the partition of which consists of one single part, can be considered
as irrelevant and discarded.

The space of multivariate data grid models is very large. Selecting the best model is a
difficult task, both from a model selection and optimization point of view. In our approach, we:

1. precisely define the parameters of the data grid models,
2. define a prior on the model parameters,
3. establish an analytic criterion to evaluate the posterior probability of each model
4. design sophisticated optimization algorithm to search the maximum a posteriori (MAP)

model.

Our space of models is data dependent: we exploit the input data in order to define the model
parameters and restrict their range. Note that our space of models is both nonparametric (the
number of parameters increase with the size of the data) and finite (each parameter is discrete
with a range bounded according to the input data). To select the best model, we adopt a Bayesian
approach and define a prior distribution on the model parameters. Following the principle of
parsimony, our prior exploits the hierarchy of the parameters and is uniform at each stage of this
hierarchy. We then obtain an analytic formula that evaluates the exact posterior probability of
each data grid model. Finally, we exploit the combinatorial algorithm described in Section 5.5
to efficiently search the space of data grid models.

5.3.3. Evaluation Criterion for Supervised Data Grids

We present in Definition 5.1 a family of multivariate partitioning models and select the best
model owing to a Bayesian model selection approach.

Definition 5.1 A data grid classification model is defined by a subset of selected input vari-
ables, for each selected variable by a univariate partition, into intervals in the numerical case

103

BOULLÉ

and into groups of values in the categorical case, and by a multinomial distribution of the output
values in each cell of the data grid resulting from the cross-product of the univariate partitions.

Notation.

• N: number of instances,
• Y : output variable,
• J: number of output values,
• X1, . . . ,XK : input variables,
• K: number of input variables,
• K : set of input variables (|K |= K),
• Kn: subset of numerical input variables,
• Kc: subset of categorical input variables,
• Vk,k ∈ Kc: number of values of the categorical input variable Xk,
• Ks: number of selected input variables,
• Ks: subset of selected input variables (|Ks|= Ks),
• Ik: number of parts (intervals or groups of values) in the univariate partition of input

variable Xk,
• Ni1i2...iK : number of instances in the input data cell (i1, i2, . . . , iK),
• Ni1i2...iK j: number of instances of output value j in the input data cell (i1, i2, . . . , iK).

Like the bivariate case, presented in Section 5.3.1, any input information is used to define
the family of the model. For example, the numbers of instances per cell Ni1i2...iK do not belong
to the parameters of the data grid model: they are derived from the definition of the univariate
partitions of the selected input variables and from the dataset. These numbers of instances
allow the specification of the multinomial distribution of the output values in each input cell to
be constrained.

We now introduce in Definition 5.2 a prior distribution on the parameters of the data grid
models.

Definition 5.2 The hierarchical prior of the data grid models is defined as follows:

• the number of selected input variables is uniformly distributed between 1 and K,
• for a given number KS of selected input variables, the subsets of KS variables are uni-

formly distributed (with replacement),
• the numbers of input parts, are independent from each other, and uniformly distributed

between 1 and N for numerical variables, between 1 and Vk for categorical variables,
• for each numerical input variable and for a given number of intervals, every partition

into intervals is equiprobable,
• for each categorical input variable and for a given number of groups, every partition into

groups is equiprobable,
• for each cell of the input data grid, every distribution of the output values is equiprobable,
• the distributions of the output values in each cell are independent from each other.

104

5. DATA GRID MODELS FOR PREPARATION AND MODELING IN SUPERVISED LEARNING

Applying the MODL approach, this prior exploits the hierarchy of the parameters and is
uniform at each stage of this hierarchy.

For the variable selection parameters, we reuse the prior introduced by Boullé (2007b) in the
case of the selective naïve Bayes classifier. We first choose the number of variables and second
the subset of selected variables. For the number of selected variables Ks, we adopt a uniform
prior between 0 and K variables, representing (K+1) equiprobable alternatives. For the choice
of the Ks variables, we assign the same probability to every subset of Ks variables. The number
of combinations

�K
Ks

�
seems the natural way to compute this prior, but it has the disadvantage

of being symmetric. Beyond K/2 variables, adding variables is favored. As we prefer simpler
models, we propose to use the number of combinations with replacement

�K+Ks−1
Ks

�
, which leads

to a prior probability decreasing with the number of variables.
For the specification of each univariate partition, we reuse the prior presented by Boullé

(2006) for supervised discretization of numerical variables and by Boullé (2005) for supervised
value grouping of categorical variables (see Section 5.2). We apply the Bayesian model selec-
tion approach and obtain the evaluation criterion of a data grid model in Formula 5.3.

log(K +1)+ log
�

K +Ks −1
Ks

�

+ ∑
k∈Ks∩Kn

�
logN + log

�
N + Ik −1

Ik −1

��
+ ∑

k∈Ks∩Kc

(logVk + logB(Vk, Ik))

+
I1

∑
i1=1

I2

∑
i2=1

. . .
IK

∑
iK=1

log
�

Ni1i2...iK + J−1
J−1

�

+
I1

∑
i1=1

I2

∑
i2=1

. . .
IK

∑
iK=1

�
logNi1i2...iK !−

J

∑
j=1

logNi1i2...iK j!

�

(5.3)

The first line in Formula 5.3 corresponds to the prior for variable selection. As in the uni-
variate case, the second line is related to the prior probability of the discretization parameters
(like in Formula 5.1) for the selected numerical input variables and to that of the value group-
ing parameters (like in Formula 5.2) for the selected categorical input variables. The binomial
terms in the third line represent the choice of the multinomial distribution of the output values in
each cell of the input data grid. The multinomial terms in the last line represent the conditional
likelihood of the output values given the data grid model.

5.3.4. Relation with Information Theory

Let us first introduce the null model M/0, where no input variable is selected. The null model is
composed of a single cell containing all the instances. Applying Formula 5.3, the cost c(M/0) of
the null model (its value according to evaluation criterion 5.3) reduces to

c(M/0) = log(K +1)+ log
�

N + J−1
J−1

�
+ log

N!
N1!N2! . . .NJ!

,

where Nj denotes the frequency of the output value j. This corresponds to the posterior proba-
bility of a multinomial model of the output variable, independently of any input variable. To get
an asymptotic evaluation of the cost of the null model, we now introduce the Shannon entropy
H(Y) (Shannon, 1948) of the output variable, H(Y) = −∑J

j=1 p j log p j, where p j if the prior
probability of the output value j. Using the approximation logN! = N(logN − 1)+O(logN)
based on Stirling’s formula, the cost of the null model is asymptotically equivalent to N times

105

BOULLÉ

the Shannon entropy of the output variable:

c(M/0) = NH(Y)+O(logN). (5.4)

As the negative log of a probability can be interpreted as a coding length (Shannon, 1948), our
model selection technique is closely related to the minimum description length (MDL) approach
(Rissanen, 1978; Hansen and Yu, 2001; Grünwald et al., 2005), which aims to approximate the
Kolmogorov complexity (Li and Vitanyi, 1997) for the coding length of the output data. The
Kolmogorov complexity is the length of the shortest computer program that encodes the output
data given the input data.

Overall, our prior approximates the Kolmogorov complexity of the data grid model given the
input data and our conditional likelihood encodes the output values given the data grid model.
In our approach, the choice of the null model corresponds to the lack of predictive information.
The coding length of the null model is asymptotically equivalent to the Shannon entropy the
output data (cf. Formula 5.4), which corresponds to a basic encoding of the output data, with
no use of the input data. This is close to the idea of Kolmogorov, who considers data to be
random if its algorithmic complexity is high, that is if it cannot be compressed significantly. This
makes our approach very robust, since detecting predictive information using data grid models
is necessarily related to a coding length better than that of the null model, thus to non random
patterns according Kolmogorov’s definition of randomness. This robustness has been confirmed
using extensive experiments in the univariate case (Boullé, 2006, 2005), and is evaluated in the
multivariate case in Section 5.6.

5.4. Data Grid Models for Coclustering of Instances and Variables
In (Boullé, 2008b), we have investigated the extension of data grid models to unsupervised
learning, in order to evaluate the joint probability distribution of any subset of variables, nu-
merical or categorical. In Section 5.4.1, we present a detailed description of these models in
the case of two categorical variables. In Section 5.4.2, we show how to apply such bivariate
categorical models to the problem of coclustering the instances and variables of a dataset, as a
data preparation technique for supervised learning.

5.4.1. Bivariate Value Grouping of Categorical Variables

In this section, we focus on the case of two categorical variables. We introduce unsupervised
bivariate data grid models and their evaluation criterion. We then show how such models can
be interpreted as nonparametric models of the correlation between the variables.

5.4.1.1. PRESENTATION

Our objective is to provide a joint description of two categorical variables Y1 and Y2, as illus-
trated in Figure 5.2. In the case of categorical variables with many values, the contingency
table between the variables is sparse and does not allow the identification of reliable correla-
tions. Standard statistical tests rely on approximations which are valid only asymptotically. For
example, the chi-square test requires an expected frequency of at least 5 in each cell of the con-
tingency table (Cochran, 1954), which does not permit its application in sparse cases. Grouping
the values of each variable allows the cell frequencies to be raised (at the expense of potentially
mixing interesting patterns), and gives greater confidence in the observed correlation. However,
since many grouping models might be considered, there is a risk of overfitting the data. The
issue is to find a trade-off between the quality of the density estimation and the generalization
ability, on the basis of the granularity of the grid.

106

5. DATA GRID MODELS FOR PREPARATION AND MODELING IN SUPERVISED LEARNING

D /0 • /0 •
C • /0 • /0
B /0 • /0 •
A • /0 • /0

a b c d

{B, D} /0 •
{A, C} • /0

{a, c} {b, d}

Figure 5.2: Example of joint density for two categorical variables Y1 having 4 values a, b, c, d
and Y2 having 4 values A, B, C, D. The initial contingency table on the left contains
instances only for one half of the cells (tagged as •), and the remaining cells are
empty. After the bivariate value grouping, the preprocessed contingency table on
the right provides a synthetic description of the correlation between Y1 et Y2.

5.4.1.2. FORMALIZATION

Our objective is to describe the joint distribution of the data, which turns into describing the
value of the instances for each variable. We introduce a family of unsupervised partitioning
models, based on groups of values for each variable and on a multinomial distribution of all
the instances on the cells of the resulting data grid. This family of models is formalized in
Definition 5.3.

Definition 5.3 An unsupervised bivariate value grouping model is defined by:

• a number of groups for each variable,
• for each variable, the repartition of the values into the groups of values,
• the distribution of the instances of the data sample among the cells of the resulting data

grid,
• for each variable and each group, the distribution of the instances of the group on the

values of the group.

Notation.

• Y1,Y2: variables (both considered as output variables)
• V1,V2: number of values for each variable (assumed as prior knowledge)
• N: number of training instances
• D = {D1,D2, . . . ,Dn}: training instances
• J1,J2: number of groups for each variable
• G = J1J2: number of cells in the resulting data grid
• j1(v1), j2(v2): index of the group containing value v1 (resp. v2)
• m j1 ,m j2 : number of values in group j1 (resp. j2)
• nv1 ,nv2 : number of instances for value v1 (resp. v2)
• Nj1 : number of instances in the group j1 of variable Y1

• Nj2 : number of instances in the group j2 of variable Y2

• Nj1 j2 : number of instances in the cell (j1, j2) of the data grid

107

BOULLÉ

We assume that the numbers of values V1 and V2 per categorical variable are known in ad-
vance and we aim to model the joint distribution of the finite data sample of size N on these
values. The family of models introduced in Definition 5.3 is completely defined by the param-
eters describing the partition of the values into groups of values

J1,J2,{ j1(v1)}1≤v1≤V1 ,{ j2(v2)}1≤v2≤V2 ,

by the parameters of the multinomial distribution of the instances on the data grid cells

{Nj1 j2}1≤ j1≤J1,1≤ j2≤J2 ,

and by the parameters of the multinomial distribution of the instances of each group on the
values of the group

{nv1}1≤v1≤V1 ,{nv2}1≤v2≤V2 .

The numbers of values per groups m j1 and m j2 are derived from the specification of the
partitions of the values into groups: they do not belong to the model parameters. Similarly, the
number of instances in each group can be deduced by adding the cell frequencies in the rows or
columns of the grid, according to Nj1 = ∑J2

j2=1 Nj1 j2 and Nj2 = ∑J1
j1=1 Nj1 j2 .

In order to select the best model, we apply a Bayesian approach, using the prior distribution
on the model parameters described in Definition 5.4.

Definition 5.4 The prior for the parameters of an unsupervised bivariate value grouping model
are chosen hierarchically and uniformly at each level:

• the numbers of groups J1 and J2 are independent from each other, and uniformly dis-
tributed between 1 and V1 for Y1, between 1 and V2 for Y2,

• for a given number of groups J1 of Y1, every partition of the V1 values into J1 groups is
equiprobable,

• for a given number of groups J2 of Y2, every partition of the V2 values into J2 groups is
equiprobable,

• for a data grid of given size (J1,J2), every distribution of the N instances on the G= J1,J2
cells of the grid is equiprobable,

• for a given group of a given variable, every distribution of the instances of the group on
the values of the group is equiprobable.

Taking the negative log of the probabilities, this provides the evaluation criterion given in
Theorem 5.5.

Theorem 5.5 An unsupervised bivariate value grouping model distributed according to a uni-
form hierarchical prior is Bayes optimal if the value of the following criteria is minimal

logV1 + logV2 + logB(V1,J1)+ logB(V2,J2)

+ log
�

N +G−1
G−1

�
+

J1

∑
j1=1

log
�

Nj1 +m j1 −1
m j1 −1

�
+

J2

∑
j2=1

log
�

Nj2 +m j2 −1
m j2 −1

�

+ logN!−
J1

∑
j1=1

J2

∑
j2=1

logNj1 j2 !

+
J1

∑
j1=1

logNj1 !+
J2

∑
j2=1

logNj2 !−
V1

∑
v1=1

lognv1 !−
V2

∑
v2=1

lognv2 !

(5.5)

108

5. DATA GRID MODELS FOR PREPARATION AND MODELING IN SUPERVISED LEARNING

The first line in Formula 5.5 relates to the prior distribution of the group numbers J1 and
J2 and to the specification the partition of the values in groups for each variable. These terms
are the same as in the case of the MODL supervised univariate value grouping method (Boullé,
2005), summarized in Section 5.2.2. The second line in Formula 5.5 represents the specification
of the parameters of the multinomial distribution of the N instances on the G cells of the data
grid, followed by the specification of the multinomial distribution of the instances of each group
on the values of the group. The third line stands for the likelihood of the distribution of the
instances on the data grid cells, by the mean of a multinomial term. The last line corresponds
to the likelihood of the distribution of the values locally to each group, for each variable.

5.4.1.3. INTERPRETATION

The null model M/0 contains one single cell and Formula 5.5 reduces to

c(M/0) = logV1 + logV2 + log
�

N +V1 −1
V1 −1

�
+ log

�
N +V2 −1

V2 −1

�

+ log
N!

nv1 !nv2 ! . . .nV1 !
+ log

N!
nv1 !nv2 ! . . .nV2 !

(5.6)

which corresponds to the posterior probability of the multinomial model for the distribution
of the instances on the values, for each variable. This means that each variable is described
independently.

More complex data grid models allow a nonparametric description of the correlation be-
tween the variables, by the means of cells where groups of values are correlated. The penal-
ization of the model is balanced by a shorter description of each variable given the model. The
best trade-of is searched using a Bayesian model selection approach.

Example with two identical categorical variables. Let us consider two identical categorical
variables Y1 =Y2 and the maximum data grid model MMax with as many groups as values (J1 =
V1), as illustrated in Figure 5.3. The evaluation criterion of the data grid is equal to

c(MMax) = 2logV1 +2logB(V1,V1)+ log
�

N +V 2
1 −1

V 2
1 −1

�
+ log

N!
nv1 !nv2 ! . . .nV1 !

(5.7)

d /0 /0 /0 •
c /0 /0 • /0
b /0 • /0 /0
a • /0 /0 /0

a b c d

Figure 5.3: Bivariate value grouping data grid with as many groups as values for two identical
categorical variables Y1 = Y2, having four values a, b, c and d.

If we compare c(M/0) in Formula 5.6 to c(MMax) in Formula 5.7 in the case of two identical
categorical variables, we observe an overhead in the prior terms of the maximum model (spec-
ification of the value grouping with Bell numbers and specification of the distribution of the N
instances on the V1

2 cells of the grid). On the other hand, the likelihood term is divided by a
factor two: since the correlation between the variables is perfectly detected using the data grid

109

BOULLÉ

model, describing the joint distribution of the data given the model reduces to describing the
distribution of one single variable.

Let us now compare Formulae (5.6) and (5.7) in the asymptotic case. The multinomial term
for the distribution of the values of a categorical variable can be approximated with

log
N!

nv1 !nv2 ! . . .nV1 !
≈ NH(Y1),

where H(Y1) is the Shannon entropy of variable Y1 (Shannon, 1948). In the case of the null
model having one single cell, we get

c(M/0)≈ 2(V1 −1) logN +2NH(Y1).

In the case of the maximum model with as many groups as values, we obtain

c(MMax)≈ (V 2
1 −1) logN +NH(Y1).

The maximum model, which detects the correlation between the variables, will thus be preferred
as soon as there are enough instances compared to the number of values. It is worth noting that
Formulae (5.6) and (5.7) allow us to select the best model in the non-asymptotic case.

5.4.2. Coclustering of Instances and Variables

In this section, we first introduce the application of unsupervised bivariate data grids to the
coclustering problem, and then describe how to build a classifier on the basis of a coclustering
model.

5.4.2.1. COCLUSTERING

A coclustering (Hartigan, 1972) is the simultaneous clustering of the rows and columns of a
matrix. In case of sparse binary datasets, coclustering is an appealing data preparation technique
to identify the correlation between clusters of instances and clusters of variables (Bock, 1979).

Let us consider a sparse binary dataset with N instances, K variables and V non-null values.
A sparse dataset can be represented in tabular format, with two columns and V rows. This
corresponds to a new dataset with two variables named “Instance ID” and “Variable ID” where
each instance is a couple of values (Instance ID, Variable ID), like in Figure 5.4.

V1 V2 V3 V4 V5 . . .
I1 0 1 0 0 0 . . .
I2 0 0 1 1 0 . . .
I3 0 1 0 0 0 . . .
I4 0 0 0 1 1 . . .
...

...
...

...
...

...
. . .

−−−−→

InstanceID VariableID
I1 V2
I2 V3
I2 V4
I3 V2
I4 V4
I4 V5
...

...

Figure 5.4: Sparse binary dataset: from the sparse (instances × variables) table to the dense
bivariate representation.

The application of bivariate unsupervised data grid models forms groups of instance IDs
and groups of variable IDs, so as to maximize the correlation between instances and variables.

110

5. DATA GRID MODELS FOR PREPARATION AND MODELING IN SUPERVISED LEARNING

We expect to find “natural” patterns both in the space of instances and in the space of variables.
It is worth noting that the clusters retrieved by data grid models are non-overlapping, since they
form a partition of the whole dataset.

5.4.2.2. APPLICATION TO SEMI-SUPERVISED LEARNING

We apply a semi-supervised learning approach (Chapelle et al., 2006) to exploit all the data
from the train, validation and test datasets. In the first step, all of the instances are processed
without any output label to identify the “natural” clusters of instances owing to the data grid
coclustering technique. In a second step, the available labeled instances are used to describe
the output distribution in each cluster of instances. The label of a test instance is then predicted
according to the output distribution of its cluster.

Preprocessing the data with semi-supervised coclustering makes sense under the assumption
that the “natural” clusters are correlated with the output values (predefined clusters). We expect
this assumption to be true for some datasets, especially in the pattern recognition domain.

5.5. Optimization Algorithm for Multivariate Data Grids
The space of data grid models is so large that straightforward algorithms will almost surely fail
to obtain good solutions within a practicable computational time.

Given that the MODL criterion is optimal, the design of sophisticated optimization algo-
rithms is both necessary and meaningful. In this section, we describe such algorithms. They
finely exploit the sparseness of the data grids and the additivity of the MODL criterion, and
allow a deep search in the space of data grid models with O(KN) memory complexity and
O(N

√
N logN max(K, logN)) time complexity.

5.5.1. Greedy Bottom-Up Heuristic

Let us first focus on the case of numerical input variables. The optimization of a data grid is a
combinatorial problem. For each input variable Xk, there are 2N possible univariate discretiza-
tions, which represents

�
2N�K possible multivariate discretizations. An exhaustive search over

the whole space of models is unrealistic.
We describe in Algorithm 5.1 a greedy bottom up merge heuristic (GBUM) to optimize the

data grids. The method starts with the maximum data grid MMax, which corresponds to the finest
possible univariate partitions, based on single value parts, intervals or groups. It evaluates all
the merges between adjacent parts for any variables (ties are broken randomly), and performs
the best merge if the evaluation criterion decreases after the merge. The process is iterated until
no further merge can decrease the criterion.

Each evaluation of a data grid requires O(NK) time, since the initial data grid model MMax
contains NK cells. Each step of the algorithm relies on O(N) evaluations of interval merges
times the number K of variables. There are at most O(KN) steps, since the data grid becomes
equal to the null model M/0 (one single cell) once all the possible merges have been performed.
Overall, the time complexity of the algorithm is O(K2N2NK) using a straightforward imple-
mentation of the algorithm. However, the GBUM algorithm can be optimized in O(K2N logN)
time, as shown in next section and demonstrated in (Boullé, 2008a) in the bivariate case.

5.5.2. Optimized Implementation of the Greedy Heuristic

The optimized algorithm mainly exploits the sparseness of the data and the additivity of the
evaluation criterion. Although a data grid may contain O(NK) cells, at most N cells are non

111

BOULLÉ

Algorithm 5.1: Greedy Bottom-Up Merge heuristic (GBUM)
Require: M {Initial data grid solution}
Ensure: M∗,c(M∗)≤ c(M) {Final solution with improved cost}

1: M∗ ← M
2: while improved solution do
3: {Evaluate all the merges between adjacent parts}
4: c∗ ← ∞,m∗ ← /0
5: for all Variable Xk ∈ K do
6: for all Merge m between two adjacent parts of variable Xk do
7: M� ← M∗+m {Evaluate merge m on data grid M∗}
8: if c(M�)< c∗ then
9: c∗ ← c(M�),m∗ ← m

10: end if
11: end for
12: end for
13: {Perform best merge}
14: if c∗ < c(M∗) then
15: M∗ ← M∗+m∗

16: end if
17: end while

empty. Thus, each evaluation of a data grid can be performed in O(N) time owing to a specific
algorithmic data structure.

The additivity of the evaluation criterion means that it can be decomposed according to
Definition 5.6 on the hierarchy of the components of the data grid: grid size, variables, parts
and cells.

Definition 5.6 An evaluation criterion c(M) of a data grid model M is additive if it can be
decomposed as a sum of terms according to

c(M) = c(G) (I)+
K

∑
k=1

c(V) (Xk, Ik)+
K

∑
k=1

Ik

∑
ik=1

c(P)
�

P(k)
ik

�
+

I1

∑
i1=1

I2

∑
i2=1

. . .
IK

∑
ik=1

c(C) (Ci1i2...iK)

where

• the grid criterion c(G) (I) relies only on the sizes I = {I1, I2, . . . , IK} of the univariate
partitions of the data grid,

• the variable criterion c(V) (Xk, Ik) relies only on features of the input variable Xk and on
the number of parts Ik of its partition,

• the part criterion c(P)
�

P(k)
ik

�
for each part P(k)

ik of the univariate partition of the input
variable Xk relies only on features of the part,

• the cell criterion c(C) (Ci1i2...iK) for each cell Ci1i2...iK of the data grid relies only on fea-
tures of the cell, and is null for empty cells.

One can easily check that the evaluation criteria introduced in Formula 5.3 or Formula
5.5 are additive. Using this additivity property, all the merges between adjacent parts can be
evaluated in O(N) time. Furthermore, when the best merge is performed, the only merges that
need to be re-evaluated for the next optimization step are the merges that share instances with
the best merge. Since the data grid is sparse, the number of partial re-evaluations of the criterion

112

5. DATA GRID MODELS FOR PREPARATION AND MODELING IN SUPERVISED LEARNING

is limited by the number of instances, not by the number of cells in the data grids. Sophisticated
algorithmic data structures and algorithms, detailed in (Boullé, 2008a), are necessary to exploit
these optimization principles and guarantee a time complexity of O(K2N logN).

5.5.3. Post-Optimization

The greedy heuristic is time efficient, but it may fall into a local optimum. First, the greedy
heuristic may stop too soon and produce too many parts for each input variable. Second, the
boundaries of the intervals may be sub-optimal since the merge decisions of the greedy heuristic
are never reconsidered. We propose to reuse the post-optimization algorithms described in
(Boullé, 2006) in the case of univariate discretization.

In a first stage called exhaustive merge, the greedy heuristic merge steps are performed
without referring to the stopping condition until the data grid consists of one single cell. The
best encountered data grid is then memorized. This stage allows escaping local minima with
several successive merges and needs O(K2N logN) time.

In a second stage called greedy post-optimization, a hill-climbing search is performed in the
neighborhood of the best data grid. This search alternates the optimization on each input vari-
able. For each given input Xk, we freeze the partition of all the other input variables and optimize
the partition of Xk. Since a multivariate additive criterion turns out to be an univariate additive
criterion once all except one univariate partitions are frozen, we reuse the post-optimization
algorithms described in (Boullé, 2006) for univariate discretizations. This process is repeated
for all variables until no further improvement can be obtained. This algorithm converges very
quickly in practice and requires only a few steps.

We summarize the post-optimization of data grids in Algorithm 5.2.

Algorithm 5.2: Post-optimization of a Data Grid
Require: M {Initial data grid solution}
Ensure: M∗;c(M∗)≤ c(M) {Final solution with improved cost}

1: M∗ ← call exhaustive merge (M)
2: while improved solution do
3: {Take a random permutation of K }
4: for all Variable Xk ∈ K do
5: Freeze the univariate partition of all the variables except Xk
6: M∗ ← call univariate post-optimization (M∗) for variable Xk
7: end for
8: end while

5.5.4. Meta-Heuristic

Since the GBUM algorithm is time efficient, it is then natural to apply it several times in order
to better explore the search space. This is done according to the variable neighborhood search
(VNS) meta-heuristic introduced by Hansen and Mladenovic (2001), which consists of applying
the primary heuristic to a random neighbor of the solution. If the new solution is not better, a
bigger neighborhood is considered. Otherwise, the algorithm restarts with the new best solution
and a minimal size neighborhood. The process is controlled by the maximum length of the
series of growing neighborhoods to explore.

For the primary heuristic, we choose the greedy bottom-up heuristic followed by the post-
optimization heuristic. In order to “purify” the randomly generated solutions given to the pri-

113

BOULLÉ

mary heuristic, we also incorporate a pre-optimization heuristic, that exploits the same principle
as the post-optimization heuristic.

This meta-heuristic is described in Algorithm 5.3. According to the level of the neighbor-
hood size l, a new solution M� is generated close to the current best solution. We define the
structure of neighborhood by exploiting at most KMax = log2 N new variables. For each ex-
ploited variable, a random discretization is obtained with the choice of random interval bounds
without replacement, with at most IMax = N

1
KMax intervals. This heuristic choice for the maxi-

mum neighborhood size results from the analysis of Formula 5.3. In the case of two equidis-
tributed output values, if we have selected KMax variables with IMax intervals per variable and
exactly one instance per input cell, the cost of the model is slightly worse than that of the null
model with no selected variable. This means that data grids that are too sparse are not likely to
be informative according to Formula 5.3.

The VNS meta-heuristic only requires the number of sizes of neighborhood as a parameter.
This can easily be turned into an anytime optimization algorithm, by calling the VNS algorithm
iteratively with parameters of increasing size and stopping the optimization only when the al-
located time is elapsed. In this paper, all the experiments are performed by calling the VNS
algorithm with successive values of 1,2,4, . . . ,2T for the parameter MaxLevel.

In order to improve the initial solution, we choose to first optimize the univariate partition of
each variable and to build the initial solution from a cross-product of the univariate partitions.
Although this cannot help in case of strictly bivariate patterns (such as XOR for example), this
might be helpful otherwise.

Algorithm 5.3: VNS meta-heuristic for data grid optimization
Require: M {Initial data grid solution}
Require: MaxLevel {Optimization level}
Ensure: M∗,c(M∗ ≤ c(M) {Final solution with improved cost}

1: Level ← 1
2: while Level ≤ MaxLevel do
3: {Generate a random solution in the neighborhood of M∗}
4: M�� ← random solution with Ks =

Level
MaxLevel log2 N new selected variables and Level

MaxLevel N
1

Ks

new intervals per selected variable
5: M� ← M∗ ∪M��

6: {Optimize and evaluate the new solution}
7: M� ← call Pre-Optimization(M�)
8: M� ← call Greedy Bottom-Up Merge(M�)
9: M� ← call Post-Optimization(M�)

10: if c(M�)< c(M∗) then
11: M∗ ← M�

12: Level ← 1
13: else
14: Level ← Level +1
15: end if
16: end while

5.5.5. The Case of Categorical Variables

In the case of categorical variables, the combinatorial problem is worse still for large num-
bers of values V . The number of possible partitions of the values is equal to the Bell number

114

5. DATA GRID MODELS FOR PREPARATION AND MODELING IN SUPERVISED LEARNING

B(V) = 1
e ∑∞

k=1
kV

k! which is far greater than the O(2N) possible discretizations. Furthermore,
the number of possible merges between parts is O(V 2) for categorical variables instead of O(N)
for numerical variables. Specific pre-processing and post-processing heuristics are necessary
to efficiently handle the categorical input variables. Mainly, the number of groups of values is
bounded by O(

√
N) in the algorithms, and the initial and final groupings are locally improved

by the exchange of values between groups. This allows us to keep an O(N) memory complexity
per variable and bound the time complexity by O(N

√
N logN) per categorical variable, with an

overall time complexity of O(K2N
√

N logN) for the complete greedy heuristic.

5.5.6. Summary of the Optimization Algorithms

The optimization of multivariate data grid models can be summarized as an extension of the
univariate discretization and value grouping algorithms to the multivariate case.

The main heuristic is a greedy bottom-up heuristic, which starts from an initial fine grain
data grid and iteratively performs the best merges between two adjacent parts of any input
variable. Post-optimizations are carried out to improve the best data grid, by exploiting a local
neighborhood of the solution. The main optimization heuristic (surrounded by pre-optimization
and post-optimization steps) is run from several initial solutions, coming from the exploration
of a global neighborhood of the best solution using a meta-heuristic.

These algorithms are efficiently implemented, on the basis of two main properties of the
problem: the additivity of the criterion, which consists of a sum of independent terms related
to the dimension of the data grid, the variables, the parts and the cells, and the sparseness of
the data grids, which contain at most N non empty cells for O(NK) cells. Furthermore, in the
meta-heuristic, we restrict to data grids with at most KMax = log2 N variables, which reduces
the time complexity of the main greedy heuristic.

Sophisticated algorithms, detailed in (Boullé, 2008a), are necessary to make the most of
these problem properties and to reach the following algorithmic performance:

• O(KN) memory complexity for K variables and N instances,
• O(KN logN max(K, logN)) if all the input variables are numerical,
• O(KN

√
N logN max(K, logN)) in the general case of numerical variables and categorical

variables having large number of input values (V ≥
√

N).

5.6. Experiments on Artificial Datasets
In the bivariate case, the data grid models have been intensively evaluated on artificial and real
datasets in (Boullé, 2007a). In this section, we evaluate the multivariate data grid models on
artificial datasets, where the true data distribution is known. Two patterns are considered: noise
and multivariate XOR. This enables the evaluation of both the reliability of the method and its
rate of convergence for the detection of complex patterns. We also analyze the effect of each
part of the algorithm and study the limits of the method.

5.6.1. The Noise Pattern

The purpose of the noise pattern experiment is to evaluate the noise resistance of the method,
under varying sample size and the number of input variables. The noise pattern consists of an
output variable independent from the input variables. The expected data grid contains one single
cell, meaning that the output distribution is independent from the input variables. The output
variable is equidistributed on two values. The experiment is performed on a set of sample
sizes ranging from 2 to 1000 instances, for 1, 2 and 10 numerical input variables uniformly

115

BOULLÉ

distributed on the [0, 1] numerical domain. The criterion evaluated is the number of cells in
the data grid. In order to obtain reliable results, the experiment is performed one million times
on randomly generated training datasets for each sample size and number of input variables.
In order to study the impact of variable selection in the prior distribution of the models (terms
log(K + 1)+ log

�K+Ks−1
Ks

�
in Formula 5.3), we perform the experiment with and without the

variable selection terms. Figure 5.5 presents the mean cell number for each sample size and
number of input variable, with and without the prior for variable selection.

Without variable selection prior

0.00001

0.0001

0.001

0.01

0.1

1

1 10 100 1000

Sample
Size

% informative
data grids

K=1
K=2
K=10
1/N

With variable selection prior

0.00001

0.0001

0.001

0.01

0.1

1

1 10 100 1000

Sample
Size

% informative
data grids

K=1
K=2
K=10
1/N

Figure 5.5: Percentage of informative data grids having more than one cell, for 1, 2 and 10
numerical input variable independent from the target variable, with and without
prior for variable selection.

The results demonstrate the robustness of the approach: very few data grids are wrongly
detected as informative, and the percentage of false detection rapidly decreases with the sample
size. However, without prior for variable selection, the percentage of false detection grows
almost linearly with the number of input variables. This makes sense since a set of K variables
can be detected as an informative multivariate data grid if at most one of the K variables is
detected as an informative univariate discretization.

When the prior for variable selection is accounted for, the percentage of wrongly informative
models falls down by two orders of magnitude, and the rates of false detection are rapidly con-
sistent for the different numbers of input variables. The selection prior significantly strengthens
the robustness of the method and makes it almost independent from the number of variables in
the representation space.

5.6.2. The Multivariate XOR Pattern

The purpose of the XOR pattern experiment is to evaluate the capacity of the method to detect
complex correlations between the input variables. The pattern consists of an output variable
which depends upon the input variables according to a XOR schema, as illustrated in Figure 5.6.
All the input variables are uniformly distributed on the [0, 1] numerical domain. For each input
variable, we compute a Boolean index according to whether the input value is below or beyond
0.5, and the output value is assigned a Boolean value related to the parity of the sum of the input
indexes, which corresponds to a XOR pattern.

We first present a theoretical threshold of detection for the XOR pattern, then illustrate
the behavior of the algorithms for this problem, and finally report experimental results on this
complex pattern detection problem.

116

5. DATA GRID MODELS FOR PREPARATION AND MODELING IN SUPERVISED LEARNING

Figure 5.6: Multivariate XOR pattern in dimension 2 and 3.

5.6.2.1. THEORETICAL DETECTION THRESHOLD

Let us consider K input variables, Ks of which represent a multivariate XOR pattern related
to the output variable. The expected multivariate discretization for this pattern consists of a
data grid model MG with Ks selected input variables, each of which is discretized into two
intervals. The data grid model MG contains G = 2Ks cells. In order to obtain a closed formula,
let us assume that these cells contain the same number NG = N/G of instances. Let us evaluate
the null model M/0, reduced to one single cell, and the expected XOR data grid model MG.
According to Formula 5.3, we get

c(M/0) = log(K +1)+ log(N +1)+ log
N!

N1!N2!
, (5.8)

c(MG) = log(K +1)+ log
�

K +Ks −1
Ks −1

�
+ (5.9)

Ks logN +Ks log(N +1)+G log(NG +1).

For NG = 1, the null model is always preferred: one instance per cell is not enough to detect
the multivariate pattern.

For small values of K and for Ks = K, we perform a numerical simulation to compute the
minimum cell frequency NG such that the cost c(MG) of the multivariate XOR model is lower
than that of the null model. The results, reported in Figure 5.7, indicate that at least ten instances
per cell, representing overall forty instances, are necessary to detect the bi-dimensional XOR
pattern. This cell frequency threshold decreases with the number of input variables, and falls
down to two instances per cell when the number of input variables is beyond ten. Let us notice
that in spite of a very small cell frequency threshold, the whole dataset frequency threshold still
grows exponentially with the number of variables.

We now extend these simulation results in the asymptotic case, assuming that each cell
contains exactly NG = N/G instances. From Equations (5.8) and (5.9), we get

c(MG) = c(M/0)+ log
�

K +Ks −1
Ks −1

�
+(2Ks−1) logN−N(log2− 1

NG
log(NG+1))+O(logN).

This implies that for NG ≥ 2, the multivariate XOR model has an asymptotically lower cost
than that of the null model, even when the total number K of input variables exceeds the number
Ks of informative input variables.

Overall, about 2K+1 instances are sufficient to detect K-dimensional informative patterns,
which correspond to 2 instances per cell. Since this is close from the theoretical detection
threshold, this means that for a dataset consisting of N instances, it might be difficult to detect
patterns exploiting more than log2 N informative dimensions.

117

BOULLÉ

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of input variables
M

in
 c

el
l f

re
qu

en
cy

Figure 5.7: Min cell frequency necessary to detect a multivariate XOR pattern using a data grid
model. For example, for a 5-dimensional XOR, 6 instances per cell, or 192 = 25 ∗6
instances in the sample, allow to detect the pattern using a data grid of 32 cells.

5.6.2.2. EMPIRICAL ANALYSIS OF THE ALGORITHMS

Let us first analyze the behavior of the greedy bottom-up heuristic presented in Section 5.5.1.
This heuristic starts with the maximum data grid, which contains O(NK) cells for at most N
non-empty cells. During the whole merge process, O(KN) merges are necessary to transform
the maximum data grid with NK elementary cells into the null data grid with one single cell.
During the first (K−1)N merges, most of the merges between adjacent intervals concern merges
between two empty adjacent cells or merges between one non-empty cell and one empty cell.
When the data grid is too sparse, most interval merges do not involve “collisions” between non-
empty cells. According to Formula 5.3, the only cell merges that have an impact on the likeli-
hood of the data grid model are the “colliding” cell merges. This means that at the beginning of
the greedy bottom-up heuristic, the earlier merges are guided only by the prior distribution of
the models, not by their likelihood. These “blind” merges are thus likely to destroy potentially
interesting patterns.

To illustrate this behavior, we perform an experiment with the basic greedy heuristic de-
scribed in Algorithm 5.1 on a bi-dimensional XOR pattern. According to Formulas 5.8 and 5.9,
about 40 instances are sufficient to detect the pattern. However, the greedy bottom-heuristic
fails to discover the XOR pattern when the number of instance is below 1000.

The algorithms presented in Section 5.5 enhance the basic greedy heuristic using a random
initialization, a pre-processing step, the greedy bottom-up merge heuristic and a post-processing
step, as illustrated in Figure 5.8. The random initialization produces a dense enough data grid
with at least one instance per cell on average. This is achieved by selecting at most Ks =
log2 N input variables and N1/Ks parts per variable. The purpose of the pre-processing step is to
“purify” the initial solution, since a random solution is likely to be blind to informative patterns.
This pre-processing consists in moving the boundaries of the initial data grid, in order to get
“cleaner” initial cells, as illustrated in Figure 5.8. The greedy merge heuristic is then applied
on this dense cleaned data grid, and the merges are guided by the data, since the data grid
is sufficiently dense. The role of the post-processing step is to improve the final solution, by
exploring a local neighborhood of the solution consisting of interval splits, merges and moves
of interval boundaries.

All these steps are repeated several times in the VNS meta-heuristic described in Sec-
tion 5.5.4, which generates several random initial data grids of varying size. The only opti-

118

5. DATA GRID MODELS FOR PREPARATION AND MODELING IN SUPERVISED LEARNING

Initial random data grid

0

0.5

1

0 0.5 1
X1

X2

Pre-optimized data grid

0

0.5

1

0 0.5 1
X1

X2

Greedy optimized data grid

0

0.5

1

0 0.5 1
X1

X2

Post-optimized data grid

0

0.5

1

0 0.5 1
X1

X2

Figure 5.8: Main steps in the optimization algorithm: a random initial solution is first generated
to start with a dense enough data grid, then cleaned during a pre-processing step,
optimized with the greedy bottom-up merge heuristic and improved during the post-
processing step.

mization parameter relates to the number of iterations in the meta-heuristic, which controls the
intensity of the search.

A quantitative evaluation of the effect of each part of the algorithm is reported in (Boullé,
2008a) in the case of bivariate XOR patterns. The greedy heuristic alone is likely to be misled by
the sparsity of the data and needs a very large number of instances to discover the true patterns.
The meta-heuristic, which starts multiple times from dense enough random initial solutions,
manages to approximate the true patterns with about 100 times fewer instances than the greedy
heuristic. However, the random initialization process is not likely to produce candidate data
grids with accurate boundaries. This is corrected by the pre-optimization and post-optimization
heuristics.

All of the algorithmic components are useful in achieving an effective search of the space of
data grids and efficiently detecting informative patterns. Using these algorithms, the empirical
threshold for the detection of simple XOR patterns reaches the theoretical threshold, even with
one single iteration in the meta-heuristic. For example, bi-dimensional randomly generated
patterns require only 40 instances to be detected, and 5-dimensional XOR pattern only 200
instances. In the following sections, we study the detection of more complex XOR patterns,
which require more intensive search.

5.6.2.3. DETECTION OF A COMPLEX PATTERNS WITH FEW INSTANCES

In this experiment, we study the detection of a 10-dimensional XOR pattern in a 10-dimensional
input space. The experiment is performed on a set of sample sizes ranging from 1000 to 10000
instances, and repeated 100 times for each sample size. We evaluate the empirical detection
threshold for the VNS meta-heuristic, with optimization parameters T , where VNS(T) performs
around 2T iterations of the algorithm from a variety of random initial data grids. Figure 5.9
reports the average computation time for each sample size and for parameters of the VNS meta-
heuristic ranging from T = 1 to T = 12. We also report the threshold related to the sample size
and computation time, among which the XOR pattern is detected in 50% of the cases.

The results show that the empirical detection threshold is close to the theoretical thresh-
old: the pattern is never detected with 1000 instances but frequently detected with only 1500
instances, which is less than 2 instances per cell of the 10-dimensional XOR pattern. How-
ever, when the instance number is close to the theoretical threshold, the problem of finding the
correct 10 variable splits among N10 possible XOR patterns and (2N)10 potential multivariate

119

BOULLÉ

XOR(10) in 10 dimensions

1

10

100

1000

10000

1000 2000 3000 4000 5000 6000 7000 8000 9000

Sample size

Computation
time

VNS1
VNS5
VNS9
50% detection

Figure 5.9: Study of the algorithm for the detection of the 10-dimensional XOR pattern.

discretizations is very hard. In this case, detecting the pattern requires much more time than
when the instance number is large enough or when the pattern is simpler. For example, detect-
ing the pattern with only 1500 instances requires about one hundred times more computation
time than with 4000 instances

5.6.2.4. FINDING A NEEDLE IN A HAYSTACK

In this experiment, we study the detection of a 5-dimensional XOR pattern in a 10-dimensional
input space. We use the same protocol as in the previous case, and report the results in Fig-
ure 5.10.

XOR(5) in 10 dimensions

0.1

1

10

100

100 1000 10000

Sample size

Computation
time

VNS1
VNS5
VNS9
50% detection

Figure 5.10: Study of the algorithm for the detection of the 5-dimensional XOR pattern, hidden
in a 10-dimensional input space.

The results show that about 200 instances are sufficient to detect this pattern, which is
consistent with the theoretical threshold. However, whereas the 5-dimensional XOR pattern is
easily detected even within one or two iterations in the VNS meta-heuristic, the search in that
10-dimensional input space requires much more intensive search.

120

5. DATA GRID MODELS FOR PREPARATION AND MODELING IN SUPERVISED LEARNING

Apart from of the problem of finding the correct XOR boundaries, which is a difficult task,
the problem of variable selection complicates the detection of the pattern. The optimization al-
gorithm is restricted to the exploration of dense data grids, which consist of Kx ≤max(log2 N,K)
dimensions. Finding the XOR pattern requires us to select a subset of Kx input variables among
K, which is a superset of the Ks informative variables. The probability that such a subset con-
tains the informative variable is

�Kx
Ks
�
/
�K

Ks
�
. For example, for the detection of a 5-dimensional

XOR (Ks = 5) with 256 instances (Kx = log2 256 = 8), the probability of finding a potentially
good subset is 100% for K = 5, 22% for K = 10, 0.36% for K = 20 and 0.04% for K = 30.

We performed an experiment to detect the 5-dimensional XOR in 20 dimensions with sam-
ples of size 256. The result confirms that there are enough instances for a reliable detection
of the pattern, but the computational time necessary to detect the pattern in 50% of the cases
amounts to about one hundred times that in 10 dimensions. This result, consistent with the ratio
22/0.36, illustrates the problem of finding a needle in a haystack.

Overall, the evaluation criterion given in Formula 5.3 is able to reliably differentiate infor-
mative patterns from noise with very few instances. The detection of complex patterns is a
combinatorial problem, that is hard to solve when the number of instances is close to the detec-
tion threshold or when the informative patterns are hidden in large dimensional input spaces.
Our optimization algorithm succeeds in reliably and efficiently detecting information, with per-
formance close to the theoretical detection threshold.

5.7. Evaluation on the Agnostic Learning vs. Prior Knowledge Challenge
In this section, we first summarize the evaluation protocol of the challenge, then describe how
classifiers are built from data grid models, and finally report the results from a performance and
understandability point of view.

5.7.1. The Agnostic Learning vs. Prior Knowledge Challenge

The purpose of the challenge (Guyon, 2007; Guyon et al., 2007) is to assess the real added value
of prior domain knowledge in supervised learning tasks. Five datasets coming from different
domains are selected to evaluate the performance of agnostic classifiers vs. prior knowledge
classifiers. These datasets come into two formats, as shown in Table 5.1. In the agnostic format,
all the input variables are numerical. In the prior knowledge format, the input variables are both
categorical and numerical for three datasets and have a special format in the two other datasets:
chemical structure or text. The evaluation criterion is the test balanced error rate (BER).

Table 5.1: Challenge datasets with their prior and agnostic format.

Name Domain Num. ex. Prior Agnostic
train/valid/test features features

Ada Marketing 4147/415/41471 14 48
Gina Handwritting reco. 3153/315/31532 784 970
Hiva Drug discovery 3845/384/38449 Chem. struct. 1617
Nova Text classification 1754/175/17537 Text 16969
Sylva Ecology 13086/1309/130857 108 216

5.7.2. Building Classifiers from Data Grid Models

In this section, we describe three ways of building classifiers from data grid models.

121

BOULLÉ

5.7.2.1. DATA GRID

In this evaluation of data grid models, we consider one individual supervised data grid, the
MAP one. We build a classifier from a data grid model by first retrieving the cell related to a
test instance, and predicting the output conditional probabilities of the retrieved cell. For empty
cells, the conditional probability used for the prediction is that of the entire grid.

Data grid models can be viewed as a feature selection method, since the input variables
whose partition reduces to a single part can be ignored. The purpose of this experiment is
to focus on understandable models and evaluate the balance between the number of selected
variables and the predictive performance.

5.7.2.2. DATA GRID ENSEMBLE

In this evaluation, we focus on the predictive performance rather than on understandability, by
means of averaging the prediction of a large number of classifiers. This principle was success-
fully exploited in Bagging (Breiman, 1996) using multiple classifiers trained from re-sampled
datasets. This was generalized in Random Forests (Breiman, 2001), where the subsets of vari-
ables are randomized as well. In these approaches, the averaged classifier uses a voting rule
to classify new instances. Unlike this approach, where each classifier has the same weight, the
Bayesian Model Averaging (BMA) approach (Hoeting et al., 1999) weights the classifiers ac-
cording to their posterior probability. The BMA approach has stronger theoretical foundations,
but it requires both to be able to evaluate the posterior probability of the classifiers and to sample
their posterior distribution.

In the case of data grid models, the posterior probability of each model is given by an
analytic criterion. Concerning the problem of sampling the posterior distribution of data grid
models, we have to strike a balance between the quality of the sampling and the computation
time. We adopt a pragmatic choice by just collecting all the data grids evaluated during training,
using the optimization algorithms introduced in Section 5.5. We keep all the local optima
encountered in the VNS meta-heuristic and eliminate the duplicates.

An inspection of the data grids collected reveals that their posterior distribution is so sharply
peaked that averaging them according to the BMA approach almost reduces to the MAP model.
In this situation, averaging is useless. The same problem has been noticed by Boullé (2007b)
in the case of averaging Selective Naive Bayes models. To find a trade-off between equal
weights as in bagging and extremely unbalanced weights as in the BMA approach, we exploit a
logarithmic smoothing of the posterior distribution called compression-based model averaging
(CMA), like that introduced in (Boullé, 2007b).

To summarize, we collect the data grid models encountered during the data grid optimization
algorithm and weight them according to a logarithmic smoothing of their posterior probability
to build a data grid ensemble classifier.

5.7.2.3. COCLUSTERING

The coclustering method introduced in Section 5.4 applies on binary sparse datasets. Whereas
the supervised data grids are limited in practice to a small number of selected input variables
(see Section 5.6), the coclustering data grids are able to account for all the input variables.

The coclustering data grid is trained on all the available input data (train, validation and test),
then the available labeled instances are used to predict the output distribution in each cluster of
instances. In the case where a test instance belongs to a cluster with no labeled instance, we
iteratively merge this unlabeled cluster so as to keep the coclustering evaluation criterion as low
as possible, until at least one labeled cluster is encountered.

122

5. DATA GRID MODELS FOR PREPARATION AND MODELING IN SUPERVISED LEARNING

5.7.3. Evaluation of Supervised Data Grids

We first analyze the classification performance of supervised data grids, then focus on their
benefit for understandability.

5.7.3.1. CLASSIFICATION RESULTS

To evaluate the supervised data grid models, we use all the datasets in their agnostic format and
only three of them in their prior format (the ones that come in a tabular format). In the case of
the Sylva dataset in its prior format, we replace each subset (per record) of 40 binary SoilType
variables by one single categorical variable with 40 values. The resulting dataset has only 30
variables instead of 108.

The data grid techniques are able to predict the output conditional probabilities for each test
instance. When the evaluation criterion is the classification accuracy, predicting the class with
the highest conditional probability is optimal. This is not the case for the BER criterion used in
the challenge. We post-process each trained classifier by optimizing the probability threshold
in order to maximize the BER. This optimization is performed directly on the train dataset.

Our four submissions related to supervised data grid models are named Data Grid (MAP)
and Data Grid (CMA) in the prior or agnostic track and dated from February 27, 2007 for the
challenge March 1st, 2007 milestone. The classifiers are trained with the any time optimiza-
tion algorithm described in Section 5.5 using VNS(12) parameter. About 4000 data grids are
evaluated, needing around one hour optimization time per dataset. Tables 5.2 and 5.4 report our
results in the agnostic and prior track.

Table 5.2: Best challenge results versus our supervised data grid methods results for the
datasets in the agnostic track.

Dataset Winner Best BER Data Grid (CMA) Data Grid (MAP)
Ada Roman Lutz 0.166 0.1761 0.2068
Gina Roman Lutz 0.0339 0.1436 0.1719
Hiva Vojtech Franc 0.2827 0.3242 0.3661
Nova Mehreen Saeed 0.0456 0.1229 0.2397
Sylva Roman Lutz 0.0062 0.0158 0.0211

Table 5.3: Best challenge results versus our supervised data grid methods results for the
datasets in the agnostic track.

Table 5.4: Best challenge results versus our supervised data grid methods results for the Gina,
Hiva and Nova datasets in the prior track.

Dataset Winner Best BER Data Grid (CMA) Data Grid (MAP)
Ada Marc Boullé 0.1756 0.1756 0.2058
Gina Vladimir Nikulin 0.0226 0.1254 0.1721
Sylva Roman Lutz 0.0043 0.0228 0.0099

123

BOULLÉ

The data grid classifiers obtain good results on the Ada and Sylva datasets, especially on
the prior track, with a winning submission for the Ada dataset. The other datasets contain very
large numbers of variables, which explains the poor performance of the data grid models. Since
individual data grid models are essentially restricted to about log2 N selected variable, they
cannot exploit much of the information contained in the representation space. This is analyzed
in Section 5.7.3.2.

The data grid ensemble classifiers confirm the benefits of compression-based model averag-
ing. They obtain a very significant improvement of the BER criterion compared to the individual
data grid classifiers. This focus on predictive performance is realized at the expense of under-
standability, since each trained data grid ensemble averages several hundreds of elementary data
grid models.

However, even data grid ensembles fail to achieve competitive performance for datasets
with large numbers of variables. A close inspection reveals that although about 4000 data grids
are evaluated for each dataset, only a few hundreds (≈ 500) of different solutions are retrieved.
Removing the duplicates significantly improves the performances, but there is still too much
redundancy between data grids to produce an efficient ensemble classifier. Furthermore, a few
hundred redundant classifiers, each with only ≈ log2 N variables, is not enough to exploit all the
variables (think of Nova with 17000 variables for example). In future work, we plan to improve
our meta-heuristic in order to better explore the search space and to collect a set of data grid
solutions with better diversity.

5.7.3.2. UNDERSTANDABILITY

Let us now focus on understandability and inspect the number of selected variables in each
trained data grid model. In the agnostic track, the MAP data grid exploits only 5 variables for
Ada, 5 for Gina, 4 for Hiva, 8 for Nova and 8 for Sylva. In the prior track, the MAP data
grid exploits 6 variables for Ada, 7 for Gina and 4 for Sylva. These numbers of variables are
remarkably small w.r.t. the BER performance of the models.

Table 5.5: Most frequent cells in the best individual data grid model for the Ada dataset in the
prior track.

ID relationship occupation education age capital capital frequency % class 1
number gain loss

1 Married Low ≤ 12 > 27 ≤ 4668 ≤ 1805 736 22.1%
2 Not married Low ≤ 12 > 27 ≤ 4668 ≤ 1805 577 3.1%
3 Not married High ≤ 12 > 27 ≤ 4668 ≤ 1805 531 5.8%
4 Married High ≤ 12 > 27 ≤ 4668 ≤ 1805 489 41.3%
5 Married High > 12 > 27 ≤ 4668 ≤ 1805 445 68.5%
6 Not married Low ≤ 12 ≤ 27 ≤ 4668 ≤ 1805 425 0.2%
7 Not married High ≤ 12 ≤ 27 ≤ 4668 ≤ 1805 316 0.6%
8 Not married High > 12 > 27 ≤ 4668 ≤ 1805 268 20.5%
9 Not married High > 12 ≤ 27 ≤ 4668 ≤ 1805 112 0.9%

10 Married Low ≤ 12 ≤ 27 ≤ 4668 ≤ 1805 96 5.2%
11 Married High > 12 > 27 > 5095 ≤ 1805 93 100.0%
12 Married Low > 12 > 27 ≤ 4668 ≤ 1805 50 24.0%

In Table 5.5, we summarize the MAP data grid trained using the 4562 train+valid instances
of the Ada dataset in the prior track. This data grid selects six variables among 14 and ob-

124

5. DATA GRID MODELS FOR PREPARATION AND MODELING IN SUPERVISED LEARNING

tains a 0.2068 test BER. The selected variables are relationship, occupation, education num-
ber, age, capital gain and capital loss, which are partitioned into 2, 2, 2, 2, 3 and 3 groups
or intervals. The relationship variable is grouped into Married = {Husband, Wife} vs. Not
Married = {Not-in-family, Own-child, Unmarried, Other-relative}, and the occupation into
Low = {Craft-repair, Other-service, Machine-op-inspct, Transport-moving, Handlers-cleaners,
Farming-fishing, Priv-house-serv} vs. High = {Prof-specialty, Exec-managerial, Sales, Adm-
clerical, Tech-support, Protective-serv, Armed-Forces}. Overall, the data grid contains 144 =
2∗2∗2∗2∗3∗3 cells, but 57 of them are non empty and the twelve most frequent cells reported
in Table 5.5 contains 90% of the instances.

Each cell of the data grid can directly be interpreted as a decision rule. For example, the
most frequent cell is described by Rule 1, with a support of 736 instances.

Rule 1: IF relationship ∈ Married = {Husband, Wife}
occupation ∈ Low = {Craft-repair, Other-service, Machine-op-inspct,...}
education number ≤ 12
age > 27
capital gain ≤ 4668
capital loss ≤ 1805

THEN P(class=1) = 22.1%

The whole data grid forms a set of rules (Mitchell, 1997) which corresponds to a partition
(not a coverage) of the training set. Since all rules exploit the same variables with the same
univariate partitions, interpretation is much easier. For example, rule 5 (ID cell=5 in Table 5.5)
has a large support of 445 instances with 68.5% of class 1. Rule 4 with 41.3% of class 1 only
differs in the education number variable (≤ 12 vs. > 12), and rule 8 with 20.5% of class 1 in
the relationship variable (Not married vs. Married).

5.7.4. Evaluation of Coclustering Data Grids

We first inspect the dimension of the data grids resulting from the coclustering method intro-
duced in Section 5.4.2, then analyze its performance results and finally present its interest for
understandability in the case of the Nova text corpus.

To evaluate the coclustering data grid models, we consider three datasets (Gina, Hiva and
Nova) as sparse binary datasets. For the Gina dataset, the binary representation is obtained
from the prior format by replacing each non zero value by 1. The Hiva dataset is used directly
in its agnostic binary format. For the Nova dataset, we exploit the prior format in order to
get insights on the understandability of the models. We preprocess the Nova text format by
keeping all words of at least three characters, converting them to lowercase, truncating them
to at most seven characters, and keeping the most frequent resulting words (≥ 8) so as to get
a manageable bag-of-words representation (we keep the most frequent 19616 words using this
frequency threshold). This preprocessing is very similar to that for the agnostic track, except
that we do not exclude the 2000 most frequent words.

5.7.4.1. DIMENSIONALITY REDUCTION

The coclustering method exploits all the available unlabeled data to represent the initial binary
matrix (instances × variables) which is potentially sparse into a denser matrix with clusters
of instances related to clusters of variables. It is worth noting that the space of coclustering
models is very large. For example, in the case of the Nova dataset, the number of ways of
partitioning both the text and the words, based on the Bell number, is greater than 10120000. To

125

BOULLÉ

Table 5.6: Properties of the (instances × variables) matrix for the Gina, Hiva and Nova datasets,
in their initial and coclustering representation.

Dataset Initial representation Coclustering representation
Inst. Var. Size Sparseness Inst. cl. Var. cl. Size Sparseness

Gina 35000 784 2.74 107 19.2% 480 125 6.00 104 79.1%
Hiva 42673 1617 6.90 107 9.1% 1230 210 2.58 105 52.2%
Nova 17537 19616 3.44 108 0.6% 207 1058 2.19 105 84.3%

obtain the best possible coclustering according to our MAP approach, we allocated several days
of computation time to our anytime optimization heuristic.

In Table 5.6, we recall the properties of each dataset in its initial representation and present
its pre-processed representation after the coclustering. The datasets are initially represented
using very larges matrices, with up to hundreds of millions of cells. Their sparseness vary from
less than 1% to about 20%. The number of non-zero elements (one variable activated for one
instance) is about five million for Gina, six million for Hiva and two million for Nova. Once
the coclustering is performed, we get dense representations with numbers of cells reduced by a
factor of one hundred to one thousand.

5.7.4.2. CLASSIFICATION RESULTS

In order to evaluate the quality of the representation, we train classifiers using the train and
validation labeled instances to learn the distribution of the labels in each cluster of instances.

Table 5.7: Best challenge results vs. our coclustering method results for the Gina, Hiva and
Nova datasets.

Dataset Prior track Agnostic track Coclustering
Winner Best BER Winner Best BER BER

Gina Vladimir Nikulin 0.0226 Roman Lutz 0.0339 0.0516
Hiva Chloé Azencott 0.2693 Vojtech Franc 0.2827 0.3127
Nova Jorge Sueiras 0.0659 Mehreen Saeed 0.0456 0.0370

We recall in Table 5.7 the BER results of the challenge winner in the agnostic and prior track
(see Guyon et al., 2007), and present our results obtained with the semi-supervised coclustering
method (submission named “Data Grid(Coclustering)”, dated 2007-02-27 for Gina and Hiva
and 2007-09-19 for Nova). It is noteworthy that for datasets with large numbers of variables,
the coclustering technique obtains far better performance than the supervised technique, with
BER results about three times better on the Gina and Nova datasets. This comes from the ability
of the coclustering to exploit all the variables, whereas each supervised data grid is restricted to
a subset of about log2 N variables.

Overall, the supervised coclustering method obtains good predictive performance, compet-
itive with that of most of the challenge participants. On the Gina dataset, which is not very
sparse, the BER is over twice as high as that of the leader. In the case of the Nova dataset,
which is very sparse, the predictive performance significantly outperforms that of the winners

126

5. DATA GRID MODELS FOR PREPARATION AND MODELING IN SUPERVISED LEARNING

and reaches the best reference result of the organizers, which is remarkable since our clusters
were learned without using any class label.

5.7.4.3. UNDERSTANDABILITY

The assumption that the “natural” patterns identified by the coclustering are correlated with the
classes looks true in the challenge datasets. Since we obtain many more patterns than classes,
it is interesting to provide an interpretation of our coclusters.

The Gina dataset comes from the MNIST dataset (LeCun and Cortes, 1998). The task,
which is handwritten digit recognition, consists of predicting the value of a digit from an image
representation of 28∗28 pixels. The coclustering method identifies about one hundred clusters
of pixels (regions) and five hundred clusters of images (“natural” shapes), each of them dis-
tributed similarly on the regions. Although the classification BER is only 0.0516 (about twice
as high as that of the winner), it is interesting to notice that each digit (among the ten possible
output digits) comes under a large variety of shapes. This is discovered without any domain
knowledge and could be the foundation for adequate preprocessing.

In the case of the Hiva, further investigation with a domain specialist would be necessary to
understand the meaning of the clusters of instances and variables.

The Nova dataset comes from the 20-Newsgroup dataset (Mitchell, 1999). The original task
is to classify the texts into 20 classes (atheism, graphics, forsale, autos, motorcycles, baseball,
hockey, crypt, electronics, med, space, religion.christian, politics.guns, politics.mideast, poli-
tics.misc, religion.misc). In the challenge, the classification task was a binary one, with two
groups of classes (politics or religion vs. others). The coclustering method identifies about one
thousand clusters of words (vocabulary themes) and two hundred clusters of texts (“natural”
topics), each of them distributed similarly on the themes.

The distribution of the 17537 texts in the 207 clusters of texts (topics) is reasonably bal-
anced. On the other hand, the repartition of the 19616 words in the 1058 clusters of words
(themes) is not balanced at all. About 150 themes are singletons, like for example the, and, for,
that, this, have, you. These are frequent words with low semantic, and even slightly different
distribution of the topics on these singleton themes are significant and might be helpful for clas-
sification. For example, observing one of the singleton themes say, why or who approximately
doubles the conditional probability of being in the challenge positive class (politics or religion).

A correlation study between the themes and the 20 original labels available on the train
dataset reveals that the most informative themes are:

• hockey, playoff, nhl, penguin, devils, pens, leafs, bruins, islande, goalie, mario, puck,...
• team, season, league, fans, teams, rangers, detroit, montrea, wins, scored, coach,...
• clipper, encrypt, nsa, escrow, pgp, crypto, wiretap, privacy, cryptog, denning,...
• dod, bike, motorcy, ride, riding, bikes, ama, rider, helmet, yamaha, harley, moto,...
• basebal, sox, jays, giants, mets, phillie, indians, cubs, yankees, stadium, cardina,...
• bible, scriptu, teachin, biblica, passage, theolog, prophet, spiritu, testame, revelat,...
• christi, beliefs, loving, rejecti, obedien, desires, buddhis, deity, strive, healed,...
• windows, dos, apps, exe, novell, ini, borland, ver, lan, desqvie, tsr, workgro, sdk,...
• pitcher, braves, pitch, pitchin, hitter, inning, pitched, pitches, innings, catcher,...
• car, cars, engine, auto, automob, mileage, autos, cactus, pickup, alarm, sunroof,...

About one third of the theme are detected as informative with respect to the original la-
bels. The partition of the words is very fine grained, so that many themes are hard to interpret,
whereas other ones clearly capture semantics, such as:

• book, books, learnin, deals, booksto, encyclo, titled, songs, helper
• cause, caused, causes, occur, occurs, causing, persist, excessi, occurin
• importa, extreme, careful, essenti, somewha, adequat
• morning, yesterd, sunday, friday, tuesday, saturda, monday, wednesd, thursda,...
• receive, sent, placed, returne, receivi, sends, resume

127

BOULLÉ

Overall, our coclustering preprocessing method is able to produce a precise and reliable
summary of the corpus of texts, which is demonstrated by the very good classification perfor-
mance reported in Table 5.7.

5.8. Conclusion
The supervised data grid models introduced in this paper are based on a partitioning model of
each input variable, into intervals for numerical variables and into groups of values for cate-
gorical variables. The cross-product of the univariate partitions, called a data grid, allows the
quantification of the conditional information relative to the output variable. We have detailed
this technique in the multivariate case, with a Bayesian approach for model selection and so-
phisticated combinatorial algorithms to efficiently search the model space.

We have also presented the principles of the extension of data grid models to unsupervised
learning to evaluate the joint probability distribution of the variables. We have detailed the
case of two categorical variables and applied it to the problem of coclustering the instances and
variables of a sparse binary dataset.

In extensive artificial experiments, we have shown that our technique is able to reliably
detect complex patterns. Our experiments quantify the limits of the approach, with data grid
models limited to about log2 variables, and provides insights into the relation between the com-
plexity of the patterns and the required computation time necessary to detect them.

We have introduced three ways of building classifiers from data grids and experimented
them on the Agnostic Learning vs. Prior Knowledge challenge. This preliminary evaluation
looks promising since our method was first on two of the datasets, one within the challenge
deadline and the other one using a later submission. The analysis of the results demonstrates that
the data grid models are of considerable interest for data understandability and data preparation.

Overall, the supervised data grids obtain good performance on datasets with small numbers
of variables, while the coclustering data grids perform well on sparse binary datasets with very
large numbers of variables. In future research, we plan to investigate how to better exploit
the potential of these models to build more powerful classifiers. Apart from improving the
optimization algorithms and building ensemble classifiers based on a wider diversity of data
grid models, we intend to further explore the problem of conditional or joint density estimation.

Whereas the naïve Bayes strategy (Langley et al., 1992) factorizes the multivariate density
estimation on univariate estimations, our strategy with the data grid models directly estimates
the multivariate joint density, which encounters a limit in the number of variables considered.
Between these two opposite strategies, other approaches have been considered, based on a re-
laxation of the naive Bayes assumption. This is the case for example in semi-naive Bayesian
classifiers (Kononenko, 1991) or in Bayesian network classifiers (Friedman et al., 1997). In this
context, we expect data grid models to be promising building blocks of future better multivariate
density estimators.

References
M. Abramowitz and I. Stegun. Handbook of mathematical functions. Dover Publications Inc.,

New York, 1970.

C.L. Blake and C.J. Merz. UCI repository of machine learning databases, 1996. http://
www.ics.uci.edu/mlearn/MLRepository.html.

H. Bock. Simultaneous clustering of objects and variables. In E. Diday, editor, Analyse des
Données et Informatique, pages 187–203. INRIA, 1979.

128

http://www.ics.uci.edu/mlearn/MLRepository.html
http://www.ics.uci.edu/mlearn/MLRepository.html

5. DATA GRID MODELS FOR PREPARATION AND MODELING IN SUPERVISED LEARNING

M. Boullé. A Bayes optimal approach for partitioning the values of categorical attributes. Jour-
nal of Machine Learning Research, 6:1431–1452, 2005.

M. Boullé. MODL: a Bayes optimal discretization method for continuous attributes. Machine
Learning, 65(1):131–165, 2006.

M. Boullé. Optimal bivariate evaluation for supervised learning using data grid models. Ad-
vances in Data Analysis and Classification, 2007a. submitted.

M. Boullé. Compression-based averaging of selective naive Bayes classifiers. Journal of Ma-
chine Learning Research, 8:1659–1685, 2007b.

M. Boullé. Bivariate data grid models for supervised learning. Technical Report
NSM/R&D/TECH/EASY/TSI/4/MB, France Telecom R&D, 2008a. http://perso.rd.
francetelecom.fr/boulle/publications/BoulleNTTSI4MB08.pdf.

M. Boullé. Multivariate data grid models for supervised and unsupervised learn-
ing. Technical Report NSM/R&D/TECH/EASY/TSI/5/MB, France Telecom R&D,
2008b. http://perso.rd.francetelecom.fr/boulle/publications/
BoulleNTTSI5MB08.pdf.

L. Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.

L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. Classification and Regression Trees.
California: Wadsworth International, 1984.

O. Chapelle, B. Schölkopf, and A. Zien. Semi-Supervised Learning. MIT Press, Cambridge,
MA, 2006.

W.G. Cochran. Some methods for strengthening the common chi-squared tests. Biometrics, 10
(4):417–451, 1954.

J. Connor-Linton. Chi square tutorial, 2003. http://www.georgetown.edu/
faculty/ballc/webtools/web_chi_tut.html.

N. Friedman, D. Geiger, and M. Goldsmidt. Bayesian network classifiers. Machine Learning,
29:131–163, 1997.

P.D. Grünwald, I.J. Myung, and M.A. Pitt. Advances in minimum description length : theory
and applications. MIT Press, 2005.

I. Guyon. Agnostic learning vs. prior knowledge challenge, 2007. http://clopinet.
com/isabelle/Projects/agnostic/.

I. Guyon, A.R. Saffari, G. Dror, and G. Cawley. Agnostic learning vs. prior knowledge chal-
lenge. In International Joint Conference on Neural Networks, pages 829–834, 2007.

M.H. Hansen and B. Yu. Model selection and the principle of minimum description length. J.
American Statistical Association, 96:746–774, 2001.

P. Hansen and N. Mladenovic. Variable neighborhood search: principles and applications.
European Journal of Operational Research, 130:449–467, 2001.

129

http://perso.rd.francetelecom.fr/boulle/publications/BoulleNTTSI4MB08.pdf
http://perso.rd.francetelecom.fr/boulle/publications/BoulleNTTSI4MB08.pdf
http://perso.rd.francetelecom.fr/boulle/publications/BoulleNTTSI5MB08.pdf
http://perso.rd.francetelecom.fr/boulle/publications/BoulleNTTSI5MB08.pdf
http://www.georgetown.edu/faculty/ballc/webtools/web_chi_tut.html
http://www.georgetown.edu/faculty/ballc/webtools/web_chi_tut.html
http://clopinet.com/isabelle/Projects/agnostic/
http://clopinet.com/isabelle/Projects/agnostic/

BOULLÉ

J.A. Hartigan. Direct clustering of a data matrix. Journal of the American Statistical Associa-
tion, 67(337):123–129, 1972.

J.A. Hoeting, D. Madigan, A.E. Raftery, and C.T. Volinsky. Bayesian model averaging: A
tutorial. Statistical Science, 14(4):382–417, 1999.

G.V. Kass. An exploratory technique for investigating large quantities of categorical data. Ap-
plied Statistics, 29(2):119–127, 1980.

I. Kononenko. Semi-naive Bayesian classifier. In Y. Kodrato, editor, Sixth European Working
Session on Learning (EWSL91), volume 482 of LNAI, pages 206–219. Springer, 1991.

P. Langley, W. Iba, and K. Thompson. An analysis of Bayesian classifiers. In 10th national
conference on Artificial Intelligence, pages 223–228. AAAI Press, 1992.

Y. LeCun and C. Cortes. The MNIST database of handwritten digits, 1998. http://yann.
lecun.com/exdb/mnist/.

M. Li and P.M.B. Vitanyi. An Introduction to Kolmogorov Complexity and Its Applications.
Springer-Verlag, Berlin, 1997.

T.M. Mitchell. Machine Learning. McGraw-Hill, New York, 1997.

T.M. Mitchell. The 20 newsgroup dataset, 1999. http://kdd.ics.uci.edu/
databases/20newsgroups/20newsgroups.html.

J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.

J. Rissanen. Modeling by shortest data description. Automatica, 14:465–471, 1978.

C.E. Shannon. A mathematical theory of communication. Technical Report 27, Bell systems
technical journal, 1948.

D.A. Zighed and R. Rakotomalala. Graphes d’induction. Hermes, France, 2000.

130

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://kdd.ics.uci.edu/databases/20newsgroups/20newsgroups.html
http://kdd.ics.uci.edu/databases/20newsgroups/20newsgroups.html

Chapter 6

Virtual High-Throughput Screening with Two-Dimensional
Kernels
Chloé-Agathe Azencott CAZENCOT@ICS.UCI.EDU
Department of Computer Science
Institute for Genomics and Bioinformatics
University of California, Irvine
Irvine, CA 92697-3435, USA

Pierre Baldi PFBALDI@ICS.UCI.EDU

Department of Computer Science
Institute for Genomics and Bioinformatics
University of California, Irvine
Irvine, CA 92697-3435, USA

Abstract
High-Throughput Screening (HTS) is an important technology that relies on massively testing
large numbers of compounds for their activity on a given assay in order to identify potential
drug leads in the early stages of a drug discovery pipeline. However, because identification of
drug leads by HTS is very costly, it is of great interest to develop computational methods for vir-
tual HTS (VHTS), in order to prioritize the compounds to be screened and identify a relatively
small, but highly promising, subset from a screening library that can be tested more economi-
cally. Here we develop statistical machine learning methods, based on two-dimensional spec-
tral kernels for small molecules and extended-connectivity molecular substructures (ECFPs),
to address this task. We apply them to the HIVA dataset of the Agnostic Learning versus Prior
Knowledge Challenge and obtain the best results with a balanced error rate of 0.2693 and an
area under the ROC curve of 0.7643 on the testing set.
Keywords: virtual high-throughput screening, drug discovery, drug screening, kernels, HTS,
SVM

6.1. Introduction: The Virtual High-Throughput Screening Problem
High-Throughput Screening (HTS) is an approach to drug discovery developed in the 1980’s
in the pharmaceutical industry that allows to massively test large numbers (up to millions) of
compounds for their activity on a given assay in order to identify potential drug leads. Nowa-
days, it is possible to screen up to 100,000 molecules per day in a single HTS facility. This
process, however, requires a considerable amount of resources and capital investment, for in-
stance in terms of robotics, molecular libraries, and the amount of relevant protein that must be
produced. A widely circulated figure is that HTS screening costs on the order of one dollar per
compound, a price that cannot be afforded by most academic laboratories.

The in silico approach to HTS, also called virtual HTS (VHTS), attempts to computationally
select from a list of molecular compounds only those most likely to possess the properties
required to positively satisfy a given assay. When the 3D structure of a target protein is known,
the most common approach to VHTS is docking, which consists in scoring the compatibility
of each small molecule in the screening library with respect to the known, or putative, binding

© C.-A. Azencott & P. Baldi.

AZENCOTT BALDI

pockets of the protein target. When the 3D structure of the targets is not known, or to further
validate the results of a docking experiment, other computational methods must be used. In
many cases, an initial list of positive and negative compounds may be known from previous,
possibly small-scale, screening experiments. Therefore, in these cases, one is interested in using
statistical machine learning or other methods to build a good molecular predictor and possibly
clarify what are the desirable properties a molecule should have in order to positively satisfy
the conditions of a given assay. The development of good VHTS methods is essential if one is
to drastically reduce the number of compounds that must be experimentally assayed and reduce
the time and cost of HTS.

Among the five datasets offered by the IJCNN-07 Agnostic Learning versus Prior Knowl-
edge Challenge 1, we decided to focus on the HIVA set derived from the DTP AIDS Antiviral
Screen program made available by the National Cancer Institute (NCI)2. This dataset contains
assay results for 42,678 chemicals tested for their activity against the AIDS virus and provides
a reasonable benchmark for the development of VHTS algorithms.

As in most chemoinformatics applications, such as the storage and search of large databases
of small molecules (Chen et al., 2005; Swamidass and Baldi, 2007) or the prediction of their
physical, chemical, and biological properties (Swamidass et al., 2005; Azencott et al., 2007), the
issues of molecular data structures and representations play an essential role (Leach and Gillet,
2005). These representations and data structures are essential to define “molecular similarity”,
which in turn is crucial for developing efficient methods both to search the databases and predict
molecular properties using kernel methods. Leveraging previous work in our group and in
the literature, here we use SVMs in combination with 2D spectral representations of small
molecules with Tanimoto and MinMax kernels to address the VHTS problem and tackle the
HIVA challenge.

6.2. Molecular Data Representation
Small molecules are often described by graphs (King, 1983; Bonchev, 1991; McNaught and
Wilinson, 1997), where vertices represent atoms and edges represent bonds. Other represen-
tations, such as one-dimensional SMILES strings (Weiniger et al., 1989) or three-dimensional
descriptions based on the atomic coordinates, have been developed. Previous studies (Swami-
dass et al., 2005; Azencott et al., 2007) in our group as well as in other groups suggest, however,
that these representations do not lead for now to better predictive performance. In this regard,
it is worth noting for SMILES strings that the information they contain is identical to the in-
formation contained in the bond graphs. For 3D-based representations, the majority of the co-
ordinates must be predicted, since only a relatively small fraction of molecular structures have
been empirically solved. Furthermore, the 2D representation of molecules as graphs is also the
representation of choice that underlies the structural similarity search algorithms of chemical
databases such as ChemBank (Strausberg and Schreiber, 2003), ChemMine (Girke et al., 2005),
or ChemDB (Chen et al., 2005, 2007).

6.2.1. Molecular Graphs

We describe a molecule as a labeled graph of bonds. Labels on the vertices represent the atom
types and labels on the edges characterize the bonds. More precisely, vertices are labeled ac-
cording to one of the following schemes:

1. http://www.agnostic.inf.ethz.ch/index.php
2. http://dtp.nci.nih.gov/docs/aids/aids_data.html

132

http://www.agnostic.inf.ethz.ch/index.php
http://dtp.nci.nih.gov/docs/aids/aids_data.html

6. VIRTUAL HIGH-THROUGHPUT SCREENING WITH TWO-DIMENSIONAL KERNELS

Figure 6.1: Example of molecular graphs. The vertices represent atoms, labeled with the Ele-
ment scheme on the left and the Element-Connectivity scheme on the right. Bonds
are represented by edges, labeled “s” for simple bonds and “d” for double bonds.
Note that by convention Hydrogen atoms are ignored.

• E: Element. Each atom is simply labeled by its symbol (e.g. C for carbon, O for oxygen,
N for nitrogen)

• EC: Element-Connectivity. Each atom is labeled by its symbol together with the number
of atoms it is bonded to (e.g. C3 for a carbon with three atoms attached)

The bonds are simply labeled according to their type (e.g. single, double).
Figure 6.1 gives an example of the two-dimensional representation of a molecule as a graph.
From these graphs, a number of features can be extracted, such as the presence/absence or

number of occurrences of particular functional groups. A more recent and general trend, how-
ever, has been to define features in terms of labeled subgraphs, such as labeled paths (Swamidass
et al., 2005; Azencott et al., 2007) or labeled trees (Mahé et al., 2006), and to combinatorially
extract and index all such features to represent molecules using large feature vectors, also known
as fingerprints. While in other work we have compared the use of different features and have
tried several of them on the HIVA challenge, here we focus on a class of shallow labeled trees,
also known as extended-connectivity features in the literature (Hassan et al., 2006).

6.2.2. Extended-Connectivity Molecular Features

The concept of molecular connectivity (Razinger, 1982; Kier and Hall, 1986) leads to the idea
of extended-connectivity substructures (Rogers and Brown, 2005; Hassan et al., 2006), which
are labeled trees rooted at each vertex of the molecular graph. A depth parameter d controls
the depth of the trees (Figure 6.2). For a given tree, this algorithm recursively labels each tree
node (or atom) from the leaf nodes to the root, appending to each parent’s label the labels of its
children in the tree. Each resulting vertex label is then considered as a feature. For the labeling
process to be unique, the vertices of the graph need to be ordered in a unique canonical way.
This ordering is achieved using Morgan’s algorithm (Morgan, 1965).

We extract extended-connectivity substructures of depth d up to 2, where the depth indicates
the maximum distance, measured in number of bonds, to the root of each labeled tree. For
example, a depth of two indicates that the label for a given atom will be composed of the labels
for the neighboring atoms which are connected to it by at most two bonds. Other depths (3 to
6) have been tested but did not lead to any performance improvement.

133

AZENCOTT BALDI

Figure 6.2 shows an example of extended-connectivity labeling.

Figure 6.2: The extended-connectivity label of depth d up to 2 of the C atom circled in bold
is given by the labels of depth up to 1 of its three neighboring atoms: (1) an
O atom to which it is connected by a double bond, (2) a C atom to which it
is connected by a single bond, and (3) an O atom to which it is connected by
a single bond. If the EC scheme was to be used, the resulting label would be:
C3|d{O1|dC3}|s{C3|sC3|sN1|sO1}|s{O1|sC3}.

6.2.3. Molecular Fingerprints

The molecular features are computed across the whole dataset. Each molecule can then be
represented as a vector of fixed size N, where N is the total number of features found. For a
given molecule, each component of the vector is set to 1 if the corresponding feature is present
in the chemical, and 0 otherwise. We also use count vectors where each component of the vector
is set to c, where c is the number of times the corresponding feature appears in the chemical.
These feature vectors are actually extensions of traditional chemical fingerprints (Flower, 1998;
Raymond and Willett, 2001).

The spectral or combinatorial approach to molecular fingerprints can easily be automated
and has several advantages: (1) it alleviates the need for relying on expert knowledge, that may
itself be incomplete, to select relevant molecular descriptors; (2) it produces a fixed-size rep-
resentation for data of varying size.; and (3) it has been shown to be effective in the literature.
Furthermore these long vectors, which have on the order of 100,000 components for the HIVA
dataset, are also very sparse and can be efficiently compressed, in lossy or even lossless fash-
ion (Baldi et al., 2007), to reduce their dimensionality and improve storage and computational
complexity.

134

6. VIRTUAL HIGH-THROUGHPUT SCREENING WITH TWO-DIMENSIONAL KERNELS

6.3. Support Vector Machines for virtual HTS
6.3.1. Kernels For Molecules

To define kernels for chemical compounds, we need to introduce a similarity measure between
molecular fingerprints. Here we use the MinMax and Tanimoto similarity measures.

If f1 = (f1,1, . . . , f1,N) and f2 = (f2,1, . . . , f2,N) are two count fingerprints, the MinMax sim-
ilarity measure (Swamidass et al., 2005; Ralaivola et al., 2005) is defined by

K(f1, f2) =
∑i min(f1,i, f2,i)

∑i max(f1,i, f2,i)
(6.1)

In the case of binary fingerprints the MinMax measure reduces to the Tanimoto similarity
measure defined by

K(f1, f2) =
f1 ∩ f2

f1 ∪ f2
(6.2)

Both similarity measures have been shown (Swamidass et al., 2005) to be semi-definite
positive and satisfy Mercer’s kernel conditions. Thus the MinMax and Tanimoto kernels can be
applied in combination with an SVM optimization framework to derive a molecular predictor
in VHTS experiments.

6.3.2. Implementation

The HIVA dataset contains 42,678 examples. The associated pair-to-pair kernel matrix being
rather large, an online implementation of SVM is desirable. Here we use the SVMTorch (Col-
lobert and Bengio, 2001) implementation, which allows on-line learning and is thus well suited
for our purpose.

Besides their size, one of the other issues with HTS datasets is that they are often highly
unbalanced, usually containing far more negative than positive examples. This is the case of
the HIVA dataset, which has about 28 times as many negative examples as positive examples.
Without any further processing, this will negatively affect the predictor and bias it towards
negative examples.

The most straightforward method to deal with class unbalance is to control the sensitivity
(or C parameter) of the SVM (Veropoulos et al., 1999; Shin and Cho, 2003). By assigning
a higher sensitivity to the under-represented class, one increases the coefficients of the corre-
sponding support vectors, thus biasing the classifier towards the minority class. We first tested
this method, which did not lead to significant improvements.

Another way of compensating for the small amount of positive examples is to re-sample the
data, so as to train the SVM on a balanced set of examples. In this work we focus on over-
sampling, which consists in replicating the under-represented class so as to get a more balanced
number of examples. This method has been widely studied in the literature (Estabrooks et al.,
2004; Orriols and Bernad-Mansilla, 2005).

If m is the number of training examples and m+ the number of positive training examples, we
randomly split the negative data in m

m+
subsets of about m+ examples and build m

m+
classifiers,

each trained on a set composed of one of the negative subsets together with the m+ positive
examples. Each individual classifier produces a value of +1 if its prediction is positive and
-1 if its prediction is negative. Then these values are added, and the final decision is made by
comparing the resulting sum to a threshold. As this method overcompensates and leads to a bias
favoring the positive class, the decision threshold has to be adjusted to a value greater than 0. To
address this problem, we apply this method using 10-fold cross-validation over the training set

135

AZENCOTT BALDI

and select the threshold that leads to the best performance on the training set. An SVM trained
according to this algorithm will further be referred to as an oversampled SVM.

Eventually, we run a 10-fold cross-validation over the training set for each combination of
labeling scheme, representation by bits or counts, and oversampling or not, and retain as best
models the ones leading to optimal performance.

6.3.3. Performance Measures

The SVM classifiers associate a prediction value to each of the data points. We then order the
values, thus ranking the data points, and set a threshold so as to separate predicted actives from
predicted inactives. A number of performance measures can then be used in order to assess the
performance and compare different methods.

The Agnostic Learning versus Prior Knowledge Challenge focused on the balanced error
rate (BER) and area under the ROC curve (AUC) measures.

If m− = m−m+ is the number of negative examples, T P the number of true positives, T N
the number of true negatives and FP the number of false positives, the BER is defined by

BER = 1− 1
2

�
T P
m+

+
T N
m−

�
(6.3)

and the AUC is the area under the ROC curve defined by plotting the true positive rate T P
m+

against the false positive rate FP
m−

for each confidence value.
While these measures allow one to compare all the predictors to each other (especially in the

Agnostic Learning track), they may not provide an optimal way of assessing VHTS methods.
Indeed, these performance metrics do not address the "early recognition problem", in the sense
that they do not quantify how efficient a given classifier is at retrieving active compounds early,
i.e. at the top of the ranked list. High-enrichment for positives in the top of the list is highly
desirable in VHTS, especially in conditions where only few compounds can be empirically
tested.

An enrichment curve, representing the percentage of true positives captured as a function
of the percentage of the ranked list screened, can be used to judge the ability of a predictor to
recover active compounds early.

Whereas enrichment curves provide a graphical means for evaluating early recognition
across many thresholds, capturing this property in a single numerical value is also desirable as a
summary and to allow for easy comparison of several predictors. Truchon and Bayly (2007) de-
velop this idea and propose a performance measure called Boltzmann-Enhanced Discrimination
of Receiver Operating Characteristic (BEDROC) which partly addresses this issue.

The notion of BEDROC measure stems from the study of various virtual screening metrics,
including the area under the enrichment curve (AUEC). If T P(x) denotes the true positive rate,
then the AUEC is defined by

AUEC =
� 1

0
T P(x)dx (6.4)

The AUEC can be interpreted as the probability that an active compound will be ranked better
than a compound selected at random by a uniform distribution. Therefore, in order to address
the early recognition problem, Truchon and Bayly (2007) introduce the concept of weighted
AUEC (wAUEC), defined by

wAUEC =

� 1
0 T P(x)w(x)dx
� 1

0 w(x)dx
(6.5)

136

6. VIRTUAL HIGH-THROUGHPUT SCREENING WITH TWO-DIMENSIONAL KERNELS

where w(x) is a weighting probability distribution. The wAUEC is the probability that an active
compound will be ranked better than a compound that would come from the probability dis-
tribution function w. By choosing for w an exponential distribution w(x) = C(α)e−αx, which
has higher values for low values of x, one gives a higher importance to the active compounds
recognized at the top of the ranked list.

In the general case, the theoretical extreme values of the AUEC and the wAUEC measures
depend on the number of actives and inactives of the problem being considered and differ from
the usual 0 and 1 values associating for instance with the AUC measure. Note that the AUC is
simply a scaled version of the AUEC, obtained through the following linear transformation:

AUC =
AUEC−AUECmin

AUECmax −AUECmin
(6.6)

Truchon and Bayly (2007) define the BEDROC by a similar scaling of the wAUEC:

BEDROC =
wAUEC−wAUECmin

wAUECmax −wAUECmin
(6.7)

Therefore, the BEDROC measure can be seen as a generalization of the AUC metric that takes
early recognition into account.

If α.m+
m � 1 and α �= 0, then the BEDROC measure is approximately equal to the wAUEC

measure, and can be interpreted as the probability that an active compound will be ranked better
than a compound selected at random from an exponential probability distribution function of
parameter α .

Formally, if for every k in [1, . . . ,m+] we let rk be the ranking of the k-th active compound,
then the BEDROC metric can be estimated by

BEDROC ≈ 1
α m+

m

�
∑m+

k=1 e−α.(rk/N)

1−e−α

eα/m−1

�
+

1
1+ e−α (6.8)

In what follows, we use a typical value of α = 1 for the early recognition parameter.

6.4. Results
The Agnostic Learning versus Prior Knowledge Challenge is run using a training set composed
of 4,229 compounds randomly selected in the HIVA dataset, and a blind test set composed of
the remaining 38,449 compounds. We optimize our models by 10-fold cross-validation on the
training set and then evaluate their performance on the test set. The aim of the challenge is to
reach the lowest possible BER on the testing set.

Table 6.1 reports the 10-fold cross-validation BER and AUC over the training set as well
as the final performance of several of the tested methods. Combining molecular fingerprints
with an Element labeling of atoms and a count-based fingerprint representation, together with
an oversampled SVM framework, lead to the best entry among all competing groups for the
HIVA dataset in the Prior Knowledge track, with a BER of 0.2693. The best 10-fold cross-
validated BER on the training set, with a value of 0.1975, is achieved by the same method. We
compare these results to those obtained by the winner of the Performance Prediction Challenge
(Guyon et al., 2006), where the dataset was the same, but split in training and testing sets in a
different fashion, and to the best results in the Agnostic Learning track3, as well as to the second
best results in the Prior Knowledge track. These second best results, with a BER of 0.2782,

3. available from http://clopinet.com/isabelle/Projects/agnostic/Results.html

137

http://clopinet.com/isabelle/Projects/agnostic/Results.html

AZENCOTT BALDI

have been obtained by S. Joshua Swamidass, also from our laboratory, by applying a neural-
network-based approach to the same molecular fingerprints. This approach will be described
elsewhere and has its own advantages, for instance in terms of speed. Both top entries in the
Prior Knowledge track achieve better performance than the best entry in the Agnostic Learning
track.

Table 6.1: 10-fold cross-validation BER and AUC over the HIVA training set, as well as final
BER and AUC for several methods. (*) Winning entry. Best performance in bold
and second best performance in italics. ‘E’ and ‘EC’ refer to the labeling schemes
introduced in Section 6.2.1; ‘binary’ and ‘counts’ refer to the vector representa-
tions defined in Section 6.2.3; and ‘oversampled’ refers to an SVM trained on a
balanced dataset obtained by replicating the underrepresented class as exposed in
Section 6.3.2.

Method Training set Test set
BER AUC BER AUC

E, binary (not oversampled) 0.2249 0.8293 0.2816 0.7550
E, binary (oversampled) 0.1980 0.8511 0.2765 0.7611
E, counts (not oversampled) 0.2238 0.8294 0.2799 0.7576
E, counts (oversampled) (*) 0.1975 0.8523 0.2693 0.7643
EC, binary (not oversampled) 0.2174 0.8338 0.2828 0.7673
EC, binary (oversampled) 0.2030 0.8413 0.2860 0.7595
EC, counts (not oversampled) 0.2189 0.8358 0.2826 0.7626
EC, counts (oversampled) 0.1993 0.8450 0.2820 0.7650
Second Best (Prior Knowledge) 0.2168 0.8198 0.2782 0.7072
Best (Agnostic Learning) - - 0.2827 0.7707
Performance Prediction Challenge - - 0.2757 0.7671

The 10-fold cross-validated enrichment curves over the training set for several methods are
displayed on Figure 6.3. Close to the origin, the highest enrichment on these curves is clearly
observed when using a non-oversampled SVM. This region is further magnified in Figure 6.4
which focuses on the first 10% of the ranked list. It suggests that a slightly better ability at
early recognition is attained with the model derived from binary fingerprints using the element
labeling scheme.

The actual enrichment curves obtained on the testing set are displayed on Figure 6.5. Here
again, the best early recognition ability is clearly observed for non-oversampled SVM. Fig-
ure 6.6, which focuses on the first 10% of these enrichment curves, suggests that the model
derived from count fingerprints obtained with the element labeling scheme has the best ability
to recover actives at the top of the ranked list.

Table 6.2 presents the 10-fold cross-validation BEDROC over the HIVA training set as well
as the final BEDROC of several methods. The best final BEDROC of 0.507 is also obtained
with molecular fingerprints combined with an Element labeling of atoms and a count-based fin-
gerprint representation, but together with an non-oversampled SVM framework. This method,
which corresponds to the enrichment curve with the steepest slope before 5%, achieves a 10-
fold cross-validated BEDROC of 0.609 on the training set, just behind the best value of 0.610
obtained when using a binary fingerprint representation instead of the count-based one.

138

6. VIRTUAL HIGH-THROUGHPUT SCREENING WITH TWO-DIMENSIONAL KERNELS

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Enrichment for a 10−fold cross−validation over the HIVA training set

percentage cutoff

pe
rc

en
ta

ge
 o

f t
ru

e
po

sit
ive

s

EC binary
EC counts
El binary
El counts

EC binary oversampled
EC counts oversampled
El binary oversampled
El counts oversampled

Figure 6.3: Ten-fold cross-validation enrichment curves over the HIVA training set for several
methods. ‘E’ and ‘EC’ refer to the labeling schemes introduced in Section 6.2.1;
‘binary’ and ‘counts’ refer to the vector representations defined in Section 6.2.3;
and ‘oversampled’ refers to an SVM trained on a balanced dataset obtained by
replicating the underrepresented class as exposed in Section 6.3.2.

139

AZENCOTT BALDI

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

Enrichment for a 10−fold cross−validation over the HIVA training set (zoomed)

percentage cutoff

pe
rc

en
ta

ge
 o

f t
ru

e
po

sit
ive

s

EC binary
EC counts
El binary
El counts

EC binary oversampled
EC counts oversampled
El binary oversampled
El counts oversampled

Figure 6.4: Ten-fold cross-validation enrichment curves, limited to the first 10% of the ranked
list, over the HIVA training set for several methods. ‘E’ and ‘EC’ refer to the
labeling schemes introduced in Section 6.2.1; ‘binary’ and ‘counts’ refer to the
vector representations defined in Section 6.2.3; and ‘oversampled’ refers to an SVM
trained on a balanced dataset obtained by replicating the underrepresented class as
exposed in Section 6.3.2.

140

6. VIRTUAL HIGH-THROUGHPUT SCREENING WITH TWO-DIMENSIONAL KERNELS

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Enrichment over the HIVA testing set

percentage cutoff

pe
rc

en
ta

ge
 o

f t
ru

e
po

sit
ive

s

EC binary
EC counts
El binary
El counts

EC binary oversampled
EC counts oversampled
El binary oversampled
El counts oversampled

Figure 6.5: Actual enrichment curves over the HIVA testing set for several methods. ‘E’ and
‘EC’ refer to the labeling schemes introduced in Section 6.2.1; ‘binary’ and ‘counts’
refer to the vector representations defined in Section 6.2.3; and ‘oversampled’ refers
to an SVM trained on a balanced dataset obtained by replicating the underrepre-
sented class as exposed in Section 6.3.2.

141

AZENCOTT BALDI

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

Enrichment over the HIVA testing set (zoomed)

percentage cutoff

pe
rc

en
ta

ge
 o

f t
ru

e
po

sit
ive

s

EC binary
EC counts
El binary
El counts

EC binary oversampled
EC counts oversampled
El binary oversampled
El counts oversampled

Figure 6.6: Actual enrichment curves, limited to the first 10% of the ranked list, over the HIVA
testing set for several methods. ‘E’ and ‘EC’ refer to the labeling schemes intro-
duced in Section 6.2.1; ‘binary’ and ‘counts’ refer to the vector representations
defined in Section 6.2.3; and ‘oversampled’ refers to an SVM trained on a bal-
anced dataset obtained by replicating the underrepresented class as exposed in Sec-
tion 6.3.2.

142

6. VIRTUAL HIGH-THROUGHPUT SCREENING WITH TWO-DIMENSIONAL KERNELS

Table 6.2: 10-fold cross-validation BEDROC over the training set as well as final BEDROC
for several methods. (*) Winning entry. Best performance in bold and second best
performance in italics. ’E’ and ’EC’ refer to the labeling schemes introduced in
Section 6.2.1; ’binary’ and ’counts’ refer to the vector representations defined in
Section 6.2.3; and ’oversampled’ refers to an SVM trained on a balanced dataset
obtained by replicating the underrepresented class as exposed in Section 6.3.2.

Method Training set Test set
BEDROC BEDROC

E, binary (not oversampled) 0.610 0.495
E, binary (oversampled) 0.580 0.454
E, counts (not oversampled) 0.609 0.507
E, counts (oversampled) (*) 0.581 0.465
EC, binary (not oversampled) 0.606 0.499
EC, binary (oversampled) 0.573 0.446
EC, counts (not oversampled) 0.602 0.500
EC, counts (oversampled) 0.573 0.454
Second Best (Prior Knowledge) 0.607 0.483

6.5. Discussion
By defining feature vectors that capture molecular structural information, we have developed
a kernel leading to the best results on the HIVA dataset in the Agnostic Learning versus Prior
Knowledge Challenge.

The extended-connectivity molecular fingerprints present the advantage of being built auto-
matically, without the need for human curation and expert knowledge. The results obtained with
these representations are superior to those obtained using the set of binary molecular descrip-
tors computed using the ChemTK package4 which were offered in the Agnostic Learning track.
Also, one of the challenge participants tried to collaborate with chemists to define meaningful
features, but did not manage to get better results than using the Agnostic Learning features.

Overall, the results suggest that extended-connectivity fingerprints yield efficient molecular
representations that can be successfully applied to a variety of chemoinformatics problems,
from the prediction of molecular properties to the clustering of large libraries of compounds.
These fingerprints are actually implemented in the current version of the ChemDB database
(Chen et al., 2007) and routinely used to search compounds.

We also notice that the model selection method adopted here, although somewhat naïve
being based only on the cross-validation performance over the training set, still allows us to
efficiently choose the top classifiers and rank first in the competition. This is especially inter-
esting because the test set is about nine times larger than the training set, raising concern of
over-fitting. It may be of some interest to combine our features with the best methods of the
Agnostic Learning track to see whether any further improvements can be derived.

Other extensions of this work include applying our best methods to other virtual HTS
datasets. An important observation in this context is that the methods yielding best BER perfor-
mance do not yield best BEDROC performance. This is because optimizing for early recogni-
tion is not equivalent to optimizing for overall classification. The enrichment curves, which are

4. http://www.sageinformatics.com

143

http://www.sageinformatics.com

AZENCOTT BALDI

systematically steeper for low thresholds when using non-oversampled SVM, corroborate this
observation. More precisely, it appears that oversampling improves the global performance of
the classifier in terms of BER but not the early recognition in terms of BEDROC. This suggests
that putting more emphasis on the positive training examples reduces the bias of the SVM, but
also leads to assigning higher prediction values to some of the negative points. It is therefore
critical to carefully choose which performance measure to optimize with regards to the specific
problem being tackled and the resources available to conduct laboratory experiments to confirm
the computational prediction.

Acknowledgments
Work supported by NIH Biomedical Informatics Training grant (LM-07443-01), NSF MRI
grant (EIA-0321390), NSF grant 0513376, and a Microsoft Faculty Innovation Award to PB.
We would like also to acknowledge the OpenBabel project and OpenEye Scientific Software
for their free software academic licenses.

References
C.-A. Azencott, A. Ksikes, S. J. Swamidass, J. H. Chen, L. Ralaivola, and P. Baldi. One- to

Four-Dimensional Kernels for Virtual Screening and the Prediction of Physical, Chemical,
and Biological Properties. J. Chem. Inf. Model, 47(3):965–974, 2007.

P. Baldi, R. W. Benz, D. S. Hirshberg, and S. J. Swamidass. Lossless Compression of Chemical
Fingerprints Using Integer Entropy Codes Improves Storage and Retrieval. J. Chem. Inf.
Model., 2007.

Danail Bonchev. Chemical Graph Theory: Introduction and Fundamentals. Taylor & Francis,
1991. ISBN 0856264547.

J. Chen, S. J. Swamidass, Y. Dou, J. Bruand, and P. Baldi. ChemDB: A Public Database Of
Small Molecules And Related Chemoinformatics Resources. Bioinformatics, 21:4133–4139,
2005.

Jonathan H. Chen, Erik Linstead, S. Joshua Swamidass, Dennis Wang, and Pierre Baldi.
ChemDB Update - Full-Text Search and Virtual Chemical Space. Bioinformatics,
2007. doi: 10.1093/bioinformatics/btm341. URL http://bioinformatics.
oxfordjournals.org/cgi/content/abstract/btm341v1.

R. Collobert and S. Bengio. SVMTorch: Support Vector Machines for Large-
Scale Regression Problems. J. Mach. Learn. Res., 1:143–160, Sep. 2001 2001.
http://www.idiap.ch/learning/SVMTorch.html.

A. Estabrooks, T. Jo, and N. Japkowicz. A Multiple Resampling Method for Learning From
Imbalanced Data Set. Computational Intelligence, 20(1), 2004.

D. R. Flower. On the Properties of Bit String-Based Measures of Chemical Similarity. J. Chem.
Inf. Comput. Sci., 38:378–386, 1998.

T. Girke, L.-C. Chen, and N. Raikhel. ChemMine. A Compound Mining Database For Chemi-
cal Genomics. Plant Physiol., 138:573–577, 2005. URL http://bioinfo.ucr.edu/
projects/PlantChemBase/search.php.

144

http://bioinformatics.oxfordjournals.org/cgi/content/abstract/btm341v1
http://bioinformatics.oxfordjournals.org/cgi/content/abstract/btm341v1
http://bioinfo.ucr.edu/projects/PlantChemBase/search.php
http://bioinfo.ucr.edu/projects/PlantChemBase/search.php

6. VIRTUAL HIGH-THROUGHPUT SCREENING WITH TWO-DIMENSIONAL KERNELS

I. Guyon, A. Saffari, G. Dror, and J. M. Buhman. Performance Prediction Challenge. In
IEEE/INNS conference IJCNN 2006, Vancouver July 16-21, 2006.

M. Hassan, R. D. Brown, S. Varma-O’Brien, and D. Rogers. Cheminformatics Analysis and
Learning in a Data Pipelining Environment. Molecular Diversity, 10:283–299, 2006.

Lemont B Kier and Lower H Hall. Molecular connectivity in structure-activity analysis. Wiley,
New York, 1986. ISBN 0-471-90983-1.

R.B. King. Chemical Applications of Topology and Graph Theory. Elsevier, October 1983.
ISBN 0444422447.

A. R. Leach and V. J. Gillet. An Introduction to Chemoinformatics. Springer, 2005.

P. Mahé, L. Ralaivola, V. Stoven, and J.-P. Vert. The Pharmacophore Kernel for Virtual Screen-
ing with Support Vector Machines. J. Chem. Inf. Model., 46:2003–2014, 2006.

Alan D. McNaught and Andrew Wilinson. Molecular Graph, 1997. URL http://www.
iupac.org/publications/compendium/index.html.

H.L. Morgan. The Generation of Unique Machine Description for Chemical Structures - A
Technique Developed at Chemical Abstracts Service. Journal of Chemical Documentation,
5:107–113, 1965.

A. Orriols and E. Bernad-Mansilla. The Class Imbalance Problem in Learning Classifier Sys-
tems: A Preliminary Study. In Proceedings of the 2005 Workshops on Genetic and Evolu-
tionary Computation (Washington, D.C., June 25 - 26, 2005), pages 74–78, New York, NY,
2005. ACM Press.

L. Ralaivola, S. J. Swamidass, H. Saigo, and P. Baldi. Graph Kernels for Chemical Informatics.
Neural Netw., 18(8):1093–1110, 2005.

J.W. Raymond and P. Willett. Effectiveness of Graph-Based and Fingerprint-Based Similarity
Measures for Virtual Screening of 2D Chemical Structure Databases. J. Comput.-Aided Mol.
Des., 16:59–71, 2001.

Razinger. Extended Connectivity in Chemical Graphs. Theoretical Chemistry Accounts:
Theory, Computation, and Modeling (Theoretical Chimica Acta), 61:581–586, 1982. doi:
10.1007/BF02394734. URL http://dx.doi.org/10.1007/BF02394734.

David Rogers and Robert D. Brown. Using Extended-Connectivity Fingerprints with
Laplacian-Modified Bayesian Analysis in High-Throughput Screening Follow-Up. Journal
of Biomolecular Screening, 10:682–686, October 2005. doi: 10.1177/1087057105281365.
URL http://jbx.sagepub.com/cgi/content/abstract/10/7/682.

H. Shin and S. Cho. How to Deal With Large Datasets, Class Imbalance and Binary Output in
SVM Based Response Model. In Proceedings of the Korean Data Mining Conference, pages
93–107, 2003. Best Paper Award.

R.L. Strausberg and S.L. Schreiber. From Knowing To Controlling: A Path From Genomics
To Drugs Using Small Molecule Probes. Science, 300:294–295, 2003. URL http://
chembank.broad.harvard.edu/.

145

http://www.iupac.org/publications/compendium/index.html
http://www.iupac.org/publications/compendium/index.html
http://dx.doi.org/10.1007/BF02394734
http://jbx.sagepub.com/cgi/content/abstract/10/7/682
http://chembank.broad.harvard.edu/
http://chembank.broad.harvard.edu/

AZENCOTT BALDI

S. J. Swamidass, J. H. Chen, J. Bruand, P. Phung, L. Ralaivola, and P. Baldi. Kernels for Small
Molecules and the Predicition of Mutagenicity, Toxicity, and Anti-Cancer Activity. Bioinfor-
matics, 21(Supplement 1):i359–368, 2005. Proceedings of the 2005 ISMB Conference.

S.J. Swamidass and P. Baldi. Bounds and Algorithms for Exact Searches of Chemical Finger-
prints in Linear and Sub-Linear Time. Journal of Chemical Information and Modeling, 47
(2):302–317, 2007.

J.-F. Truchon and C. I. Bayly. Evaluating Virtual Screening Methods: Good and Bad Metrics
for the "Early Recognition" Problem. J. Chem. Inf. Model., 47(2):488 –508, 2007.

K. Veropoulos, C. Campbell, and N. Cristianini. Controlling the Sensitivity of Support Vector
Machines. In Proceedings of the International Joint Conference on AI, pages 55–60, 1999.

D. Weiniger, A. Weiniger, and J.L. Weiniger. SMILES. 2. Algorithm for Generation of Uniques
SMILES Notation. J. Chem. Inf. Comput. Sci., 29:97–101, 1989.

146

Part III

Robust Parameter Estimation

Overview

Preventing overfitting or monitoring the fit versus robustness tradeoff has been the name of
the game in machine learning and statistics for the past few decades. Several robust parameter
estimation methods in the generalized linear model and kernel method families have emerged,
stemming from statistical learning theory. Such methods optimize a two-part cost function.
The first part is the “training error”, that is the average loss over all traning examples. Loss
functions include the hinge loss of Support Vector Machines (SVMs) for pattern recognition
and the square loss for regression (also sometimes used for pattern recognition). The second
part of the cost function is a term penalizing complex solutions, such as the norm of the weight
vector. More generally, the penalty may be a norm of function in a Hilbert space containing the
family of models considered.

In this part, three chapters illustrate methods derived from such approaches. In Chapter 7,
Mathias M. Adankon and Mohamed Cheriet reformulate the classical SVM optimization
problem to incorporate the box constraint as an extra kernel parameter, which facilitates per-
forming hyper-parameter optimization with gradient descent and, in some intances, reduced
the number of hyper-paramenters to be optimized. In Chapter 8, Erinija Pranckeviciene and
Ray Somorjai explore the possibilities offered by a 1-norm regularizer, as opposed to the
classical 2-norm regularizer generally used for SVMs. Such approaches provide an embedded
method of feature selection, since the contraints thus imposed on the weight vector drive some
weights to exactly zero. All these methods are not exempt of hyperparameter selection. Bounds
on the generalization error are often used to carry out hyperparameter selection in SVMs and re-
lated kernel methods. Chapter 7 uses the radius-margin bound, while Chapter 8 uses transvari-
ation intensity (another measure of average margin error). In Chapter 9, Michiel Debruyne,
Mia Hubert, and Johan A.K. Suykens propose a closed-form approximation of the leave-
one-out-error based on the influence function. See also Chapter 13, Part V, which describes
a method for regularizing the leave-one-out error estimated by the PRESS statistic for LSSVM
classifiers. This last method won overall second place in the performance prediction challenge
and yielded best reference performance in the ALvsPK challenge (agnostic track).

149

150

Chapter 7

Unified Framework for SVM Model Selection
Mathias M. Adankon MATHIAS@LIVIA.ETSMTL.CA

Mohamed Cheriet MOHAMED.CHERIET@ETSMTL.CA

Synchromedia Laboratory for Multimedia Communication in Telepresence
École de Technologie Supérieure, University of Quebec
1100 Notre-Dame West, Montreal, Quebec, Canada, H3C 1K3

Editor: Isabelle Guyon, Gavin Cawley, Gideon Dror and Amir Saffari.

Abstract
Model selection for support vector machines (SVMs) involves tuning SVM hyperparameters,
such as C, which controls the amount of overlap, and the kernel parameters. Several criteria
developed for doing so do not take C into account. In this paper, we propose a unified frame-
work for SVM model selection which makes it possible to include C in the definition of the
kernel parameters. This makes tuning hyperparameters for SVMs equivalent to choosing the
best kernel parameter values. We tested this approach using empirical error and radius margin
criteria. Our experiments on the Challenge Benchmarks dataset show promising results which
confirm the usefulness of our method.
Keywords: Model Selection, SVM, Support vector machine, hyperparameter, kernel.

7.1. Introduction
Support vector machines (SVMs) are particular classifiers which are based on the margin max-
imization principle (Vapnik, 1998). They perform structural risk minimization, which was in-
troduced to machine learning by Vapnik (Vapnik, 1982, 1992) and which has yielded excellent
generalization performance. However, the generalization capacity of the SVM depends on hy-
perparameters such as C and the kernel parameters. The hyperparameter C is a regularization
parameter which controls the trade-off between training error minimization and margin max-
imization. As an illustration, Figure 7.1 shows the variation of the error rate on a validation
set versus the variation of the Gaussian kernel with a fixed value of C and Figure 7.2 shows
the variation of the error rate on the validation set versus the variation of the hyperparameter C
with a fixed value of the RBF kernel parameter. In each case, we resolve the binary problem
described by the “Thyroid” data taken from the UCI benchmark. Clearly, the best performance
is achieved with an optimum choice of the kernel para-meter and of C.

Several methods (Wahba et al., 1999; Vapnik, 1998; Jaakkola and Haussler, 1999; Joachims,
2000; Opper and Winther, 1999, 2000; Chapelle and Vapnik, 1999; Vapnik and Chapelle, 2000;
Gold and Sollich, 2005; Adankon and Cheriet, 2007) have been developed for choosing the best
hyperparameter values. In 2001, Chapelle et al. (Chapelle et al., 2001) proposed for the first
time an automatic method for selecting hyperparameters for SVMs using certain criteria which
approximate the error of the leave-one-out (LOO) procedure. These criteria are called Span
bound and radius-margin bound. Duan et al. have shown in (Duan et al., 2003) that radius-
margin bound gives good prediction for L2-SVM, but its practical viability is still not very

© M.M. Adankon & M. Cheriet.

ADANKON CHERIET

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

Hyperparameter gamma=1/sigma2

Va
lid

at
io

n
Er

ro
r r

at
e

(%
)

(a) Validation error rate for different values of
the variance of the RBF kernel for binary
problem

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

10

20

30

40

50

60

70

Hyperparameter C

Va
lid

at
io

n
Er

ro
r r

at
e

(%
)

(b) Validation error rate for different values of
the hyperparameter C for binary problem

Figure 7.1: Impact of SVM hyperparameters on the classifier generalization

satisfactory for L1-SVM. Then, in 2003, Kai-Min et al. (Chung et al., 2003) proposed modified
radius-margin bound for L1-SVM.

Recently, Ayat et al. (Ayat et al., 2005) have proposed a new criterion based on the empirical
error, where an empirical estimate of the generalization error is minimized through a validation
set. This criterion is a linear function which does not require the resolution of another quadratic
problem except for SVM training.

However, certain criteria, like empirical error, cannot be applied to tuning the hyperparam-
eter C because the approximation used to compute the gradient is not tractable. In this paper,
we propose a new formulation for the L1-SVM. With this formulation, the hyperparameter C is
considered as a parameter of the kernel function. Hence, when a given criterion used to opti-
mize the hyperparameters is not tractable with C, we can use this new formulation to improve
model selection. Furthermore, the unified framework makes it possible to reduce the number of
hyperparameters in certain cases.

This chapter is organized as follows. In Section 7.2, we describe the new formulation for
the dual SVM problem, the baseline of the unified framework. In Section 7.3, we describe
the various properties of this new formulation, and, in Section 7.4, the advantage of the uni-
fied framework for model selection. In Section 7.5, we provide an application example of the
unified framework for model selection using the empirical error and radius-margin criteria. In
Section 7.6, we present the experimental results and, in the last section, we conclude the paper.

7.2. New Formulation
We first consider a binary classification problem. Let us consider a dataset {(x1,y1), . . . ,(x�,y�)}
with xi ∈ Rd and yi ∈ {−1,1}. Nonlinear SVM classifiers use the kernel trick to produce
nonlinear boundaries. The idea behind kernels is to map training data nonlinearly into a higher-
dimensional feature space via a mapping function Φ and to construct a separating hyperplane
which maximizes the margin. The construction of the linear decision surface in this feature
space only requires the evaluation of dot products φ(xi) ·φ(x j) = k(xi,x j), where the application

152

7. UNIFIED FRAMEWORK FOR SVM MODEL SELECTION

k : Rd ×Rd → R is called the kernel function (Boser et al., 1992; Scholkopf and Smola, 2002;
Cristianini and Shawe-Taylor, 2000; Shawe-Taylor and Cristianini, 2004).

The decision function given by an SVM is :

y(x) = sign[w�φ(x)+b], (7.1)

where w and b are found by resolving the following optimization problem which expresses the
maximization of the margin 1/�w� and the minimization of the training error :

min
w,b,ξ

1
2

w�w+C
�

∑
i=1

ξi (7.2)

subject to : yi[w�φ(xi)+b]≥ 1−ξi ∀i = 1, ..., � (7.3)
ξi ≥ 0 ∀i = 1, ..., �. (7.4)

The Lagrangian of the previous problem1 is :

L =
1
2

w�w+C
�

∑
i=1

ξi −
�

∑
i=1

αi[yi(w�φ(xi)+b)−1+ξi]−
�

∑
i=1

λiξi (7.5)

with the Lagrange multipliers αi ≥ 0 and λi ≥ 0 for all i = 1, ..., �.
When, we apply the differentiation theorem w.r.t. the Lagrangian, we obtain :

y(x) = sign[
�

∑
i=1

αiyik(xi,x)+b], (7.6)

with α solution of :

maximize : W (α) =
�

∑
i=1

αi −
1
2

�

∑
i, j=1

αiα jyiy jk(xi,x j) (7.7)

subject to:
�

∑
i=1

αiyi = 0 and 0 ≤ αi ≤C, i = 1, ..., �.

In the feature space, the optimal separating hyperplane for the SVM is defined by :

f (z) =
NV S

∑
j=1

α jy jk(x j,z)+b. (7.8)

In Equation (7.8) j = 1, . . . ,NV S are the Support Vector indices corresponding to non-zero
α j.

The new formulation we propose in this paper is defined by using the following change of
variables used in Chung et al. (2003) :

αi =Cα̃i, ∀i = 1, ..., �. (7.9)

The QP problem expressed by (7.7) becomes:

max
α̃

W (α̃) =
�

∑
i=1

Cα̃i −
1
2

�

∑
i, j=1

C2α̃iα̃ jyiy jk(xi,x j) (7.10)

subject to :
l

∑
i=1

Cα̃iyi = 0 (7.11)

0 ≤Cα̃i ≤C, i = 1, ..., � (7.12)
1. Problem (7.2) expresses the L1-SVM formulation.

We also have the L2-SVM defined by minw,b,ξ (
1
2 w�w+C ∑�

i=1 ξ 2
i)

153

ADANKON CHERIET

In Equations (7.11) and (7.12), we can simplify the positive real C, and so we have :

l

∑
i=1

α̃iyi = 0, (7.13)

0 ≤ α̃i ≤ 1, i = 1, ..., �. (7.14)

Then, the constraints become independent of the hyperparameter C.
Let us consider equation (7.10) which defines the objective function of the quadratic prob-

lem for SVMs :

W (α̃) =
�

∑
i=1

Cα̃i −
1
2

�

∑
i, j=1

C2α̃iα̃ jyiy jk(xi,x j)

= C
� �

∑
i=1

α̃i −
1
2

�

∑
i, j=1

α̃iα̃ jyiy jCk(xi,x j)
�
.

Since the real C is strictly positive, we can conclude that maximizing W w.r.t. α =(α1, ...,α�)�

is equivalent to maximizing W/C w.r.t. α̃ = (α̃1, ..., α̃�)�.
To complete the new formulation, we use :

k̃(xi,x j) =Ck(xi,x j) (7.15)

and we can write :

W (α̃)/C =
�

∑
i=1

α̃i −
1
2

�

∑
i, j=1

α̃iα̃ jyiy jk̃(xi,x j) (7.16)

We reformulate now the quadratic problem expressed in Equation (7.7) as follows:

maximize : Wm(α̃) =
�

∑
i=1

α̃i −
1
2

�

∑
i, j=1

α̃iα̃ jyiy jk̃(xi,x j) (7.17)

subject to:
l

∑
i=1

α̃iyi = 0 and 0 ≤ α̃i ≤ 1, i = 1, ..., �

The preceding equation defines the new formulation where the constraints on the parameters
α̃ are independent of hyperparameter C which is included in the new kernel function k̃.

When we consider Equation (7.17), the Karush-Kuhn-Tucker conditions give:

• 0 < α̃i < 1 if the point is on the margin

• α̃i = 1 if the point is misclassified w.r.t. the margin

• α̃i = 0 if the point is correctly classified outside the margin

154

7. UNIFIED FRAMEWORK FOR SVM MODEL SELECTION

7.3. Properties of the New Formulation
7.3.1. Hyperplane equation using the New Formulation

The separating hyperplane for the SVM that is used to define the decision boundary in a clas-
sification problem is expressed by (7.8). However, when we use the new formulation with the
changes of variables proposed in Section 7.2, we have :

f (z) =
�

∑
j=1

y jα jk(x j,z)+b

=
�

∑
j=1

y jα̃ jCk(x j,z)+b

and we obtain the following equation :

f (z) =
�

∑
j=1

y jα̃ j k̃(x j,z)+b. (7.18)

Consequently, when we resolve the problem of (7.17) which gives α̃ , we do not need to
compute the parameters α for evaluating the equation of the separating hyperplane.

7.3.2. Properties of k̃

Since the hyperparameter C is strictly positive, then the function k̃ : (xi,x j) �→ Ck(xi,x j) is a
Mercer kernel when the kernel k satisfies the Mercer condition. We have :

k̃(xi,x j) =Ck(xi,x j) =Cφ(xi).φ(x j). (7.19)

Hence, the nonlinear mapping φ̃ resulting from the new formulation is given by the follow-
ing expression:

φ̃ : x �→
√

Cφ(x). (7.20)

The mapping φ̃ can be expressed as a composition of two transformations as follows:

φ̃(x) = h[φ(x)] = (h◦φ)(x), (7.21)

where h is the homothety transformation with ratio
√

C.
We know that a homothety is the particular similarity transformation. As such, it preserves

angles and ratios of lengths. It also preserves orientation. Consequently, the kernel function k̃
obtained from φ̃ maintains the various properties of similarity of k.

7.3.3. Kernels definition using the New Formulation

When we use the new formulation, the new kernel function k̃ obtained from the Gaussian kernel
is expressed with the hyperparameter C as the second parameter of the kernel function.

k̃(x,y) =C exp(−�x− y�2

σ2) =C exp(−a�x− y�2), (7.22)

155

ADANKON CHERIET

where a is positive real.
We can define the following kernel to replace the Gaussian kernel, when we use the unified

framework :

k̃(x,y) = exp(−a�x− y�2 +b) (7.23)

In this new kernel, we have two parameters, the first a replace the inverse of the width while
the second kernel parameter b is equal to ln(C). This latter parameter controls the sparseness of
the data in the feature space, and makes it possible to control the overlap between the classes.
When b is too large, the patterns tend to be similar if the distance �x− y� is small, because
k̃(x,y)≈ exp(b).

For certain kernel functions, the hyperparameter C does not appear, i.e. the new kernel
function k̃ does not have an extra parameter. We can illustrate this when using the polynomial
kernel with three parameters :

k(x,y) = (ax.y+b)n,

where a and b are positive reals and n the degree.
We have

k̃(x,y) = C(ax.y+b)n

= (C1/n)n(ax.y+b)n

= (C1/nax.y+C1/nb)n.

Then,

k̃(x,y) = (ãx.y+ b̃)n, (7.24)

where ã =C1/na and b̃ =C1/nb .
Another example of a kernel for which we do not need an extra parameter to define the new

kernel function is the KMOD kernel (Ayat et al., 2002a) :

k(x,y) = a

�
exp

� γ2

�x− y�2 +σ2

�
−1

�
,

and

k̃(x,y) = ã

�
exp

� γ2

�x− y�2 +σ2

�
−1

�
, (7.25)

where ã =Ca.
Table 7.1 shows the definition of the kernel for the unified framework corresponding to the

popular kernel functions. We do not add an extra parameter to build the new kernel function,
other than for the Gaussian and the Linear kernel.

156

7. UNIFIED FRAMEWORK FOR SVM MODEL SELECTION

Table 7.1: Common kernel definition for the unified framework

RBF (Gaussian) k̃(x,y) = exp(−a�x− y�2 +b)
Linear k̃(x,y) = ax.y

Polynomial k̃(x,y) = (ax.y+b)n

Laplacian k̃(x,y) = exp(−a�x− y�+b)
Multi-quadratic k̃(x,y) = (a�x− y�+b)1/2

Inverse multi-quadratic k̃(x,y) = (a�x− y�+b)−1/2

KMOD k̃(x,y) = a

�
exp

�
γ2

�x−y�2+σ2

�
−1

�

7.4. Advantages of the Unified Framework for Model Selection
The various methods developed for automatic model selection for SVMs use algorithms based
on gradient descent. The criteria suggested are regarded as objective functions to be optimized.
But some of the criteria which that we cited in the introduction are not tractable with respect to
the variable C, an example of which is the empirical error (Ayat et al., 2005).

To overcome these problems, we can use the new formulation, because it is certain that
the kernel function will be derivable with respect to C. Also, the hyperparameter C is not
directly related to the constraints defining the optimization problem, and as such no longer has
an influence on the objective function convexity resulting from the selection criteria.

Another advantage of the new formulation for model selection is the reduction in a number
of hyperparameters. For example, for the polynomial kernel and KMOD, the number of kernel
parameters remains unchanged in spite of the inclusion of C. Thus, the number of hyperpa-
rameters is reduced to the number of kernel parameters. This makes easier as well the model
selection manually as automatically. The reduction of the hyperparameter number reduces the
search space and by this the optimization algorithm for model selection is accelerated and gives
more accurate results. Then, our unified framework can be applied with any model selection
criterion.

7.5. Application of the Unified Framework for Model Selection
7.5.1. The empirical error criterion

In this section, we describe the optimization of the SVM kernel parameters using the empirical
error (Ayat et al., 2002b, 2005). This criterion was first developed to tune only kernel param-
eters but with our unified framework, it is possible to tune both the kernel parameters and the
hyperparameters C, because we include C in the definition of the new kernel k̃.

Let us define ti = (yi +1)/2. The empirical error is given by the following expression:

Ei = |ti − p̂i|, (7.26)

where p̂i is the estimated posterior probability corresponding to the data example xi.
The estimated posterior probability is determined by :

p̂i =
1

1+ exp(A. fi +B)
, (7.27)

where fi = f (xi) and the parameters A and B are fitted after minimizing the cross-entropy error
as proposed by Platt (Platt, 2000).

157

ADANKON CHERIET

The use of the model developed by Platt to estimate this probability makes it possible to
quantify the distance from one observation to the hyperplane determined by the SVM using a
continuous and derivable function. Indeed, the probability estimate makes it possible to cali-
brate the distance f (xi) between 0 and 1 with the following properties:

• the observations of the positive class which are well classified and located away from the
margin have probabilities considered to be very close to 1;

• the observations of the negative class which are well classified and located away from the
margin have probabilities considered to be very close to 0;

• and the observations located in the margin have probabilities considered to be propor-
tional to f (xi).

Thus, with the empirical error criterion, only the misclassified observations and those lo-
cated in the margin determined by the SVM are very important, since the other observations
give almost null errors. Consequently, minimization of the empirical error involves the reduc-
tion of the support vectors (observations being in the margin). In other words, minimization
of the empirical error makes it possible to select hyperparameters defining a margin containing
fewer observations. We then construct a machine with fewer support vectors, which reduces the
complexity of the classifier. The results of the tests reported in (Ayat et al., 2002b) confirm this
property of the SVM constructed using the empirical error.

In fact, we have :

|ti − p̂i|=
�

p̂i if yi =−1
1− p̂i if yi = 1

Then :
Ei → 0 when p̂i → 0 for yi =−1 and p̂i → 1 for yi = 1
Consequently :
Ei → 0 if f (xi)<−1 for yi =−1 and f (xi)> 1 for yi = 1

We note that minimization of the empirical error forces the maximum of the observations
to be classified away from the margin, which makes this criterion useful for regularizing the
maximization of the margin for SVMs.

We assume that the kernel function depends on one or several parameters, encoded within
the vector θ = (θ1, . . . ,θn). These parameters are optimized by a gradient descent minimization
algorithm (Bengio, 2000) where the objective function is E = ∑Ei (see Algorithm 7.1). The
convergence is reached when the best fitness value is not improved after a specified number of
iterations.

The derivative of the empirical error with respect to θ is evaluated using the validation
dataset. If we assume N to be the size of the validation dataset; then :

∂E
∂θ

=
∂

∂θ

�
1
N

N

∑
i=1

Ei

�
=

1
N

N

∑
i=1

∂Ei

∂θ
, (7.28)

with
∂Ei

∂θ
=

∂Ei

∂ fi
.
∂ fi

∂θ
.

* Computation of ∂Ei
∂ fi

∂Ei

∂ fi
=

∂Ei

∂ p̂i
.
∂ p̂i

∂ fi
,

158

7. UNIFIED FRAMEWORK FOR SVM MODEL SELECTION

where
∂Ei

∂ p̂i
=

∂ |ti − p̂i|
∂ p̂i

=

�
−1 if ti = 1
+1 if ti = 0

and
∂ p̂i

∂ fi
=−Ap̂i(1− p̂i).

Then ∂Ei
∂ fi

is equal to:
∂Ei

∂ fi
= Ayi p̂i(1− p̂i). (7.29)

* Computation of ∂ fi
∂θ

∂ fi

∂θ
=

NV S

∑
j=1

y j

�
∂ k̃(x j,xi)

∂θ
α̃ j +

∂ α̃ j

∂θ
k̃(x j,xi)

�
+

∂b
∂θ

. (7.30)

This derivative is composed of two parts. We may include the bias b into the parameter
vector α̃ as (α̃1, . . . , α̃NV S,b). We then use the following approximation proposed by Chapelle
et al. (Chapelle et al., 2001).

∂ α̃
∂θ

=−H−1 ∂H
∂θ

α̃T , (7.31)

where
H =

�
KY Y
Y T 0

�
. (7.32)

In Equation (7.32), H represents the Hessian matrix of the SVM objective called the modi-
fied Gram Schmidt matrix. Its components KY

i j are equal to yiy jk̃(xi,x j) and Y is a vector of size
NV S×1 containing support vector labels yi.

Algorithm 7.1: SVM model selection using the empirical error criterion
Input Training set, Validation set, kernel type, learning rate η
Output Hyperplane < α̃,b >, optimal kernel parameters θ
Initialize the kernel parameters
while convergence is not reached do

- Train SVM with current kernel parameters
- Estimate A and B for the sigmoid
- Estimate the probability of the error
- Compute the gradient of the error
- Correct the kernel parameters according to the gradient as θ t+1 = θ t −η ∂E

∂θ
end while

7.5.2. The radius-margin criterion

The radius-margin criterion is a bound of the leave-one-out (LOO) error. In Vapnik (1998), it
was shown that the following bound, called radius-margin bound holds:

LOOError ≤ 4R2 � w � (7.33)

159

ADANKON CHERIET

where � w � is the solution of (2) and R is the radius of the smallest sphere containing all the
samples (training points) in the feature space. In practice, the radius is the solution for the
following quadratic problem:

R2 = max
β

�

∑
i=1

βik̃(xi,xi)−
�

∑
i, j=1

βiβ j k̃(xi,x j) (7.34)

subject to
�

∑
i=1

βi = 1;β ≥ 0, i = 1,�

In Chapelle and Vapnik (1999), the radius-margin criterion is minimized for the first time by
the gradient descent algorithm for finding the kernel parameter and C. The experimental results
obtained show that this criterion is a good one to use for SVM model selection. However, it
has also been shown that it only performs for the L2-SVM (Duan et al., 2003). So, another
expression for the radius-margin criterion is proposed for the L1-SVM. In this study, we use the
modified radius-margin criterion proposed in Chung et al. (2003) which is expressed as follows:

RM = (R2 +∆/C)(� w �2 +2C
�

∑
i=1

ξi) (7.35)

where ∆ is a positive constant. For our unified framework, we set C = 1.
The computation of the gradient of the RM is given by:

∂RM
∂θ

=
∂ (R2 +∆)

∂θ
(� w �2 +2C

�

∑
i=1

ξi)+
∂ (� w �2 +2∑�

i=1 ξi)

∂θ
(R2 +∆) (7.36)

Using Equation (7.34), we obtained :

∂ (R2 +∆)
∂θ

=
�

∑
i=1

βi
∂ k̃(xi,xi)

∂θ
−

�

∑
i, j=1

βiβ j
∂ k̃(xi,x j)

∂θ
(7.37)

The expression � w �2 +2∑�
i=1 ξi is equivalent to ∑�

i=1 αi − 1
2 ∑�

i, j=1 α̃iα̃ jyiy jk̃(xi,x j) in dual
space. Thus, we have :

∂ (� w �2 +2∑�
i=1 ξi)

∂θ
=−

�

∑
i, j=1

α̃iα̃ jyiy j
∂ k̃(xi,x j)

∂θ
(7.38)

Algorithm 7.2 shows in detail how to minimize the RM criterion with the gradient descent
strategy.

7.6. Experiments and Results
As mentioned early on in this paper, our method was designed to be independent of the type of
model selection criterion and kernel function. In this section, we conduct an experiment with
our unified framework and two model selection criteria, and test two different kernel functions.
We also show the impact of kernel choice.

160

7. UNIFIED FRAMEWORK FOR SVM MODEL SELECTION

Algorithm 7.2: SVM model selection using modified radius-margin criterion
Input Training set, kernel type, learning rate η
Output Hyperplane < α̃,b >, optimal kernel parameters θ
Initialize the kernel parameters
while convergence is not reached do

- Train SVM with current kernel parameters
- Found the radius by solving (7.34)
- Compute the gradient of RM
- Correct the kernel parameters according to the gradient as θ t+1 = θ t −η ∂RM

∂θ
end while

7.6.1. Datasets and Experimental Setup

We used the following Challenge Benchmark datasets: ADA, GINA, HIVA, NOVA and SYLVA.
Each dataset is partitioned into three subsets for training, validation and test, describing the
binary classification problem. Table 7.2 provides more information about the five datasets. We
kept all the datasets intact without performing any preprocessing on the feature values.

Table 7.2: Description of the Challenge Benchmark datasets

Datasets ADA GINA HIVA NOVA SYLVA
Features Number 48 970 1617 16969 216
Training samples 4147 3153 3845 1754 13086

Validation samples 415 315 384 175 1308
Test samples 41471 31532 38449 17537 130858

Positive percent 24.8 49.2 3.5 28.5 6.2

We used Joachims’ algorithm, called SVMlight to train the SVMs, and we adjusted the
bias by minimizing the balanced error on the validation set. We defined the modified RBF
kernel as the user kernel in the file kernel.h with two parameters. Since the definition of the
polynomial kernel for the unified framework remains unchanged, we used the same one as
defined in SVMlight. We fixed the degree of the polynomial kernel to 3, while the parameters a
and b were tuned using the given criterion.

For model selection, we used the empirical error and radius-margin criteria described in
Section 7.5. The empirical error was estimated on the validation set while the radius-margin
was computed on the training set. Technically, we minimize each criterion by using gradient
descent algorithm. However, sometimes our problem is not convex, in which case, we use many
starting points to overcome it. We can also use the simple function fminsearch implemented in
Matlab with different starting points.

7.6.2. Results and Discussion

Tables 7.3, 7.4 and 7.5 present the results obtained using of each of the two model selection
criterion with either the polynomial or the RBF kernel and the various datasets.

We note that the performance of the classifier built depends on the type of kernel used. It
should also be noted that the RBF kernel does not perform for all the datasets, and the polyno-
mial kernel gives good results on some of them. For example, in the case of the ADA dataset,
the polynomial kernel performs better than the RBF kernel. This confirms that the kernel type

161

ADANKON CHERIET

Table 7.3: Performance of our method using the empirical error criterion with the polynomial
kernel

Datasets Hyperparameters Balanced Error
(ln(a), ln(b)) Training Validation Test

ADA (−10.4756,−0.9891) 0.172 0.1868 0.1821
GINA (−14.0872,−0.7335) 0 0.0319 0.0581
HIVA (6.3600,1.2200) 0 0.2676 0.3226
NOVA (−7.3730,1.0154) 0.0054 0.036 0.0538
SYLVA (−15.3893,−7.10−5) 0.0073 0.0115 0.0225

Table 7.4: Performance of our method using the empirical error criterion with the RBF kernel

Datasets Hyperparameters Balanced Error
(ln(a), ln(b)) Training Validation Test

ADA (−13.0529,−92.0120) 0.2433 0.2491 0.256
GINA (−15.5310,1.1393) 0 0.0352 0.0574
HIVA (−4.0321,0.0399) 0.0023 0.2618 0.2959
NOVA (−5.1427,−0.1427) 0.0032 0.042 0.0574
SYLVA (−15.4850,−0.7109) 0.0095 0.0127 0.0189

Table 7.5: Performance of our method using the radius-margin criterion with the RBF kernel

Datasets Hyperparameters Balanced Error
(ln(a), ln(b)) Training Validation Test

ADA (−10.5620,−107.8668) 0.221 0.2756 0.2546
GINA (−15.2356,2.8698) 0 0.0414 0.0581
HIVA (−0.9344,2.1061) 0 0.3929 0.4634
NOVA (−3.4891,2.5964) 0 0.088 0.101
SYLVA (−12.9651,2.5168) 0.000 0.0135 0.0244

162

7. UNIFIED FRAMEWORK FOR SVM MODEL SELECTION

is specific to the problem 2. Figure 7.2 shows the balanced error obtained on a test set for the
two types of kernels when we used the empirical error criterion.

With the SVM, as with other kernel classifiers, the choice of kernel corresponds to choos-
ing a function space for learning. The kernel determines the functional form of all possible
solutions. Thus, the choice of kernel is very important in the construction of a good machine.
So, in order to obtain a good performance from the SVM classifier, we need first to design or
choose a type of kernel and then optimize the SVM’s hyperparameters to improve the classifier’s
generalization capacity.

ADA GINA HIVA NOVA SYLVA
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Datasets

Ba
la

nc
ed

 E
rr

or
 o

n
Te

st
 S

et

Polynomial
RBF

Figure 7.2: Comparison of the kernel performances for empirical error criterion

In Table 7.6, we report other results on the same Benchmark obtained from the Challenge
Website and from the referenced papers. First, we compare our result with the summary results
obtained from all entries reported by the Challenge Organizers in Guyon et al. (August 2007).
Since we did our test on “Agnostic Learning” datasets, we plot the comparison figure with the
MIN AL BER and the MEDIAN AL BER. For each dataset, our framework method performs
better than the latter and worse than the former. The best entries in this category were obtained
by Roman Lutz, who used boosting techniques (Lutz, July 2006) and Gavin Cawley who used
Least Squares SVM (Cawley, July 2006; Cawley and Talbot, August 2007). Second, the com-
parison with other methods based on SVM shows the performance of our framework. Figure 7.4
illustrates how our method performs in comparison with other SVM classifiers built by using
various techniques : Wei Chu and Chapelle had the best entries with the SVM classifier dur-
ing the first challenge (Performance Prediction Challenge) and Franc Vojtech was an individual
dataset winner with the HIVA dataset during the second challenge. Our results, obtained by
empirical error minimization, are similar to those obtained by the classical grid search method

2. We confirm the well-known result (the choice of the kernel is important) by our experimental results in order to
point out the usefulness of different types of kernels. Because, the RBF kernel is used most of the time, at the
expense of the others; but, the RBF kernel is based on the distance and is not dependent on the direction like
polynomial kernel.

163

ADANKON CHERIET

Table 7.6: Performance of other methods on Challenge Benchmark : Min AL BER is the best
BER on test and Median AL BER represents the median for all entries reported in
Guyon et al. (August 2007); Chu (2006) used SVM/GPC with feature normalized to
have variance=1 and feature pruning on GINA and HIVA; Olivier Chapelle used L2-
SVM RBF kernel with feature normalized to have variance=1 and model selection
done by minimizing the leave-one-out error; Franc Vojtech used also the RBF SVM
with hyperparameters tuned using LOO BER.

Datasets Balanced Error
Min AL BER Median AL BER Wei Chu O. Chapelle F. Vojtech

ADA 0.166 0.195 0.1899 0.184 0.2037
GINA 0.033 0.068 0.0381 0.068 0.0552
HIVA 0.271 0.305 0.2905 0.2918 0.2827
NOVA 0.046 0.081 0.048 0.0737 0.0877
SYLVA 0.006 0.014 0.01 0.0137 0.0205

(Chu, 2006), the latter being quite costly in terms of computing time and becoming intractable
when there are more than two hyperparameters.

ADA GINA HIVA NOVA SYLVA
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Datasets

Ba
la

nc
ed

 E
rr

or
 o

n
Te

st
 S

et

Our results
Median AL BER
Min AL BER

Figure 7.3: Comparison with the results of all entries

7.7. Conclusion
In this chapter, we have described a unified framework for SVM model selection. This frame-
work makes it possible to define a new form of kernel function which includes the hyperparam-

164

7. UNIFIED FRAMEWORK FOR SVM MODEL SELECTION

ADA GINA HIVA NOVA SYLVA
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Datasets

Ba
la

nc
ed

 E
rr

or
 o

n
Te

st
 S

et

Our results
Wei Chu
Olivier Chapelle
Vojtech franc

Figure 7.4: Comparison of our results with those of the other techniques using the SVM, ours
having been obtained using the empirical error criterion with a polynomial kernel
for ADA and an RBF kernel for the others.

eter C that controls the amount of overlap. Also, when we use certain kernel functions, such as
polynomial, KMOD, Laplacian, etc., the number of hyperparameters is reduced. Consequently,
with this framework, model selection for SVMs becomes easy, and is equivalent to tuning the
parameters of the newly defined kernel. We applied our model selection method using the em-
pirical error and radius-margin criteria, and obtained promising results on the Challenge dataset.
As pointed out in the literature and confirmed in the Experiments and Results section, the choice
of kernel function is very important in all kernel machines, and especially in the SVM. Thus,
the question of how to choose the best kernel function for a given dataset is as important as
how to optimize the kernel parameters. So, it is not enough to choose any kernel, optimize its
parameters and wait for the designed classifier to perform well. The complete way to build an
SVM classifier for a given problem is to first choose an appropriate kernel function and then
carefully tune its parameters. This procedure will enable good performance. From there, the
important issue may become how to choose an appropriate kernel function for the given data.
Finding a way to do this will be an interesting direction for our future work.

Acknowledgments
We would like to thank Isabelle Guyon for her help during our experiments on the Challenge
datasets, the anonymous reviewers for their helpful comments and the NSERC of Canada for
the financial support.

165

ADANKON CHERIET

References
Mathias M. Adankon and Mohamed Cheriet. Optimizing resources in model selection for sup-

port vector machines. Pattern Recognition, in Computer Science, 40(3):953–963, 2007.

N. E. Ayat, M. Cheriet, and C. Y. Suen. Kmod-a two parameter svm kernel for pattern recogni-
tion. International Conference on Pattern Recognition, 2002a.

N. E. Ayat, M. Cheriet, and C. Y. Suen. Empirical error based optimization of svm kernels:
application to digit image recognition. International Workshop on Handwriting Recognition,
pages 292–297, 2002b.

N. E. Ayat, M. Cheriet, and C.Y. Suen. Automatic model selection for the optimization of the
svm kernels. Pattern Recognition, in Computer Science, 38(10):1733–1745, 2005.

Y. Bengio. Gradient-based optimization of hyper-parameters. Neural Computation, 12(8):
1889–1900, 2000.

Bernhard E. Boser, Isabelle Guyon, and Vladimir Vapnik. A training algorithm for optimal
margin classifiers. In Computational Learing Theory, pages 144–152, 1992.

Gavin Cawley. Leave-one-out cross-validation based model selection criteria for weighted ls-
svms. In proceedings IJCNN 2006, Vancouver, Canada, July 2006.

Gavin Cawley and Nicola Talbot. Agnostic learning versus prior knowledge in the design of
kernel machines. In proceedings IJCNN 2007, Orlando, Florida, August 2007.

O. Chapelle and V. Vapnik. Model selection for support vector machines. Advances in Neural
Information Processing Systems, 1999.

O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee. Choosing multiple parameters for
support vector machines. Machine Learning, 2001.

Wei Chu. Model selection: An empirical study on two kernel classifiers. In proceedings IJCNN
2006, Vancouver, Canada, 2006.

K.-M. Chung, W.-C. Kao, L.-L. Wang C.-L. Sun, and C.-J. Lin. Radius margin bounds for
support vector machines with the rbf kernel. Neural Computation, 15:2643–2681, 2003.

Nello Cristianini and John Shawe-Taylor. An Introduction to Support Vector Machines. Cam-
bridge University Press, 2000.

K. Duan, S. Keerthi, and A. N. Poo. Evaluation of simple performance measures for tuning svm
hyperparameters. Neurocomputing, 51:41–59, 2003.

Carl Gold and Peter Sollich. Fast bayesian support vector machine parameter tuning with the
nystrom method. In IJNN’05, pages 2820–2825, 2005.

Isabelle Guyon, Amir Saffari, Gideon Dror, and Gavin Cawley. Agnostic learning vs. prior
knowledge challenge. In proceedings IJCNN 2007, Orlando, Florida, August 2007.

T. S. Jaakkola and D. Haussler. Probabilistic kernel regression models. Workshop in Conference
on Artificial Intelligence and Statistics, 1999.

T. Joachims. Estimating the generalization performance of a svm efficiently. International
Conference on Machine Learning, pages 431–438, 2000.

166

7. UNIFIED FRAMEWORK FOR SVM MODEL SELECTION

Roman Lutz. Logitboost with trees applied to the wcci 2006 performance prediction challenge
datasets. In proceedings IJCNN 2006, Vancouver, Canada, July 2006.

M. Opper and O. Winther. Gaussian processes and svm: Mean field and leave-one-out. In A.J.
Smola, P.L. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Advances in Large Margin
Classifiers, pages 311–326. MIT Press, Cambridge, 2000.

Manfred Opper and Ole Winther. Mean field methods for classification with gaussian processes.
In the 1998 conference on Advances in neural information processing systems II, pages 309–
315. MIT Press, 1999.

J. Platt. Probabilistic outputs for support vector machines and comparison to regularized like-
lihood methods. In A.J. Smola, P. Bartlett, B. Schoelkopf, and D. Schuurmans, editors,
Advances in Large Margin Classiers, pages 61–74. 2000.

B. Scholkopf and A. J. Smola. Learning with Kernels. MIT Press, Cambridge, MA, 2002.

John Shawe-Taylor and Nello Cristianini. Kernel Methods for Pattern Analysis. Cambridge
University Press, 2004.

V. Vapnik and O. Chapelle. Bounds on error expectation for support vector machines. Neural
Computation, 12(9), 2000.

V. N. Vapnik. Estimation of Dependences based on Empirical Data. Springer Verlag, Berlin,
1982.

V. N. Vapnik. Principles of risk minimization for learning theory. Adavances in Neural Infor-
mation Processing Systems 4, Morgan Kaufman, San Mateo, CA, pages 831–838, 1992.

V. N. Vapnik. Statistical learning theory. John Wiley and Sons, New York, 1998.

G. Wahba, Y. Lin, and H. Zhang. Generalized approximate cross validation for support vector
machines, or, another way to look at margin-like quantities. Technical report, Departement
of Statistics,University of Wisconsin, February 25 1999.

167

168

Chapter 8

Liknon feature selection: Behind the scenes
Erinija Pranckeviciene ERINIJA.PRANCKEVICIENE(@MF.VU.LT, @GMAIL.COM)
Department of Human and Medical Genetics,
Vilnius University,
Santariskiu 2, LT-08661 Vilnius-21, Lithuania.

Ray Somorjai RAY.SOMORJAI@NRC-CNRC.GC.CA

Institute for Biodiagnostics,
National Research Council Canada,
435 Ellice Avenue, Winnipeg, MB, Canada.

Editor: Isabelle Guyon, Gavin Cawley, Gideon Dror and Amir Saffari

Abstract
Many real-world classification problems (biomedical among them) are represented by very
sparse and high dimensional datasets. Due to the sparsity of the data, the selection of classifi-
cation models is strongly influenced by the characteristics of the particular dataset under study.
If the class differences are not appreciable and are masked by spurious differences arising be-
cause of the peculiarities of the dataset, then the robustness/stability of the discovered feature
subset is difficult to assess. The final classification rules learned on such subsets may gener-
alize poorly. The difficulties may be partially alleviated by choosing an appropriate learning
strategy. The recent success of the linear programming support vector machine (Liknon) for
feature selection motivated us to analyze Liknon in more depth, particularly as it applies to
multivariate sparse data. The efficiency of Liknon as a feature filter arises because of its ability
to identify subspaces of the original feature space that increase class separation, controlled by
a regularization parameter related to the margin between classes. We use an approach, inspired
by the concept of transvariation intensity, for establishing a relation between the data, the reg-
ularization parameter and the margin. We discuss a computationally effective way of finding a
classification model, coupled with feature selection. Throughout the paper we contrast Liknon-
based classification model selection to the related Svmpath algorithm, which computes a full
regularization path.
Keywords: Feature selection, Linear programming, Margin, Transvariation intensity, Transvari-
ation intensity function, Liknon, Regularization parameter C, Full regularization path.

8.1. Introduction
Certain (e.g., biomedical) classification problems, characterized by very sparse and high dimen-
sional datasets, suffer from a generic difficulty: due to the sparsity, the learned classification
models are strongly influenced by the characteristics of the investigated dataset. This is mani-
fested by overfitting, caused by sample bias (Zucchini, 2000). Many feature selection strategies
and methods (Guyon et al., 2006) and comparisons have been proposed in the literature (Kudo
and Sklansky, 2000; Kohavi and John, 1997). Indeed, when the sample size is small and the di-
mensionality high, the feature selection procedure, driven by the optimization of some criterion
that ensures increasing class separation, will adapt to the training data (Ambroise and McLach-
lan, 2002). “Too much selection can do more harm than good” (Zucchini, 2000). Even if there

© E. Pranckeviciene & R. Somorjai.

PRANCKEVICIENE SOMORJAI

exist classification models that perform well without feature selection, for the interpretability
of the results it is still important to determine the set of “markers” that provide good class dis-
crimination via feature selection, whether filter, wrapper or embedded. If the dataset is “easy”,
i.e., the class differences are not masked by the noise in the data, one would expect this to be
revealed by the validation of the feature selection procedure. Ideally, the classification error es-
timate will have low variance and the identities of discovered features will not vary appreciably
across different random splits of the training data.

Investigations both by other researchers and by us suggest that a feature selection method
based on linear programming, originally introduced by (Fung and Mangasarian, 2004), has the
desired stability properties and is robust with respect to the sample bias. For a particular ap-
plication, profiling of gene expression microarrays, for which the data dimensionality exceeds
the available number of samples by orders of magnitude, the usefulness of the linear program-
ming support vector machine named Liknon was demonstrated (Bhattacharyya et al., 2003).
The method was investigated further and used in practical tasks of face recognition (Guo and
Dyer, 2005). It was applied for classification of spectral data (Pranckeviciene et al., 2004). The
Liknon feature selection, combined with other classification rules, was among the top-ranked
methods in the Agnostic learning vs. Prior knowledge competition (Guyon et al., 2007a).

Useful insights have been gained (Cherkassky and Ma, 2006) on the role of the margin
between the classes as an effective measure of the match between data complexity and the
capacity of a learning rule. A practical capacity control of a linear rule via the structural risk
minimization principle was suggested (Guyon et al., 1992). It is known that the regularization
parameter C in kernel-based classification methods controls the tradeoff between maximizing
the margin of the classifier and minimizing the margin errors of the training data (Igel, 2005).
It is important to use an appropriate C value for an improved generalization performance of the
classifier. Usually, the value of this parameter is determined by grid search and crossvalidation.

The formulation of Liknon as a linear programming problem provides a framework for a
systematic search of C, computed from the training data. The role of the parameter in Liknon
feature selection can be summarized as follows: the non-zero weights of the Liknon discrimi-
nant, identifying important features, correspond to those individual data dimensions, for which
the absolute difference between the classes is greater than 1/C. A transvariation intensity func-
tion, inspired by the concept of transvariation intensity (Montanari, 2004) applied to the training
data, reveals how the parameter C relates quantitatively to the class separation by the margin
through the ratio of class overlap over the class difference. This relation leads to an algorithm
for the computation of C in Liknon, and a strategy for classification model selection. The clos-
est method to the Liknon-based classification model selection is the Svmpath algorithm (Hastie
et al., 2004), which computes the full regularization path for a given classification problem.
Throughout the paper we briefly sketch the similarities and differences of the two methods.

The rest of the chapter is organized as follows. In Section 8.2, both Liknon-based and
Svmpath-based feature and classification model selection are highlighted, using an artificial
dataset, for which classes separate nonlinearly. The details of the primal and dual Liknon for-
mulations are described in Section 8.3. We introduce the transvariation intensity function and
analyze it in depth in Section 8.4 in relation to the linear SVM. We derive the relationship be-
tween C and the ratio of class overlap over class difference. We illustrate experimentally, that
the Liknon and Svmpath algorithms have similar solutions with respect to this ratio. The algo-
rithm for computing C in Liknon is the topic of Section 8.5. The NIPS 2003 feature selection
(NIPS 2003 FS) (Guyon et al., 2006) and the recently organized Agnostic Learning versus Prior
knowledge (ALvsPK) (Guyon et al., 2007a) competitions provided excellent platforms for con-
trolled experiments with real-life datasets. In Section 8.6 Liknon feature selection is discussed
in the context of these two challenges. For the classification experiments, the functions from

170

8. LIKNON FEATURE SELECTION: BEHIND THE SCENES

PRTools (Duin et al., 2004) and the publicly available Liknon Matlab script (Bhattacharyya et
al., 2003) were used. The Matlab code for computing the range of C values from the training
data is listed in the Appendix. For the comparison with the Svmpath method, implemented in
R (Hastie et al., 2004), Liknon was also implemented in R.

8.2. Liknon and Svmpath based feature and classification model selection
when classes separate nonlinearly: case study on artificial Banana
dataset

In this section we give an overview of Liknon-based feature/classification model selection, con-
trasting it with a related Svmpath algorithm using a linear kernel. The efficiency of Liknon fea-
ture selection in finding ground truth features was demonstrated on the artificial dataset (Pranck-
eviciene et al., 2007), in which class separation was due to the difference in the means of two
features that separated classes linearly. Liknon feature selection is also applicable where classes
separate nonlinearly, but it would find only the “linear part” of feature relevance. The varying
margin in the embedded feature selection by Liknon facilitates “retrieving” multivariate feature
subsets separating the classes linearly. Liknon will not retrieve the features of classes made of
multiple clusters such as checkerboard or concentric classes. A nonlinear boundary between
classes should be such, that it can be approximated by linear boundary with some margin. After
the feature selection step, other classifiers can be explored with the selected features, aiming to
improve the classification performance. The approach consists of two parts: obtaining the most
prominent features via Liknon, and using them with other classifiers, or using an ensemble of
Liknon discriminants. The winning model is determined by the smallest classification error in
k-fold crossvalidation. First, we explain the general computational procedure of the Liknon fea-
ture selection and then we study an example. We also apply the related Svmpath algorithm on
the same data. To compare fairly the relative computational times of the Liknon and Svmpath
methods, the Liknon feature/classification model selection method was re-coded in R (code is
available from the first author upon request).

8.2.1. Computational procedure for Liknon-based feature selection

The computational paradigm for Liknon feature selection, using the training data, is k-fold
crossvalidation. The number of folds k, usually 5 or 10, is determined by the sample size of
the training data. In the outer loop, the data is divided into a training set Training and a
validation set Validation. During classifier development, to account for the variance in the
dataset, the Training set in the inner loop is randomly partitioned several times into two:
a balanced Training set and the remaining Monitoring set. The classifier development is per-
formed on the Training set. The Validation set is used for the assessment of the final
classification model. In every data partition/split, the number NM of Liknon discriminants is
identified, based on the Training set. The sequence of the NM increasing values of the regular-
ization parameter C guides the search for the optimal discriminant. The optimality criterion is
the balanced classification error rate (BER) of the Monitoring set, computed from the confusion
matrix con f mat of the classifier:

con f mat =
�

T P FP
FN T N

�
, BER = 1

2 (
FP

(FP+T P) +
FN

(FN+T N)) ,

where TP is the number of true positives, FP is the number of false positives, FN is the number
of false negatives and TN is the number of true negatives. Increasing the number of features in
the discriminant leads to a gradual adaptation to the Training set - overfitting, as evidenced by

171

PRANCKEVICIENE SOMORJAI

the rapidly decreasing training error. The Monitoring set is used to monitor the adaptation and
find the best discriminant with the minimum monitoring BER of the particular data split.

Figure 8.1: Computational scheme of Liknon-based feature/classification model selection. The
left panel shows the steps in the crossvalidation procedure. The right panel shows
the selection of an optimal Liknon discriminant using the monitoring set.

Every discriminant is associated with a feature subset. The number of important features is
different for different discriminants. For small sample sizes for the training and monitoring sets,
noisy features will occur in the model. A feature profile is created during the development, by
counting the frequency of inclusion of each feature into the optimal discriminant. In the feature
profile, peaking occurs for important features. Feature profiles are very important both for
interpretation and for exploratory data analysis. The parameters of the presented computational
procedure are the number of splits M in the inner loop and the number of Liknon discriminants
NM. We denote the Validation set size as V=V1+V2, the balanced Training as T=T1+T2
and the remaining Monitoring as M=M1+M2.

The overall scheme of the procedure is presented in Figure 8.1. The sequence of the steps
in crossvalidation is shown in the left panel. In the right panel, the process of the selection
of the optimal Liknon discriminant is illustrated on an artificial data set. The total number
of optimization operations in the outlined procedure is K ∗M ∗NM, where M is the number
of resamplings, NM is the number of Liknon optimizations (C values explored) and K is the
number of folds.

8.2.2. Identification of useful features

We study Liknon and Svmpath using the noise-augmented Banana dataset, for which the classes
separate nonlinearly. The dataset dimensionality is D = 100, the sample size is N1+N2 = 210+
190. Features 29 and 30 separate the two classes nonlinearly. The remaining 98 features are
overlapping, normally distributed N(0,1). The class distribution in features containing structure
and no structure is presented in Figure 8.2.

The Liknon- and Svmpath- based feature/classification model selection is performed in 5-
fold crossvalidation with a single random split in the inner loop. The best solutions of both
methods are determined by the minimum monitoring BER. The sizes of the data subdivision
in folds are T1+T2=84+76, M1+M2=83+86, V1+V2=43+39, and the number of the tested
Liknon models is NM=50. The computations for Liknon were continued until a stable solution

172

8. LIKNON FEATURE SELECTION: BEHIND THE SCENES

Figure 8.2: Class distribution in the Banana dataset augmented with noise. The right panel
shows the nonlinear structure in features 29 and 30. The left panel shows a typical
class distribution for the noisy features 1 and 2.

was reached. The feature profiles, identified in every fold, are presented in Figure 8.3 as heat
maps, Liknon profiles are on the right, and Svmpath are on the left. The color-coded values of
the weights of discriminants may be interpreted as indicators of feature importance. The ground
truth features 29 and 30 have large weight in all folds for both algorithms.

Figure 8.3: Feature profiles identified in 5 folds: Liknon on the right, Svmpath on the left.

The performances of Liknon and Svmpath methods are summarized in Table 8.1. We report
the best monitoring BER, validation BER, and the validation BER of a 3nn classifier, trained
using the selected features. The most important features in the Svmpath solution were those,
for which the absolute value of the weight was above some threshold. Several threshold values,
based on a visual examination of the Svmpath feature profiles, were explored. Time, spent by
both procedures implemented in R for the computation of the best model, was estimated on a
Windows-based 1.20 GHz 256 RAM PC.

Svmpath and Liknon are similar in terms of performance and Liknon’s computational edge
is not significant statistically. The difference is in their utility for feature selection. No large

173

PRANCKEVICIENE SOMORJAI

Table 8.1: Comparison of the performances of Svmpath and Liknon.

Fold 1 2 3 4 5
Svmpath

Monitoring BER 0.1271 0.1331 0.0888 0.0860 0.1397
Validation BER 0.1699 0.0826 0.1583 0.099 0.0489
Time (s) 15.99 17.5 16.5 18 16.99
Threshold=0.05
3nn BER 0.0128 0.000 0.0128 0.0128 0.0385
features 3 5 4 2 23
Threshold=0.035
3nn BER 0.0244 0.000 0.0489 0.0244 0.0489
features 8 14 6 9 38

Liknon
Monitoring BER 0.1085 0.1266 0.0942 0.099 0.1463
Validation BER 0.1454 0.0850 0.1595 0.099 0.0620
Time (s) 6.37 12.64 14.47 9.31 8.71
3nn BER 0.0128 0.000 0.0361 0.0128 0.0244
features 6 23 3 2 9

differences are observed in monitoring and validation BER’s of the best solutions of Liknon
and Svmpath. None of the methods can be claimed superior in this example. The nonlinear 3nn
classifier, trained on the selected feature subsets of both Liknon and Svmpath, clearly performs
better in all folds on the validation sets, compared to the linear classifiers, derived from Liknon
and Svmpath. Note, that the ground truth features 29 and 30 are identified in the solutions
of both approaches. From the feature selection point of view, Liknon is more advantageous.
Relevant features in the Liknon solution are provided by non zero weights, unlike in Svmpath.
Table 8.1 shows, that the final feature subset and consequently the classification result is very
sensitive to the threshold value. If the weights of the relevant features are not very distinct,
choosing the threshold would present a problem, if one were to use the Svmpath solution for
feature selection. Computations for Liknon with a single split in the inner loop take less time
than for Svmpath. More splits in Liknon would increase the time, but still within an acceptable
range. The perfect classification of the validation set in fold 2 occurs due to an accidental, split-
induced data configuration. With real data, one should be cautious about a single optimistic
result, which may occur just because of the overly favorable distribution of classes.

The Banana example offered several useful insights. The identified feature subsets pro-
vide information, pertinent to classification in various data “projections” in feature and sample
spaces. Different classifiers perform differently in these “projections”, depending on how well
the feature subset represents the nature of the class separation, and the capability of the indi-
vidual classifier to handle the complexity of the classification problem in the “projection”. The
monitoring and validation BERs of folds can be analyzed for ranking feature profiles. Liknon
generates a feature profile that is optimal for linear separation. Nevertheless, we can use this
feature profile as input to another classifier, realizing a nonlinear rule and gain insight into the
nonlinearity of the data, yet still keeping the overall architecture simple. By processing many
splits in the inner loop, we generate different feature subsets. These subsets can be accumulated
into a general feature profile for another classifier, or used in the ensemble of Liknon discrim-

174

8. LIKNON FEATURE SELECTION: BEHIND THE SCENES

inants as was done in ALvsPK challenge (Pranckeviciene et al., 2007). The justification for
using this method in nonlinear separation cases still needs to be formalized and experiments
need to be carried out in order to compare it with other methods, aiming to reveal possible com-
putational or statistical advantages. In the following section the mathematical formulation of
Liknon is outlined.

8.3. Liknon formulation
Liknon implements a linear rule for two-class classification:

ys = sign(xswT +w0) , (8.1)

where xs = [x1
s , . . . ,xD

s] are D-dimensional samples, y= [y1, . . . ,yN] is the vector of class labels,
assuming values +1 for the positive class and −1 for the negative class, s indexes the sample
number and N = N1 +N2 is the total number of samples in the two classes. The transpose is
denoted by T. The ∗ denotes the optimal solution and the ξ s are slack variables. The weight
vector w is obtained by solving the optimization problem:

(w∗, . . . ,ξ ∗
1 , . . . ,ξ ∗

N) =
argmin

(w,ξ1, . . . ,ξN)

�
�w�1 +C ∑N

s=1 ξs
�

, (8.2)

s.t.:
ys
�
xswT +w0

�
+ξs ≥ 1, ξs ≥ 0, s = 1, . . . ,N .

The L1 norm is �w�1 = ∑D
f=1 |w f |. The formulation (8.2) is the same as for the linear SVM,

except for the L1 norm of the regularization term. The solution w∗ is sparse. Because of
sparsity, it is used for feature selection. Features, important for classification, are identified
by large weights w∗

f of the vector w∗. The regularization parameter C controls the level of
sparseness. Formulation (8.2) is cast into a linear programming (LP) optimization problem, and
w∗ is obtained using an LP solver. The primal and dual LP optimization problems are related.
In the primal optimization problem, the regularization parameter C appears in the cost function.
In the dual it appears in the constraints.

8.3.1. The primal minimization problem

In order to present the minimization problem (8.2) in a form suitable for a general linear pro-
gram solver, the variables in the objective function should be positive. Thus, every w f variable
is modeled by two non-negative variables u f and v f , a common practice in LP of changing the
negative variables into positive ones (Arthanari and Dodge, 1981, page 32):

w f = u f − v f , |w f |= u f + v f . (8.3)

The pair of variables u f ,v f , simultaneously satisfying conditions (8.3) is unique, given that
only three choices are possible for the value of w f : (i) u f = 0, v f = 0, and w f = 0; (ii)
u f = 0, v f �= 0, and w f = −v f ; (iii) u f �= 0, v f = 0, and w f = u f . The problem in (8.2) is
reformulated in a form suitable for LP, by changing the variable w f into the combination of v f
and u f according to (8.3). The original formulation (8.2), after the change of variables, becomes

175

PRANCKEVICIENE SOMORJAI

(Bhattacharyya et al., 2003):

(u∗1, . . . ,u
∗
D,v

∗
1, . . . ,v

∗
D,ξ ∗

1 , . . . ,ξ ∗
N) =

argmin
(u1, . . . ,ξN)

�
∑D

f=1(u f + v f)+C ∑N
s=1 ξs

�
,

s.t.:
∑D

f=1 u f ysx
f
s −∑D

f=1 v f ysx
f
s + ysu0 − ysv0 +ξs ≥ 1, ξs ≥ 0, u f ≥ 0, v f ≥ 0 ,

u0 ≥ 0, v0 ≥ 0 f = 1, . . . ,D, s = 1, . . . ,N . (8.4)

The constant C in (8.4) is the regularization parameter.

8.3.2. Duality of linear programming

The primal and dual problems of Linear Programming are related (Papadimitriou and Steiglitz,
1982):

minimize Jmin(x) = cx, s.t. : Ax≥ b, x≥ 0 . (8.5)

maximize Jmax(z) = bTz, s.t. : ATz ≤ c, z ≥ 0 . (8.6)

In (8.5) and (8.6), x and z denote the variables of primal and dual, c is a vector of costs and b
is a vector of constraints of the primal, Jmin and Jmax denote the objective functions, A is a data
matrix. The Liknon primal (8.4) and dual are related through the following data matrix A:

A=





y1x1
1 . . . −y1xD

1 y1 −y1 1 . . . 0
...

...
...

...
. . .

...
...

...
...

. . .
yNx1

N . . . −yNxD
N yN −yN 0 . . . 1




. (8.7)

The costs c and the constraints b of (8.5) correspond to the costs and constraints of Liknon’s
primal minimization problem (8.4):

c= [11, . . . ,12D,0,0,C1, . . . ,CN] and b= [11, . . . ,1N]
T .

The variables of primal (8.5) and dual (8.6) correspond to the Liknon variables:

x= [u1, . . . ,uD,v1, . . . ,vD,u0,v0,ξ1, . . . ,ξN] and z = [z1, . . . ,zN] .

For consistency with SVM terminology, for Liknon dual variables we use α instead of z.

8.3.3. The dual maximization problem

The Liknon dual is obtained straightforwardly from the primal. The costs c of the primal (8.5)
become the constraints of the dual (8.6). Similarly, the constraints of the primal become the
costs for the dual. Using the data matrix (8.7) of Liknon, its dual maximization problem (8.6)
is formulated as follows:

(α∗
1 , . . . ,α∗

N) =
argmax

(α1, . . . ,αN)

�
∑N

s=1 αs
�

,

s.t.:
±y1x f

1α1 ± . . .± yNx f
NαN ≤ 1, y1α1 + . . .+ yNαN = 0, 0 ≤ αs ≤C ,

s = 1, . . . ,N, f = 1, . . . ,D . (8.8)

The Liknon dual variables α are positive real numbers.

176

8. LIKNON FEATURE SELECTION: BEHIND THE SCENES

8.3.4. Optimality conditions

The optimal solutions of the primal and dual satisfy the optimality conditions for every feature
f = 1, . . . ,D:

u∗f
�

∑N
s=1 ysx

f
s α∗

s −1
�
= 0, v∗f

�
∑N

s=1 ysx
f
s α∗

s +1
�
= 0, ξ ∗

s (α∗
s −C) = 0 . (8.9)

For every sample s = 1, . . . ,N, the optimality conditions are:

α∗
s

�
D

∑
f=1

ysx f
s (u

∗
f − v∗f)+ ys(u∗0 − v∗0)+ξ ∗

s −1

�
= 0 . (8.10)

It is important to note that the binding constraints determine the non-zero variables of the op-
timal solutions. Therefore, the non-zero components w f of w in (8.1), corresponding to the
selected features, are determined solely by the constraints that become binding for u f and v f in
(8.9).

A theoretical basis for understanding the algorithm for computing the range of C values
from the training data relies on the concept of transvariation intensity.

8.4. Transvariation intensity and margin
Based on the concept of transvariation suggested by Gini and explained by Montanari, several
class/group separation measures are defined (Montanari, 2004): transvariation area, transvari-
ation probability and the class separation measure based on the transvariation intensity. The
transvariation probability was used successfully in classification of high-dimensional data in
low-dimensional projected feature spaces (Somorjai et al., 2007). We propose a modification of
the transvariation intensity, to be used in our study.

8.4.1. Univariate class separation measure, based on transvariation intensity

The two classes, mapped onto a line and represented by xi, i= 1, . . . ,N1 and x j, j = 1, . . . ,N2
transvary around their corresponding mean values m1 and m2 if the sign of any of the N1N2
differences xi − x j is opposite to the sign of m1 −m2 , where N1 and N2 are the number of
samples in the two classes and the indices i and j are used to distinguish the samples xi and x j
of the two classes. Such pair is called a transvariation and the absolute difference |xi − x j| is
its intensity. The class separation measure, based on the transvariation intensity, is defined as:

itran =
2∑N1

i=1 ∑N2
j=1 |xi − x j|

∑N1
i=1 ∑N2

j=1 |(xi −m1)− (x j −m2)|
. (8.11)

The denominator in (8.11), divided by N1N2 , is the Gini mean difference. We will be using the
expression of the denominator in (8.11), called the transvariation intensity maximum (Monta-
nari, 2004). For the purposes of our study the sign is important. As an extension, in place of m1
and m2, we can take any two points, p1 from class 1 and p2 from class 2, or even the medians.
With respect to the two arbitrary points p1 and p2, we can measure how well the signed interval
p1 − p2 orders other points xi and x j of classes 1 and 2, respectively. A reference ordering on
the line places the class 2 points x j to the left, towards −∞ and the class 1 points xi to the right,
towards +∞. Let the pair of points (p1, p2) be the reference pair. For an arbitrary single pair
(xi,x j), we compute, with respect to the reference pair (p1, p2), the appropriate single term in
the signed transvariation intensity maximum of (8.11):

ti j(p1, p2) = (xi − p1)− (x j − p2) = (xi − x j)− (p1 − p2) .

177

PRANCKEVICIENE SOMORJAI

If the class 2 points x j are located to the left of p2 and the class 1 points xi occur to the right of
p1, then the pair (xi,x j) is ordered by the pair (p1, p2) and ti j(p1, p2) is positive. If the points
(xi,x j) are on the wrong sides of p1 and p2, then the ti j(p1, p2) is negative. If the margin
between the classes is defined by p1 and p2, then the value ti j(p1, p2) is the extent by which
the margin orders the pair of points (xi,x j). The margin is a segment on the line at a specific
location, determined by the p1 on the left and p2 on the right. In the context of classification,
the ordering may either be complete (the classes separate) or partial (there is class overlap). A
complete ordering gives maximal classification accuracy. However, for the same classification
accuracy, several partial orderings may exist. In margin-based classification p2 < p1. The value
ti j(p1, p2) shows the amount by which the margin separates the class points.

8.4.2. Size of margin errors

In the following, xs = [x1
s , . . . ,xD

s] are D-dimensional samples, the vector y = [y1, . . . ,yN] com-
prises the class labels, assuming values +1 for the positive class and −1 for the negative
class. The indices i and j refer to samples from the positive and negative classes, respectively.
N = N1 +N2 is the total number of samples in the two classes. We consider the balanced case,
N1 = N2. w is a linear discriminant, onto which all multivariate points are projected. The dual
variables of SVM and Liknon are denoted by αs, assuming real, non-negative values. Let us
consider the linear two-class classification rule (8.1):

ys = sign(xsw
T +w0) .

In margin-based classifiers, such as the Linear Support Vector Machine (SVM), the projected
class points have to satisfy the margin requirements. Margin in SVM is specified by two posi-
tions: −1 for class 2 and +1 for class 1. Some points, when projected onto the discriminant,
may fail to satisfy the margin requirement by an amount ξ , the slack variable:

xiw
T +w0 = 1−ξi, x jw

T +w0 =−1+ξ j .

The difference between the projections and the margin is:

(xi −x j)wT − (1− (−1)) =−(ξi +ξ j) .

The value of −(ξi + ξ j) relates to ti j(p1, p2), discussed in Section 8.4.1. It indicates quantita-
tively how the margin [−1 , +1] separates the projected points. If both ξi and ξ j are positive,
meaning that the projected points fall on the wrong side of the margin, then the value −(ξi+ξ j)
is negative.

In SVM, the margin errors are defined (Scholkopf et al., 2000) as points with positive
slack variables ξi > 0, ξ j > 0. The value of the slack variable can be interpreted as the size
of the margin error. In SVM, negative values of the slack variables are not considered. If
the projected pair of points falls outside the margin (i.e., classified correctly), then the margin
error is zero. The negative-valued slack variables would provide information on how well the
margin separated the projected class points, and the value of −(ξi + ξ j) would be positive.
Suppose we allowed a “negative size” and counted all slacks ξ < 0 and ξ ≥ 0 negative and
non-negative. In this case, the size of the total margin error indicated the extent by which the
margin, specified by the pair p1 = 1 and p2 =−1 in SVM, separated the classes, when projected
onto the discriminant w. We can compute the size of the total margin error by summing up all
projected points xi of class 1 and x j of class 2 and taking the difference:

(
N1

∑
i=1

xi −
N2

∑
j=1

x j)wT − N
2
(1− (−1)) =−(

N1

∑
i=1

ξi +
N2

∑
j=1

ξ j) . (8.12)

178

8. LIKNON FEATURE SELECTION: BEHIND THE SCENES

The value ξntot =−(∑N1
i=1 ξi +∑N2

j=1 ξ j) in (8.12) is quantitatively related to the class separation
by the margin in the following way. If there are many points on the wrong side of the margin
(bad class separation), then the size of the total margin error tends to be positive since ξs > 0
for those points, and subsequently ξntot is negative. When the margin separates the majority of
the points, the size of the total margin error tends to be negative, but ξntot positive. For classes
perfectly separated by the margin, ξntot is strictly positive.

We explained the concept of the total margin error size, using the SVM margin [−1 , +1].
However, any segment can play the role of margin. For some fixed w, the varying margin po-
sitions p1 and p2 produce varying ξntot . Equation (8.12) represents a linear equation in two
variables: the margin, given by (p1 − p2) and the size of the total margin error, given by
−ξntot . There is a direct link of (8.12) to the transvariation intensity function, introduced in
Section 8.4.3. The transvariation intensity function represents the quantity −ξntot .

8.4.3. Transvariation intensity function

We introduce the transvariation intensity function as the signed transvariation intensity maxi-
mum (the denominator in (8.11)) of the classes with respect to the arbitrary pair of D-dimensional
points, specifying two locations pi1 and p j2 in the D-dimensional space. For balanced classes
(N1 = N2 =

N
2), the D-dimensional vectorial expression of the transvariation intensity function

in the original data space is:

To =
2
N

N1

∑
i=1

N2

∑
j=1

((xi −pi1)− (x j −p j2)) = (
N1

∑
i=1

xi −
N2

∑
j=1

x j)−
N
2
(pi1 −p j2) . (8.13)

The left side of the equality represents the differences between the data points and the selected
locations pi1 and p j2 . In the linear Support Vector Machine, the optimal discriminant w is
determined by a linear combination of the scaled data points:

w =
N1

∑
i=1

αixi −
N2

∑
j=1

α jx j . (8.14)

By scaling the differences of the left side of (8.13), the transvariation intensity function Tα is
expressed in the scaled data space as:

Tα =
2
N

N1

∑
i=1

N2

∑
j=1

(αi(xi −pi1)−α j(x j −p j2)) = (
N1

∑
i=1

αixi −
N2

∑
j=1

α jx j)−
∑N

s=1 αs

2
(pi1 −p j2).

(8.15)
In the formulation of SVM (Shawe-Taylor and Christianini, 2004), the constraint ∑N1

i=1 αi −

∑N2
j=1 α j = 0 allows for factoring out the multiplier ∑N

s=1 αs
2 from the left hand side of expression

(8.15). The same constraint arises in the Liknon dual formulation (8.8). The vectors To and Tα
become scalars t = TowT and tα = TαwT when the classes are projected onto the discriminant
vector w. Let us project the right-hand side of (8.13) and (8.15) onto the discriminant w given
by (8.14):

Tow
T = (

N1

∑
i=1

xi −
N2

∑
j=1

x j)w
T − N

2
((pi1 −p j2)w

T) , (8.16)

and in the scaled space:

Tαw
T = (

N1

∑
i=1

αixi −
N2

∑
j=1

α jx j)w
T − ∑N

s=1 αs

2
((pi1 −p j2)w

T) . (8.17)

179

PRANCKEVICIENE SOMORJAI

The dot product d = (pi1 −p j2)w
T in (8.16) and (8.17) specifies the margin. For fixed dis-

criminant w, the differences between the projected class points dw = (∑N1
i=1xi −∑N2

j=1x j)wT

and dwa = (∑N1
i=1 αixi − ∑N2

j=1 α jx j)wT are constant. The transvariation intensity functions
(8.16) and (8.17) become linear equations in two variables: t(d) = dw + (N

2)d and ta(d) =

dwa +(∑N
s=1 αs

2)d, if the pair of data points pi1 and p j2 varies. In the projection, the transvari-
ation intensity function indicates how the size of the total margin error (ξntot described in
Section 8.4.2) varies with the margin, specified by the different pairs of the projected points of
the two classes.

8.4.4. Ordering the classes on the discriminant

The projected class points on the discriminant are ordered: class 2 tends to occupy the line
segment towards −∞ and class 1 towards +∞. t(d) allows the comparison of the discriminants
for fixed d. Larger positive values of t(d) correspond to margins that separate the two classes
better. The transvariation intensity function t(d) equals to zero at dt(0), the difference between
the class centroids on the discriminant w:

dt(0) =
2
N
(

N1

∑
i=1

xi −
N2

∑
j=1

x j)w
T . (8.18)

tα(d) equals to zero at dtα (0), which is the difference between the centers of mass of the class
points on the wrong sides of the margin on w (in SVM the margin is [−1, +1]):

dtα (0) =
2

∑N
s=1 αs

(wwT) . (8.19)

The expression w in (8.14), when used in (8.19), gives:

dtα (0) =
2

∑N
s=1 αs

(
N1

∑
i=1

αi(xiw
T)−

N2

∑
j=1

α j(x jw
T)) . (8.20)

The points outside the margin have zero α coefficients. The remaining points are the ones that
determine the class overlap on w, by the amount dtα (0) (8.20). In the following, we will use a
when referring to the difference between classes:

a= (
N1

∑
i=1

xi −
N2

∑
j=1

x j) . (8.21)

The left panel of Figure 8.4 illustrates the linear SVM boundary that separates class 1 (squares)
from class 2 (crosses), and the margins. The top panel on the right shows the partial class order-
ing on the discriminant w. The right-bottom panel shows the transvariation intensity functions t
and tα of the class ordering shown on the right-top panel. The transvariation intensity functions
illustrate the class separation with respect to the distances between the projected class points.
The distances/margins that separate classes better, are characterized by positive values of the
transvariation intensity functions. In the top-right panel, the centers of classes and the centers
of the overlapping points are marked by stars. The segments - dt(0) and dtα (0) - are indicated by
horizontal lines. The arrows from these lines lead to the bottom panel, where the transvariation
intensity functions are depicted. The arrows show the positions of the critical segments dt(0) and
dtα (0) in the bottom-right plot. In this example, the classes overlap. The points best separating
the classes are swapped, hence the “margin” is negative and corresponds to the largest value of
t and tα .

180

8. LIKNON FEATURE SELECTION: BEHIND THE SCENES

Figure 8.4: Illustration of the concepts related to the transvariation intensity functions. The
left panel shows the class separation boundary (solid line) and the margins (dotted
lines). The right-top panel shows the ordering of the projected class points (num-
bered) on the SVM discriminant. The right-bottom panel shows the transvariation
functions t and tα computed for the class ordering of the right-top panel. The as-
terisks (*) on t and circles (o) on tα indicate the actual distances (pi1 −p j2)w

T

between the points on the right-top panel.

8.4.5. Regularization parameter C

The class overlap (8.20) is always less than the difference between the class centroids (8.18) on
the discriminant w:

2
∑N

s=1 αs
(wwT)≤ 2

N
(awT) . (8.22)

The coefficients αs ≤ C, s = 1, . . . ,N are constrained by C in the original SVM formulation.
Rearranging (8.22) and noting that for αs ≤ C, the mean value ∑N

s=1 αs
N is also less than C, we

have:
(wwT)

(awT)
<

∑N
s=1 αs

N
≤C ⇒ ratio =

�w�
�a�cos(w�a)

≤C . (8.23)

The ratio in (8.23) explains how the regularization parameter C relates to the class separation. C
bounds the ratio of �w� over �a�cos(w�a). �w� is the length of the normal to the separation
boundary, related to the margin between the classes in the original space as 1

�w� . The expres-
sion aw = �a�cos(w�a) means a projection of the class difference (8.21) onto the normal w,
showing the alignment of the two vectors w and a. An increase in class separation is associated
with the increase of �w� and the decrease of aw. Thus, the increasing ratio indicates better
separation of the classes, projected onto the solved discriminant w.

Both Svmpath and Liknon produce a sequence of solutions. The sequence of the solutions
improving class separation proceeds through the stages of under-fitting, optimal and over-fitting
with respect to the classification performance on the independent validation set. These stages
can be visualized using the monitoring BER of every solution. For visualization we use a loga-
rithmic transformation of the ratio �w�

aw
, lr = lg10(

�w�
aw

). Figure 8.5 illustrates the performance
(monitoring BER) of the sequence of the solutions of the full regularization path and Liknon

181

PRANCKEVICIENE SOMORJAI

Figure 8.5: Relationship between the performance, the lr and regularization parameter C for the
sequence of the solutions of the full regularization path and Liknon. We illustrate
the solutions in the folds 2 and 5 of the Banana example. The best solutions are
indicated by diamonds. The top panel shows the monitoring BER of every solution
versus lr = lg10(

�w�
aw

). The bottom panel shows the plot of lr versus C.

versus the lr in folds 2 and 5 of the artificial Banana example of Section 8.2. Plots of lr versus C
for every solution are shown in the left-bottom (fold 2) and the right-bottom (fold 5) panels. In
the Svmpath method, C corresponds to the parameter 1/λ (Hastie et al., 2004). The solutions,
producing minimum monitoring BER are indicated by diamonds. The values of the lr of the op-
timal solutions of both Liknon and Svmpath are similar and occur in the range of [−3.2,−2.8].
The increasing lr starts saturating at about −2.8, where the monitoring BER starts growing.
The C values, associated with the optimal solutions of Svmpath and Liknon are not close, but
the character of the dependance between the lr and C is similar for both methods. It is possible
to obtain several Liknon solutions and use them for approximating the range of the optimal lr
for Svmpath. The details are beyond the scope of this chapter. The explained concepts and
relation (8.23) provide the basis for the derivation of the constructive algorithm in Liknon for C
computation.

8.5. Liknon feature selection
Liknon simultaneously identifies a subset of useful features and a linear discriminant. Discrim-
inants of increasing complexity in terms of large/non-zero weights are associated with small
margins between classes. The margin can be decreased by increasing the value of the regular-
ization parameter C. Here we outline the algorithm for the computation of C for Liknon.

8.5.1. The standard discriminant, given by the solution of the Liknon dual

The optimal solution (∗) α∗ = [α∗
1 , . . . ,α∗

N] of the dual (8.8) satisfies all constraints and the opti-
mality conditions (8.9) and (8.10). Geometrically, it also determines the direction that discrim-
inates the classes, obtained from a linear combination of the data points. According to the op-
timality conditions, all coordinates of the discriminant (henceforth called the standard discrim-

182

8. LIKNON FEATURE SELECTION: BEHIND THE SCENES

inant) have unit length. For a set of m selected individual features f = (f1, . . . , fm), m ≤ D,
corresponding to the binding constraints, the set of equations

e fk =
N1

∑
i=1

α∗
i x fk

i −
N2

∑
j=1

α∗
j x fk

j =±1 , (8.24)

is satisfied. Therefore, the solution of the Liknon dual identifies the standard discriminant in
the m-dimensional subspace of the selected features f :

e=
N1

∑
i=1

α∗
i xi −

N2

∑
j=1

α∗
j x j, and e= [±11 . . .±1m], (8.25)

which corresponds to (8.14) and can be interpreted as a “preimage” of the w, normal to the
optimal Liknon hyperplane. The discriminant e has constant length

√
m, determined by the

dimensionality of the identified subspace.

8.5.2. Given vs. desired: margin control

The Liknon-selected feature subset of dimensionality m identifies some subspace. In this sub-
space we have a - the difference between the class vectors and the standard discriminant e,
given by the solution of the Liknon dual. The distance aeT between the classes projected onto
e depends on the number of non-zero elements of the standard discriminant/number of selected
features. The ratio of class overlap to the distance between classes, (8.23), in Liknon gives:

(eeT)

(aeT)
<

∑N
s=1 αs

N
≤C . (8.26)

Thus, we can explain and visualize how the value of the parameter C controls the class separa-
tion by the distance, and influences the selection of the subspaces:

(aeT)

m
>

1
C

.

The distance between the classes on the standard discriminant, determined by the solution of
Liknon at a specific value of C, will be greater than 1

C . We don’t know in advance the standard
discriminant, and apply (8.26) to the individual features to determine C.

8.5.3. Selection of C

Projection of the values of individual features fk onto their respective elements of the standard
discriminant x fk

s e fk is merely a multiplication of x fk
s by 1 or −1. The difference d fk

i, j = (x fk
i −

x fk
j)e

fk of the feature values in the two classes specifies the margin. a fk is an element of (8.21).
The transvariation intensity functions t and tα can be written as:

t fk(d fk
i, j) = a fk e fk − (N

2)d
fk
i, j , tα(d

fk
i, j) = e fk e fk − (∑N

s=1 αs
2)d fk

i, j . (8.27)

According to (8.18) and (8.19), and noting that e fk e fk = 1, the margins/segments for which t fk

and tα attain zero are:

dt fk (0) =
2
N (a

fk e fk), dtα (0) =
2

∑N
s=1 αs

. (8.28)

183

PRANCKEVICIENE SOMORJAI

Relation (8.26) for an individual feature gives:

1
(a fk e fk)

<
∑N

s=1 αs

N
. (8.29)

The sign of a fk e fk can be ignored, because it merely indicates swapped classes. C influences
the selection of the individual features by bounding the class difference:

|a fk |= |
N1

∑
i=1

x fk
i −

N2

∑
j=1

x fk
j | >

1
C

, (8.30)

The individual features, with a difference between classes greater than 1
C , are candidates to be

included in the Liknon discriminant. By arranging class differences of the individual features
in descending order, we obtain the relationship |a fk

max| ≥ . . . ≥ |a fk
min|. Our first approach to

selecting C was setting the parameter equal to the inverse of every member of the sequence,
1

|a fk
max|

≤ . . . ≤ 1
|a fk

min|
, and solving a sequence of Liknon models (primal) with the sequence of

C values so determined. However, if the number of features is large, as in microarray data, the
computations become prohibitive. An algorithm for selecting fewer C values is necessary. Our
second approach was to compute a histogram and select the C using the modes of the histogram.
(A limitation of the histogram approach is the selection of optimal bin.)

8.5.4. Algorithm for computing C

The algorithm for computing a subset of C values is based on the transvariation intensity
functions Ftrans of the individual features. The Ftrans are modeled by the linear equations
t fk = |a fk | − (N

2)d , with slopes N
2 and intercepts |a fk |. The variable d accounts for the

distances (x fk
i − x fk

j)e
fk . The standard Ftrans, tα = 1− (

∑N
l=1 αl

2)d has slope ∑N
l=1 αl

2 and
intercept 1. In general, the Ftrans of the features that separate classes better are larger and they
attain zero at larger d. The Ftrans for which distances/margins separate classes better have pos-
itive values. Given the features, the increase in class separation as a function of all features for
all distances d can be determined by summing the positive parts of the t fk . We call this mea-
sure ttotal . It increases piecewise linearly as the distance d decreases. The set of NM (number of
models) values of ttotal is used for the determination of the set of distances ds, s= 1, . . . ,NM ,
assuming the class differences |as| = (N

2)ds. The Cs value associated with the ds is computed
using (8.30), as Cs =

2
Nds

. Setting the C value to Cs means that we constrained the absolute
class difference of the selected features to be greater than 1

Cs
. The smaller the value of ds, the

larger Cs, the more features are included in the Liknon discriminant.
Figure 8.6 illustrates the idea of the outlined algorithm for an artificial dataset with D = 10

features and N = 100 samples. Two features are discriminatory, the rest are fully overlapping
N(0,1)-distributed features. The Ftrans values of the discriminatory features are larger and attain
zero at a larger d.

There are segments where ttotal changes slowly. The more functions become positive and
add to the total, the more ttotal changes. The potentially interesting segments occur where the
Ftrans concentrate. A Matlab code for computing the range of C values is listed in the Appendix.

184

8. LIKNON FEATURE SELECTION: BEHIND THE SCENES

Figure 8.6: Computation of C using ttotal . The transvariation intensity functions t fk are shown
by the dotted lines. The dashed line depicts ttotal . The diamonds indicate the posi-
tions and values of the ttotal for which the distance ds is determined.

8.6. Liknon feature and classification model selection on the benchmark
datasets

Here we present a realistic single-run assessment of Liknon-based feature selection with respect
to other feature selection methods in the NIPS 2003 FS challenge. We also present our results
for the ALvsPK competition. In the ALvsPK challenge, the Liknon-based classification model
selection strategy was among the top-ranked methods.

8.6.1. Liknon feature selection applied to the NIPS 2003 FS benchmark datasets

Information on the NIPS 2003 FS benchmark is on the website www.nipsfsc.ecs.soton.
ac.uk and in publications (Guyon et al., 2006, 2007b). In the benchmark, the ground truth for
features - useful or probe - is available. Probe is a “fake” feature purposefully inserted into the
dataset. We tested Liknon’s utility as a filter and a wrapper in a single run, including univariate
feature prefiltering. The class difference (8.21) provides information about the class separa-
tion. In prefiltering we rank the individual features by the decreasing absolute value of |a fk |
computed for every feature and discarding a percentage of low-|a fk | value features. Liknon is
solved for the remainder. The ranking of the features by (8.21) to the ranking by difference in
means can be compared by the fraction of the disagreeing ranks. The percentage of disagreeing
ranks of the features ordered by (8.21) and by the difference between the means of the NIPS
2003 FS training data is: ARCENE - 66.90%; DEXTER - 24.61%; DOROTHEA - 59.48%;
GISETTE - 3.28%; MADELON - 5.20%. The percentage of the discarded features and C were
determined in several repetitions of 5-fold crossvalidation, with a single split in the inner loop.
The determined parameters were used in a final single Liknon run on the Training set.
For DOROTHEA and GISETTE, a smaller, random, balanced training sample was taken. For
the Liknon wrapper, the same discriminant was used as the final classifier. For the filter, the
Liknon identified feature subset was input to 3-nearest-neighbor (3nn) and subspace (subsp)

185

http://www.nipsfsc.ecs.soton.ac.uk/
http://www.nipsfsc.ecs.soton.ac.uk/

PRANCKEVICIENE SOMORJAI

classifiers. The final model - 3nn or subsp - was the one with the smaller Validation BER.
Table 8.2 summarizes the experimental situation.

Table 8.2: Experimental setup for the NIPS 2003 FS benchmark.

Dataset ARCENE GISETTE DEXTER DOROTHEA MADELON
Data origin mass

spectra
handwritten
digits

text drug
discovery

difficult
artificial

Dimensionality 10000 5000 20000 100000 500
Total
probes(%)

30 50 50.3 50 96

Train 44 + 56 3000 + 3000 150 + 150 78 + 722 1000 + 1000
Validation 44 + 56 500 + 500 150 + 150 34 + 316 300 + 300
Test 310 + 390 3250 + 3250 1000 + 1000 78 + 722 600 + 600
Discarded(%) 86 95 75 99 98
C 0.0058 0.00066 0.0035 0.2369 0.016
Classifier 3nn 3nn subsp subsp 3nn

Table 8.3 presents the performance of the Liknon wrapper and filter with respect to the
methods in the NIPS 2003 FS benchmark that performed feature selection. Mean and median
test BERs of the latter allow ranking the Liknon-based method with respect to other methods.
We also present the best entries, published recently (Guyon et al., 2007b). Both Liknon filter
and wrapper compare favorably with the average performance of the benchmark methods, but
are worse than the recent best entries. Our results indicate better performance of Liknon as a
filter than as a wrapper. Liknon features, used with 3nn and subsp classifiers performed better
on all datasets, except for DEXTER.

Table 8.3: Performance comparison. Test BERs

Dataset Mean Median Liknon filter Liknon wrapper Best recent entry
ARCENE 0.2396 0.2087 0.1711 0.1962 0.1048
DEXTER 0.1170 0.0690 0.0820 0.0820 0.0325
DOROTHEA 0.2054 0.1661 0.1961 0.2011 0.0930
GISETTE 0.0823 0.0246 0.0402 0.0742 0.0111
MADELON 0.1922 0.1245 0.1133 0.3789 0.0622

Liknon was robust in detecting the ground truth. Our fraction of features and probes and
those of the best recent entries are listed in Table 8.4. The fraction of features Ff eat is the ratio of
the number of the selected features to the total number of features. The fraction of probes Fprobe
is the ratio of the probes in the selected subset to the total number of selected features. The
Liknon feature subsets contain fewer features and probes than the best recent entries. Useful
features were consistently identified in crossvalidation and in the feature subset obtained in the
final training.

The presented computational experiment highlights the potential of a simple single Liknon
application to the data. First, by univariate feature filtering, using class difference (8.21) as the
criterion, most of the probes were discarded. Second, an even smaller feature subset, optimal
for linear separation, was obtained by solving Liknon. It is known, that some NIPS 2003 FS

186

8. LIKNON FEATURE SELECTION: BEHIND THE SCENES

Table 8.4: Fraction of features Ff eat and probes Fprobe

Dataset Our Ff eat Our Fprobe Best recent Ff eat Best recent Fprobe
ARCENE 0.0041 0.00 0.14 0.04
DEXTER 0.0079 0.095 0.23 0.55
DOROTHEA 7∗ (10−5) 0.00 0.01 0.03
GISETTE 0.0112 0.0179 0.20 0.00
MADELON 0.02 0.00 0.04 0.00

benchmark datasets have nonlinear character. Linear classifiers such as Liknon are not opti-
mal in such scenario. The poorer performance of the Liknon wrapper compared to the filter
corroborates this fact. If the number of features is larger than the number of samples, then the
number of non-zero weights in the Liknon discriminant is bounded by the number of samples,
guaranteed by the nature of linear programming formulation and binding constraints. The small
number of features, identified in a single Liknon run, might not be sufficient to fully capture
most of the information about class separation. The feature profile, accumulated in many Li-
knon runs on many data splits, may overcome this limitation. Such strategy was used in the
ALvsPK competition and it ranked Liknon among the top-ranked methods.

8.6.2. Liknon versus Svmpath on the NIPS2003 feature selection benchmark datasets

In this subsection the Liknon filter is contrasted with the related method of S. Rosset and J. Zhu
(Rosset and Zhu, 2006) on NIPS2003 FS benchmark datasets. The method included a univari-
ate filtering by the t-statistic and computation of the principal components (PCA) as features
after prefiltering for the ARCENE and DOROTHEA datasets; Then, a regularized optimization
scheme using various combinations of a loss function L and a penalty J was applied as follows.

• ARCENE: L was the Huberized hinge loss, and J was the L2-norm penalty (linear support
vector machine).

• DEXTER: L was the Huberized hinge loss, and J was the L1-norm penalty (L1 norm
support vector machine).

• DOROTHEA: L was the Huberized hinge loss; J was the L1-norm penalty (L1 norm
support vector machine).

• GISETTE: L was the exponential loss; J was the L1-norm penalty.

• MADELON: L was the hinge loss, and J was the L2-norm penalty (radial basis kernel
support vector machine).

All hyper-parameters (including the number of features) were selected using 5-fold cross-
validation. Liknon filter was applied to all datasets, using the same unified scheme explained
in the previous subsection. The test BERs, area under the curve, AUC, number of features and
probes of both approaches are summarized and contrasted in Table 8.5. These results are also
available on the website www.nipsfsc.ecs.soton.ac.uk.

The method of S.Rosset and J.Zhu, applied to DEXTER and DOROTHEA, is comparable
to the Liknon filter, since it also implements a linear SVM with L1-norm penalty. If we compare
the performances by BER and AUC, then the results of S.Rosset and J.Zhu are better on these
datasets. If we compare the size and purity of the feature subsets in DEXTER and DOROTHEA,

187

http://www.nipsfsc.ecs.soton.ac.uk/

PRANCKEVICIENE SOMORJAI

Table 8.5: Results of S.Rosset and J.Zhu compared to Liknon-based feature/classification
model selection in the NIPS2003 feature selection benchmark.

Method Saharon Rosset and Ji Zhu Liknon filter

Dataset BER AUC Features(Probes) BER AUC Features(Probes)
ARCENE 0.1962 0.8038 3000(171) 0.1711 0.8908 41(0)
DEXTER 0.0690 0.9628 112(50) 0.0820 0.9511 158(15)
DOROTHEA 0.1569 0.8451 5207(4009) 0.1996 0.8053 7(0)
GISETTE 0.0134 0.9826 1500(0) 0.0402 0.9791 56(1)
MADELON 0.0906 0.9094 21(2) 0.1133 0.9369 10(0)

then the Liknon filter is better. In the NIPS2003 FS challenge, several methods performed better
on the feature sets containing many probes. For datasets with limited number of samples, e.g.,
DEXTER, many fake features transform the class separation character and we actually have a
different classification problem. On this feature-augmented problem some methods do better
than on the original problem without probes. In general, a fair comparison is only possible if
we had the reference BERs of several methods - linear and nonlinear - using a) only relevant
features and b) all features. Such experiment is beyond the scope of this chapter.

8.6.3. Numerical experiments on the datasets of Agnostic Learning vs. Prior Knowledge
competition

The Liknon-based classification model participated in the agnostic track of the ALvsPK chal-
lenge as a “black box”, using five datasets ADA, GINA, HIVA, NOVA and SYLVA. 10-fold
crossvalidation with 31 splits in the inner loop and without feature prefiltering was used to ob-
tain an ensemble (ens) of 31 Liknon discriminants, and the profile of the identified relevant
features. From the profile, a subset of features occurring more frequently than some thresh-
old, (the thresholds were 10%,15%,20%, . . . ,95%,100%), was selected and used in training
the following classifiers from PRTools (Duin et al., 2004): fisher linear discriminant, logistic
linear classifier, quadratic classifier, subspace classifier, and 1- and 3-nearest-neighbor classi-
fiers. On four of the five datasets, the ensembles of Liknon discriminants performed better than
other rules. The dimensionality of the datasets, the sizes of the subdivisions of training data
(explained in Section 8.2), the optimal threshold for the feature profile, the number of the tested
Liknon models NM, and the winning classifier are summarized in Table 8.6.

Our results in the ALvsPK competition are presented in Table 8.7. We report our balanced
test error rate (BER), the area under the receiver operating curve (AUC), and the same infor-
mation for the winning entries. The ensemble of Liknon discriminants was superior for ADA,
HIVA, NOVA and SYLVA. For GINA, the 3-nearest-neighbor rule, trained on the most promi-
nent features, performed best. In Section 8.2, we analyzed a dataset, for which two features
separate the classes nonlinearly. Similarly, in GINA, which is too complex for a linear classi-
fier, Liknon identified features that represented the nature of class separation sufficiently well
for a nonlinear rule. For SYLVA, among the individual rules, the quadratic discriminant per-
formed comparably to the ensemble. The histogram-based approach of C selection worked best
for HIVA. For the remaining datasets, the C selection algorithm presented in Section 8.5.4 gave
the top-ranked results. All details of our results in the ALvsPK challenge have already been
published elsewhere (Pranckeviciene et al., 2007).

188

8. LIKNON FEATURE SELECTION: BEHIND THE SCENES

Table 8.6: Setup and parameters of the ALvsPK challenge datasets

Dataset ADA GINA HIVA NOVA SYLVA
Data origin marketing handwritten

digits
drug
discovery

text ecology

Dimensionality 48 970 1617 16969 216
Threshold 55% 50% 20% 80% 20%
Training 600+600 350+350 100+100 400+400 400+400
Monitoring 2487+419 1237+1184 3572+34 842+94 11758+397
Validation 343+113 176+171 408+15 138+55 1351+89
NM 5 8 20 25 10
Winning classifier ens 3nn ens ens ens

In Table 8.7, for GINA, NOVA and SYLVA, our AUC is slightly better than those of the best
entries. This arises because AUC accounts for the full range of operating points, whereas BER
is based on a single confusion matrix and represents a single operating point of the classifier
on the ROC curve. A larger value of AUC suggests, that the classifier may have improved
classification performance when the prevalence (proportions) of the test samples in the two
classes is different from the proportion given in the challenge datasets.

Table 8.7: Results on the ALvsPK challenge datasets: our method and the best entry in the
agnostic track

Dataset Our Test BER Our Test AUC Best Test BER Best Test AUC
ADA 0.1818 0.8702 0.1660 0.9168
GINA 0.0533 0.9740 0.0339 0.9668
HIVA 0.2939 0.7589 0.2827 0.7707
NOVA 0.0725 0.9814 0.0456 0.9552
SYLVA 0.0190 0.9949 0.0062 0.9938

8.7. Discussion and Conclusions
Inspired by the work of Montanari (Montanari, 2004), we introduced a novel and key concept,
the transvariation intensity function. It characterizes the univariate separation of two classes
as a linear function of the distances between points from the classes. For the original and
scaled data, projected onto some discriminant, it specifies the two distances important for class
separation: the size of the class difference (8.18) and the size of class overlap (8.20). Their ratio
elucidates the role of the regularization parameter as the controller of the class overlap in SVM
and Liknon. The relationship between the regularization parameter C, the class difference and
the class overlap provided a better understanding of how Liknon works, important in practical
applications of the method. In Liknon, the class difference on the standard discriminant and
individual selected features is constrained from below by 1/C. By increasing the parameter
C, we control the class overlap in individual features, allowing more features to be included

189

PRANCKEVICIENE SOMORJAI

into the optimal Liknon discriminant. Based on the total transvariation intensity function of the
individual features, we proposed an algorithm for computing C values.

We demonstrated the efficiency of Liknon, combined with univariate feature filtering, in
identifying smaller feature subsets of the ground truth features. Because of the properties of the
linear programming method of Liknon, the number of non-zero components (selected features)
in the solution of the primal w is bounded by the number of samples in the dataset. Liknon’s
limited, single-run performance, when compared to the best recent entries for the NIPS 2003
FS datasets, indicates that either the number of selected features in a single split is not suffi-
cient for fully representing the nature of the class separation, or that the linear classifier cannot
handle the complexity of the classification problem. As possible strategies, we suggest using
an ensemble of Liknon discriminants trained on feature subsets of different sizes, or employing
Liknon features as inputs to nonlinear classification rules. In the ALvsPK challenge, results
based on these strategies were among those of the top-ranked methods. The main advantage of
Liknon is its ability to identify stable features in high-dimensional, small sample size datasets.
A possible disadvantage is the considerable computational load of processing many data splits
in the inner crossvalidation loop.

Related to our work is the full regularization path algorithm (Hastie et al., 2004; Rosset
and Zhu, 2006). It uses loss functions with quadratic terms and L1-norm penalty. It allows
computation of derivatives in order to obtain the sequence of solutions w. The algorithm does
not calculate the regularization parameter explicitly. Liknon has different formulation in terms
of the loss function. Loss in Liknon is linear and the partial derivatives with respect to w would
be constant. The linearity of Liknon enables formulating it as a linear programming problem
and solving for w using the LP optimization method. Using such formulation we can derive how
to compute the regularization parameter, but we can’t compute the weights of the discriminant
directly. Solving Liknon with a sequence of Cs and using a monitoring set to select the optimal
solution w is similar to the procedure for the regularization path approach, but Liknon uses a
linear loss and an L1 penalty. These two algorithms obtain the sequence of the solutions in
different ways.

We carried out numerical experiments on the artificial Banana example to compare the per-
formances of the two methods. We also contrasted the Liknon filter with the relevant entry of
the NIPS2003 FS challenge, the regularization path method used by S.Rosset and J. Zhu; it per-
formed better than the Liknon filter. However, from the point of view of the purity and size of
the selected feature subsets, Liknon was better. The regularization path method is more flexible
than Liknon in learning nonlinear structures through the use of various loss functions. Liknon is
“conservative” in adequately capturing the complexity of class separation, identifying only the
subsets of interacting features that are optimal for linear class separation. Liknon-embedded
feature selection is suited for problems for which user is interested in finding several impor-
tant original features, the class differences arise due to the differences in class means, there are
many correlated features and finally, the number of features is much larger than the number of
the training samples.

Acknowledgments
We thank the reviewers and editors for constructive comments that helped us improve the
manuscript. The first author thanks the organizers of Agnostic Learning vs. Prior Knowledge
challenge for their effort in providing an excellent platform to test learning methods. The group
of Prof. R.P.W. Duin is also acknowledged for making PRTools publicly available.

190

8. LIKNON FEATURE SELECTION: BEHIND THE SCENES

Appendix.
The Matlab function for computation of a sequence of NM values of C is presented in this ap-
pendix. The code implements the algorithm presented in Section 8.5.4. Given a data matrix X
and a vector of class labels Y, the vector a of class difference is computed. A grid of d val-
ues is constructed out of the vector a. Linear transvariation functions for every feature j are
computed as Ftrans=[abs(a(j))-(N/2)*d]. Ttotal is obtained by summing up the
positive parts of the transvariation functions Ftrans. The logarithm of Ttotal is used to
obtain an equally spaced grid. Using such a grid, the sequence ds is obtained by linear interpo-
lation. Using the sequence ds, the corresponding C values are computed as C=[2./(N*ds)].
A large C=100 is also included in the sequence.

function [c]=computeC(X, Y, NM)
%
% Output: c - sequence of C values
% Input: X - data matrix, Y - class labels, NM - number of C values
%
N = size(X,1); Na = 100;
i1 = find(Y==1); i2 = find(Y==-1);
a = sum(X(i1,:))-sum(X(i2,:));
da = (2/N)*abs(a);
d = unique([da[0:max(da)/Na:max(da)]]);
Ttotal = zeros(1,length(d));
for j = 1:length(a)

Ftrans = [abs(a(j))-(N/2)*d];
m = [Ftrans>0];
Ttotal = Ttotal+Ftrans.*m;

end;
tm = max(Ttotal);tt = abs(Ttotal-tm);zeroi = find(tt==0);
if ∼isempty(zeroi); Ttotal(zeroi) = []; tt(zeroi) = []; d(zeroi) = []; end;
tlog = log(tt); [val,ind] = unique(tlog);
tlog = tlog(ind); d = d(ind);
t1 = min(tlog); t2 = max(tlog);
ti = [t1+(t2-t1)/NM:(t2-t1)/NM:t2];
ds = interp1(tlog,d,ti,’linear’);
c = sort([2./(N*ds) 100]);
ts = tm-exp(ti);
plot(d,Ttotal,’k’,ds,ts,’kd-’);
return;

References
C.Ambroise and G.J.McLachlan. Selection bias in gene extraction on the basis of microarray

gene-expression data. PNAS, 99(10), pages 6562-6566, 2002.

T.S. Arthanari and Y. Dodge. Mathematical programming in statistics. John Willey and Sons,
New York, 1981.

C.Bhattacharyya, L.R.Grate, A.Rizki, D. Radisky, F.J. Molina, M.I. Jordan, M.J. Bissell and
I.S. Mian. Simultaneous relevant feature identification and classification in high-dimensional

191

PRANCKEVICIENE SOMORJAI

spaces: application to molecular profiling data. Signal Processing, 83(4), pages 729-743,
2003.

V.Cherkassky and Y.Ma, Margin-based Learning and Popper’s Philosophy of Inductive Learn-
ing. In M. Basu and T.K. Ho, editors. Data complexity in pattern recognition.. 2006.

R.P.W.Duin, P.Juszczak, P.Paclik, E.Pekalska, D.de Ridder, and D.M.J.Tax. PRTools4 A Matlab
toolbox for pattern recognition, February, 2004.

G.Fung and O.Mangasarian. A feature selection Newton method for support vector machine
classification. Computational Optimization and Applications, 28, pages 185–202, 2004.

G.D.Guo and C.Dyer. Learning from examples in the small sample case: face expression recog-
nition. IEEE Trans. on System, Man and Cybernetics - Part B, 35(3), pages 477–488, 2005.

I.Guyon, V.Vapnik, B.Boser, L.Bottou, and S.Solla. Capacity control in linear classifiers for pat-
tern recognition. Proceedings of the 11th IAPR International Conference on Pattern Recog-
nition, IEEE, 2, pages 385–388, 1992.

I. Guyon, S. Gunn, M. Nikravesh, and L. Zadeh, editors. Feature extraction, foundations and
applications. Physica-Verlag, Springer, 2006.

I.Guyon, A.Safari, G.Dror, and G.Cawley. Agnostic learning vs. prior knowledge challenge.
Proccedings of International Joint Conference on Neural Networks IJCNN2007, INNS/IEEE,
Orlando Florida, pages 829–834, 2007a.

I.Guyon, J.Li, T.Mader, P.A.Pletsher, G.Schneider, and M.Uhr. Competitive baseline methods
set new standards for the NIPS 2003 feature selection benchmark. Pattern recognition letters,
28, pages 1438–1444, 2007b.

T.Hastie, S.Rosset, R.Tibshirani, and J.Zhu. The entire regularization path for the support vector
machine. Journal of Machine Learning Research, 5, pages 1391-1415, 2004.

C.Igel. Multi-objective model selection for support vector machines. In C.A. Coello Coello, A.
Hernandez Aguirre, and E. Zitzler, editors. Evolutionary Multi-criterion Optimization, LNCS
3410, pages 534–546, 2005.

R.Kohavi and G.H.John. Wrappers for feature subset selection. Artificial intelligence, 97(1-2),
pages 273–324, 1997.

M.Kudo and J.Sklansky. Comparison of algorithms that select features for pattern classifiers.
Pattern recognition, 33(1), pages 25–41, 2000.

A.Montanari. Linear discriminant analysis and transvariation. Journal of Classification, 21,
pages 71–88, 2004.

C.H. Papadimitriou and K. Steiglitz. Combinatorial optimization Algorithms and Complexity.
Prentice-Hall, Englewood Cliffs, New Jersey, 1982.

E.Pranckeviciene, R.Somorjai, R.Baumgartner, and M.Jeon. Identification of signatures in
biomedical spectra using domain knowledge. AI in Medicine, 35(3), pages 215–226, 2005.

E.Pranckeviciene, R.Somorjai, and M.N.Tran. Feature/model selection by the Linear Program-
ming SVM combined with State-of-art classifiers: what can we learn about the data. Proc-
cedings of International Joint Conference on Neural Networks IJCNN2007, INNS/IEEE, Or-
lando, Florida, pages 1627–1632, 2007.

192

8. LIKNON FEATURE SELECTION: BEHIND THE SCENES

S.Rosset and J.Zhu. Sparse, flexible and efficient modelling using L1 regularization. In I. Guyon,
S. Gunn, M. Nikravesh, and L. Zadeh, editors. Feature extraction, foundations and applica-
tions, pages 379–398, 2006.

J.Shawe-Taylor and N.Chistianini. Kernel methods for Pattern Analysis. Cambridge University
Press, 2004.

B.Scholkopf, R.C.Williamson, and P.Bartlet. New Support Vector Algorithms. Neural Compu-
tation, 12, pages 1207–1245, 2000.

R.L.Somorjai, B.Dolenko, and M.Mandelzweig. Direct classification of high-dimensional data
in low-dimensional feature spaces- comparison of several classification methodologies. Jour-
nal of Biomedical Informatics, 40, pages 131–138, 2007.

W.Zucchini. An introduction to model selection. Journal of mathematical psychology, 44, pages
41–61, 2000.

193

194

Journal of Machine Learning Research 9(Oct):2377–2400, 2008 Submitted 8/07; Revised 6/08; Published 10/08

Chapter 9

Model Selection in Kernel Based Regression using the
Influence Function
Michiel Debruyne MICHIEL.DEBRUYNE@DEXIA.COM
Mia Hubert MIA.HUBERT@WIS.KULEUVEN.BE
Department of Mathematics - LStat
K.U.Leuven
Celestijnenlaan 200B, B-3001 Leuven, Belgium

Johan A. K. Suykens JOHAN.SUYKENS@ESAT.KULEUVEN.BE

ESAT-SCD/SISTA
K.U.Leuven
Kasteelpark Arenberg 10, B-3001 Leuven, Belgium

Editor: Isabelle Guyon

Abstract
Recent results about the robustness of kernel methods involve the analysis of influence func-
tions. By definition the influence function is closely related to leave-one-out criteria. In sta-
tistical learning, the latter is often used to assess the generalization of a method. In statistics,
the influence function is used in a similar way to analyze the statistical efficiency of a method.
Links between both worlds are explored. The influence function is related to the first term
of a Taylor expansion. Higher order influence functions are calculated. A recursive relation
between these terms is found characterizing the full Taylor expansion. It is shown how to
evaluate influence functions at a specific sample distribution to obtain an approximation of the
leave-one-out error. A specific implementation is proposed using a L1 loss in the selection of
the hyperparameters and a Huber loss in the estimation procedure. The parameter in the Huber
loss controlling the degree of robustness is optimized as well. The resulting procedure gives
good results, even when outliers are present in the data.
Keywords: kernel based regression, robustness, stability, influence function, model selection

9.1. Introduction
Quantifying the effect of small distributional changes on the resulting estimator is a crucial anal-
ysis on many levels. A simple example is leave-one-out which changes the sample distribution
slightly by deleting one observation. This leave-one-out error plays a vital role for example in
model selection (Wahba, 1990) and in assessing the generalization ability (Poggio et al. 2004
through the concept of stability). Most of these analyses however are restricted to the sample
distribution and the addition/deletion of some data points from this sample.

In the field of robust statistics the influence function was introduced in order to analyze the
effects of outliers on an estimator. This influence function is defined for continuous distribu-
tions that are slightly perturbed by adding a small amount of probability mass at a certain place.
In Section 9.2 some general aspects about the influence function are gathered. Recent results
about influence functions in kernel methods include those of Christmann and Steinwart (2004,
2007) for classification and regression. In Section 9.3 these results are stated and their impor-
tance is summarized. A new theoretical result concerning higher order influence functions is

© 2008 M. Debruyne, M. Hubert & J.A.K. Suykens. Reprinted with permission for JMLR

DEBRUYNE HUBERT SUYKENS

presented. In Section 9.4 we show how to evaluate the resulting expressions at sample dis-
tributions. Moreover we apply these influence functions in a Taylor expansion approximating
the leave-one-out error. In Section 9.5 we use the approximation with influence functions to
select the hyperparameters. A specific implementation is proposed to obtain robustness with a
Huber loss function in the estimation step and a L1 loss in the model selection step. The de-
gree of robustness is controlled by a parameter that can be chosen in a data driven way as well.
Everything is illustrated on a toy example and some experiments in Section 9.6.

9.2. The Influence Function
In statistics it is often assumed that a sample of data points is observed, all generated inde-
pendently from the same distribution and some underlying process, but sometimes this is not
sufficient. In many applications gathering the observations is quite complex, and many errors
or subtle changes can occur when obtaining data. Robust statistics is a branch of statistics that
deals with the detection and neutralization of such outlying observations. Roughly speaking a
method is called robust if it produces similar results as the majority of observations indicates,
no matter how a minority of other observations is placed. A crucial analysis in robust statis-
tics is the behavior of a functional T , not only at the distribution of interest P, but in an entire
neighborhood of distributions around P. The influence function measures this behavior. In this
section we recall its definition and discuss some links with other concepts.

9.2.1. Definition

The pioneering work of Hampel et al. (1986) and Huber (1981) considers distributions Pε,z =
(1− ε)P+ ε∆z where ∆z denotes the Dirac distribution in the point z ∈ X ×Y , representing
the contaminated part of the data. For having a robust T , T (Pε,z) should not be too far away
from T (P) for any possible z and any small ε . The limiting case of ε ↓ 0 is comprised in the
concept of the influence function.

Definition 9.1 Let P be a distribution. Let T be a functional T : P → T (P). Then the influence
function of T at P in the point z is defined as

IF(z;T,P) = lim
ε→0

T (Pε,z)−T (P)
ε

.

The influence function measures the effect on the estimator T when adding an infinitesimally
small amount of contamination at the point z. Therefore it is a measure of the robustness of T .
Of particular importance is the supremum over z. If this is unbounded, then an infinitesimally
small amount of contamination can cause arbitrary large changes. For robust estimators, the
supremum of its influence function should be bounded. Then small amounts of contamination
cannot completely change the estimate and a certain degree of robustness is indeed present.
The simplest example is the estimation of the location of a univariate distribution with density
f symmetric around 0. The influence function of the mean at z ∈ R then equals the function
z and is clearly unbounded. If the median of the underlying distribution is uniquely defined,
that is if f (0) > 0, then the influence function of the median equals sign(z)/(2 f (0)) which is
bounded. The median is thus more robust than the mean.

9.2.2. Asymptotic Variance and Stability

From Definition 9.1 one can see that the influence function is a first order derivative of T (Pε,z)
at ε = 0. Higher order influence functions can be defined too:

196

9. MODEL SELECTION IN KERNEL BASED REGRESSION USING THE INFLUENCE FUNCTION

Definition 9.2 Let P be a distribution. Let T be a functional T : P → T (P). Then the k-th order
influence function of T at P in the point z is defined as

IFk(z;T,P) =
∂

∂ kε
T (Pε,z)|ε=0.

If all influence functions exist then the following Taylor expansion holds:

T (Pε,z) = T (P)+ εIF(z;T,P)+
ε2

2!
IF2(z;T,P)+ . . . (9.1)

characterizing the estimate at a contaminated distribution in terms of the estimate at the original
distribution and the influence functions.

Actually this is a special case of a more general Von Mises expansion (take Q = Pε,z):

T (Q) = T (P)+
�

IF(x;T,P)d(Q−P)(x)+ . . .

Now take Q equal to a sample distribution Pn of a sample {zi} of size n generated i.i.d. from P.
Then

T (Pn)−T (P) =
�

IF(z;T,P)dPn(z)+ . . .

=
1
n

n

∑
i=1

IF(zi;T,P)+

The first term on the right hand side is now a sum of n i.i.d. random variables. If the remain-
ing terms are asymptotically negligible, the central limit theorem thus immediately shows that√

n(T (Pn)−T (P)) is asymptotically normal with mean 0 and variance

ASV (T,P) =
�

IF2(z;T,P)dP(z).

Since the asymptotic efficiency of an estimator is proportional to the reciprocal of the asymp-
totic variance, the integrated squared influence function should be as small as possible to
achieve high efficiency. Consider again the estimation of the center of a univariate distribu-
tion with density f . At a standard normal distribution the asymptotic variance of the mean
equals

�
z2dP(z) = 1, and that of the median equals

�
(sign(z)/(2 f (0)))2dP(z) = 1.571. Thus

the mean is more efficient than the median at a normal distribution. However, at a Cauchy dis-
tribution for instance, this is completely different: the ASV of the median equals 2.47, but for
the mean it is infinite since the second moment of a Cauchy distribution does not exist. Thus to
estimate the center of a Cauchy, the median is a much better choice than the mean.

An interesting parallel can be drawn towards the concept of stability in learning theory.
Several measures of stability were recently proposed in the literature. The leave-one-out error
often plays a vital role, for example in hypothesis stability (Bousquet and Elisseeff, 2001),
partial stability (Kutin and Niyogi, 2002) and CVloo-stability (Poggio et al., 2004). The basic
idea is that the result of a learning map T on a full sample should not be very different from
the result obtained when removing only one observation. More precisely, let P be a distribution
on a set X ×Y and T : P → T (P) with T (P) : X → Y : x → T (P)(x). Let P−i

n denote the
empirical distribution of a sample without the ith observation zi = (xi,yi) ∈ X ×Y . Poggio
et al. (2004) call the map T CVloo-stable for a loss function L : Y → R+ if

lim
n→∞

sup
i∈{1,...,n}

|L(yi −T (Pn)(xi))−L(yi −T (P−i
n)(xi))| → 0 (9.2)

197

DEBRUYNE HUBERT SUYKENS

for n → ∞. This means intuitively that the prediction at a point xi should not be too different
whether or not this point is actually used constructing the predictor. If the difference is too
large there is no stability, since in that case adding only one point can yield a large change
in the result. Under mild conditions it is shown that CVloo-stability is required to achieve
good predictions. Let L be the absolute value loss and consider once again the simple case of
estimating the location of a univariate distribution. Thus Pn is just a univariate sample of n real
numbers {y1, . . . ,yn}. Then the left hand side of (9.2) equals

lim
n→∞

sup
i∈{1,...,n}

|T (Pn)−T (P−i
n)|.

Let y(i) denote the ith order statistic. Consider T the median. Assuming that n is odd and
yi < y(n+1

2) (the cases yi > y(n+1
2) and equality can easily be checked as well), we have that

|Med(Pn)−Med(P−i
n)|=

����y(n+1
2)−

1
2

�
y(n+1

2) + y(n+3
2)

�����=
1
2
|y(n+1

2)− y(n+3
2)|.

If the median of the underlying distribution P is unique, then both y(n+1
2) and y(n+3

2) converge to
this number and CVloo stability is obtained. However, when taking the mean for T , we have that

|E(Pn)−E(P−i
n)|=

�������

1
n

n

∑
j=1

y j −
1

n−1

n

∑
j=1
j �=i

y j

�������
=

�������
− 1

n(n−1)

n

∑
j=1
j �=i

y j +
yi

n

�������
.

The first term in this sum equals the sample mean of P−i
n divided by n and thus converges to 0

if the mean of the underlying distribution exists. The second term converges to 0 if

lim
n→∞

sup
i∈{1,...,n}

|yi|
n

= 0.

This means that the largest absolute value of n points sampled from the underlying distribution
should not grow too large. For a normal distribution for instance this is satisfied since the largest
observation only grows logarithmically: for example the largest of 1000 points generated from
a normal distribution only has a very small probability to exceed 5. This is due to the exponen-
tially decreasing density function. For heavy tailed distribution it can be different. A Cauchy
density for instance only decreases at the rate of the reciprocal function and supi∈{1,...,n} |yi| is
of the order O(n). Thus for a normal distribution the mean is CVloo stable, but for a Cauchy
distribution it is not.

In summary note that both the concepts of influence function and asymptotic variance on
one hand and CVloo stability on the other hand yield the same conclusions: using the sample
median as an estimator is ok as long as the median of the underlying distribution is unique.
Then one has CVloo stability and a finite asymptotic variance. Using the sample mean is ok
for a normal distribution, but not for a Cauchy distribution (no CVloo stability and an infinite
asymptotic variance).

A rigorous treatment of asymptotic variances and regularity conditions can be found in
Boos and Serfling (1980) and Fernholz (1983). In any event, it is an interesting link between
perturbation analysis through the influence function and variance/efficiency in statistics on one
hand, and between leave-one-out and stability/generalization in learning theory on the other
hand.

198

9. MODEL SELECTION IN KERNEL BASED REGRESSION USING THE INFLUENCE FUNCTION

9.2.3. A Strategy for Fast Approximation of the Leave-one-out Error

In leave-one-out crossvalidation T (P−i
n) is computed for every i. This means that the algo-

rithm under consideration has to be executed n times, which can be computationally intensive.
If the influence functions of T can be calculated, the following strategy might provide a fast
alternative. First note that

P−i
n = (1− (

−1
n−1

))Pn +
−1

n−1
∆zi .

Thus, taking Pε,z = P−i
n , ε =−1/(n−1) and P = Pn, Equation (9.1) gives

T (P−i
n) = T (Pn)+

∞

∑
j=1

(
−1

n−1
) j IFj(zi;T,Pn)

j!
. (9.3)

The right hand side now only depends on the full sample Pn. In practice one can cut off the
series after a number of steps ignoring the remainder term, or if possible one can try to estimate
the remainder term.

The first goal of this paper is to apply this idea in the context of kernel based regression.
Christmann and Steinwart (2007) computed the first order influence function. We will compute
higher order terms in (9.1) and use these results to approximate the leave-one-out estimator
applying (9.3).

9.3. Kernel Based Regression
In this section we recall some definitions on kernel based regression. We discuss the influence
function and provide a theorem on higher order terms.

9.3.1. Definition

Let X ,Y be non-empty sets. Denote P a distribution on X ×Y ⊆ Rd ×R. Suppose we
have a sample of n observations (xi,yi) ∈ X ×Y generated i.i.d. from P. Then Pn denotes the
corresponding finite sample distribution. A functional T is a map that maps any distribution P
onto T (P). A finite sample approximation is given by Tn := T (Pn).

Definition 9.3 A function K : X ×X → R is called a kernel on X if there exists a R-Hilbert
space H and a map Φ : X → H such that for all x,x� ∈ X we have

K(x,x�) = �Φ(x),Φ(x�)� .

We call Φ a feature map and H a feature space of K.

Frequently used kernels include the linear kernel K(xi,x j) = xt
ix j, polynomial kernel of degree

p for which K(xi,x j) = (τ +xt
ix j)p with τ > 0 and RBF kernel K(xi,x j) = exp(−�xi−x j�2

2/σ2)
with bandwidth σ > 0. By the reproducing property of H we can evaluate any f ∈ H at the
point x ∈ X as the inner product of f with the feature map: f (x) = � f ,Φ(x)�.

Definition 9.4 Let K be a kernel function with corresponding feature space H and let L : R→
R+ be a twice differentiable convex loss function. Then the functional fλ ,K : P → fλ ,K(P) =
fλ ,K,P ∈ H is defined by

fλ ,K,P := argmin
f∈H

EPL(Y − f (X))+λ� f�2
H

where λ > 0 is a regularization parameter.

199

DEBRUYNE HUBERT SUYKENS

The functional fλ ,K maps a distribution P onto the function fλ ,K,P that minimizes the regularized
risk. When the sample distribution Pn is used, one has that

fλ ,K,Pn := argmin
f∈H

1
n

n

∑
i=1

L(yi − f (xi))+λ� f�2
H . (9.4)

Such estimators have been studied in detail, see for example Wahba (1990), Tikhonov and
Arsenin (1977) or Evgeniou et al. (2000). In a broader framework (including for example
classification, PCA, CCA etc.) primal-dual optimization methodology involving least squares
kernel estimators were studied by Suykens et al. (2002b). Possible loss functions include

• the least squares loss: L(r) = r2.

• Vapnik’s ε-insensitive loss: L(r) = max{|r|−ε,0}, with special case the L1 loss if ε = 0.

• the logistic loss: L(r) = − log(4Λ(r)[1−Λ(r)]) with Λ(r) = 1/(1+ e−r). Note that this
is not the same loss function as used in logistic regression.

• Huber loss with parameter b > 0: L(r) = r2 if |r| ≤ b and L(r) = 2b|r| − b2 if |r| > b.
Note that the least squares loss corresponds to the limit case b → ∞.

9.3.2. Influence Function

The following proposition was proven in Christmann and Steinwart (2007).

Proposition 9.5 Let H be a RKHS of a bounded continuous kernel K on X with feature map
Φ : X →H . Furthermore, let P be a distribution on X ×Y with finite second moment. Then
the influence function of fλ ,K exists for all z := (zx,zy) ∈ X ×Y and we have

IF(z; fλ ,K ,P) =−S−1 �2λ fλ ,K,P
�
+L�(zy − fλ ,K,P(zx))S−1Φ(zx)

where S : H → H is defined by S(f) = 2λ f +EP
�
L��(Y − fλ ,K,P(X))�Φ(X), f �Φ(X)

�
.

Thus if the kernel is bounded and the first derivative of the loss function is bounded, then
the influence function is bounded as well. Thus L1 type loss functions for instance lead to
robust estimators. The logistic loss as well since the derivative of this loss function equals
L�(r) = 2−1/(1+e−r) which is bounded by 2. For the Huber loss L�(r) is bounded by 2b. This
shows that the parameter b controls the amount of robustness: if b is very large than the influence
function can become very large too. For a small b the influence function remains small. For a
least squares loss function on the other hand, the influence function is unbounded (L�(r) = 2r):
the effect of the smallest amount of contamination can be arbitrary large. Therefore it is said
that the least squares estimator is not robust.

9.3.3. Higher Order Influence Functions

For the second order influence function as in Definition 9.2 the following theorem is proven in
the Appendix.

Theorem 9.6 Let P be a distribution on X ×Y with finite second moment. Let L be a convex
loss function that is three times differentiable. Then the second order influence function of fλ ,K

200

9. MODEL SELECTION IN KERNEL BASED REGRESSION USING THE INFLUENCE FUNCTION

exists for all z := (zx,zy) ∈ X ×Y and we have

IF2(z; fλ ,K ,P) =S−1
�

2EP[IF(z; fλ ,K ,P)(X)L��(Y − fλ ,K(X))Φ(X)]

+EP[(IF(z; fλ ,K ,P)(X))2L���(Y − fλ ,K,P(X))]

−2[IF(z; fλ ,K ,P)(zx)L��(zy − fλ ,K(zx))Φ(zx)]

�

where S : H → H is defined by S(f) = 2λ f +EP
�
L��(Y − fλ ,K,P(X))�Φ(X), f �Φ(X)

�
.

When the loss function is infinitely differentiable, all higher order terms can in theory be calcu-
lated, but the number of terms grows rapidly since all derivatives of L come into play. However,
in the special case that all derivatives higher than three are 0, a relatively simple recursive rela-
tion exists.

Theorem 9.7 Let P be a distribution on X ×Y with finite second moment. Let L be a convex
loss function such that the third derivative is 0. Then the (k+ 1)th order influence function of
fλ ,K exists for all z := (zx,zy) ∈ X ×Y and we have

IFk+1(z; fλ ,K ,P) = (k+1)S−1
�
EP[IFk(z; fλ ,K ,P)(X)L��(Y − fλ ,K(X))Φ(X)]

− [IFk(z; fλ ,K ,P)(zx)L��(Zy − fλ ,K(zx))Φ(zx)]

�

where S : H → H is defined by S(f) = 2λ f +EP
�
L��(Y − fλ ,K,P(X))�Φ(X), f �Φ(X)

�
.

9.4. Finite Sample Expressions
Since the Taylor expansion in (9.1) is now fully characterized for any distribution P and any z,
we can use this to assess the influence of individual points in a sample with sample distribution
Pn. Applying Equation (9.3) with the KBR estimator fλ ,K,Pn from (9.4) we have that

fλ ,K,P−i
n
(xi) = fλ ,K,Pn(xi)+

∞

∑
j=1

(
−1

n−1
) j IFj(zi; fλ ,K ,Pn)(xi)

j!
. (9.5)

Let us see how the right hand side can be evaluated in practice.

9.4.1. Least Squares Loss

First consider taking the least squares loss in (9.4). Denote Ω the n×n kernel matrix with i, j-th
entry equal to K(xi,x j). Let In be the n× n identity matrix and denote Sn = Ω/n+λ In. The
value of fλ ,K,Pn at a point x ∈ X is given by

fλ ,K,Pn(x) =
1
n

n

∑
i=1

αiK(xi,x) with




α1
...

αn



= S−1
n




y1
...

yn



 (9.6)

201

DEBRUYNE HUBERT SUYKENS

which is a classical result going back to Tikhonov and Arsenin (1977). This also means that the
vector of predictions in the n sample points simply equals




fλ ,K,Pn(x1)

...
fλ ,K,Pn(xn)



= H




y1
...

yn



 (9.7)

with the matrix H = 1
n S−1

n Ω, sometimes referred to as the smoother matrix.
To compute the first order influence function at the sample the expression in Proposition 9.5

should be evaluated at Pn. The operator S at Pn maps by definition any f ∈ H onto

SPn(f) = 2λ f +EPn2 f (X)Φ(X) = 2λ f +
2
n

n

∑
j=1

f (x j)Φ(x j)

and thus



SPn(f)(x1)

...
SPn(f)(xn)



= 2λ




f (x1)

...
f (xn)



+
2
n




K(x1,x1) . . . K(x1,xn)

...
K(xn,x1) K(xn,xn)








f (x1)

...
f (xn)





= 2Sn




f (x1)

...
f (xn)





which means that the matrix 2Sn is the finite sample version of the operator S at the sample Pn.
From Proposition 9.5 it is now clear that



IF(zi; fλ ,K ,Pn)(x1)

...
IF(zi; fλ ,K ,Pn)(xn)



= S−1
n

�
(yi − fλ ,K,Pn(xi))




K(xi,x1)

...
K(xi,xn)



−λ




fλ ,K,Pn(x1)

...
fλ ,K,Pn(xn)




�
.

(9.8)

In order to evaluate the influence function at sample point zi at a sample distribution Pn, we only
need the full sample fit fλ ,K,Pn and the matrix S−1

n , which is already obtained when computing
fλ ,K,Pn (cf. Equation (9.6)). From Theorem 9.7 one sees similarly that the higher order terms
can be computed recursively as




IFk+1(zi; fλ ,K ,Pn)(x1)

...
IFk+1(zi; fλ ,K ,Pn)(xn)



=(k+1)S−1
n

Ω
n




IF(zi; fλ ,K ,Pn)(x1)

...
IFk(zi; fλ ,K ,Pn)(xn)



 (9.9)

− (k+1)IFk(zi; fλ ,K ,Pn)(xi)S−1
n




K(xi,x1)

...
K(xi,xn)



 .

Define [IFMk] the matrix containing IFk(z j; fλ ,K ,Pn)(xi) at entry i, j. Then (9.9) is equivalent
to

[IFMk+1] = (k+1)(H [IFMk]−nH • [IFMk])

with • denoting the entrywise matrix product (also known as the Hadamard product). Or equiv-
alently

[IFMk+1] = (k+1)(H([IFMk]•M(1−n))) (9.10)

202

9. MODEL SELECTION IN KERNEL BASED REGRESSION USING THE INFLUENCE FUNCTION

with M the matrix containing 1/(1−n) at the off-diagonal and 1 at the diagonal. A first idea is
now to approximate the series in (9.5) by cutting it off at some step k:

fλ ,K,P−i
n
(xi)≈ fλ ,K,Pn(xi)+

k

∑
j=1

1
(1−n) j j!

[IFMj]i,i. (9.11)

However using (9.10) we can do a bit better. Expression (9.5) becomes

fλ ,K,P−i
n
(xi) = fλ ,K,Pn(xi)+

1
1−n

[IFM1]i,i +
1

1−n
[H(IFM1 •M)]i,i

+
1

1−n
[H(H(IFM1 •M)•M)]i,i + . . .

In every term there is a multiplication with H and an entrywise multiplication with M. The latter
means that all diagonal elements remain unchanged but the non-diagonal elements are divided
by 1−n. So after a few steps the non-diagonal elements will converge to 0 quite fast. It makes
sense to set the non-diagonal elements 0 retaining only the diagonal elements:

fλ ,K,P−i
n
(xi)≈ fλ ,K,Pn(xi)+

k−1

∑
j=1

1
(1−n) j j!

[IFMj]i,i +
1

(1−n)kk!

∞

∑
j=0

H j
i,i[IFMk]i,i

= fλ ,K,Pn(xi)+
k−1

∑
j=1

1
(1−n) j j!

[IFMj]i,i +
1

(1−n)kk!
[IFMk]i,i
1−Hi,i

(9.12)

since Hi,i is always smaller than 1.

9.4.2. Huber Loss

For the Huber loss function with parameter b > 0 we have that

L(r) =

�
r2 if |r|< b.
2b|r|−b2 if |r|> b.

and thus

L�(r) =

�
2r if |r|< b
2b sign(r) if |r|> b

, L��(r) =

�
2 if |r|< b
0 if |r|> b

.

Note that the derivatives in |r| = b do not exist, but in practice the probability that a residual
exactly equals b is 0, so we further ignore this possibility. The following equation holds:

fλ ,K,Pn(x) =
1
n

n

∑
i=1

αiK(xi,x) with 2λα j = L�(y j −
1
n

n

∑
i=1

αiK(xi,x j)). (9.13)

Thus a set of possibly non-linear equations has to be solved in α . Once the solution for the full
sample is found, an approximation of the leave-one-out error is obtained in a similar way as for
least squares. Proposition 9.5 for Pn gives the first order influence function.



IF(zi; fλ ,K ,Pn)(x1)

...
IF(zi; fλ ,K ,Pn)(xn)



= S−1
b

�
L�(yi − fλ ,K,Pn(xi))




K(xi,x1)

...
K(xi,xn)



−λ




fλ ,K,Pn(x1)

...
fλ ,K,Pn(xn)




�

203

DEBRUYNE HUBERT SUYKENS

with Sb = 2λ In +Ω •B/n and B the matrix containing L��(yi − fλ ,K,Pn(xi) at every entry in the
ith column. Let Hb = S−1

b Ω/n•B. Starting from Theorem 9.7 one finds analogously as (9.10)
the following recursion to compute higher order terms.

[IFMk+1] = (k+1)(Hb([IFMk]•M(1−n))) .

Finally one can use these matrices to approximate the leave-one-out estimator as

fλ ,K,P−i
n
(xi)≈ fλ ,K,Pn(xi)+

k−1

∑
j=1

1
(1−n) j j!

[IFMj]i,i +
1

(1−n)kk!
[IFMk]i,i
1− [Hb]i,i

(9.14)

in the same way as in (9.12)

9.4.3. Reweighted KBR

In Equation (9.14) the full sample estimator fλ ,K,Pn is of course needed. For a general loss
function L one has to solve Equation (9.13) to find fλ ,K,Pn . A fast way to do so is to use
reweighted KBR with a least squares loss. Let

W (r) =
L�(r)

2r
. (9.15)

Then we can rewrite (9.13) as

2λ fλ ,K,Pn(xk) =
1
n

n

∑
i=1

L�(yi − fλ ,K,Pn(xi))K(xi,xk) ∀1 ≤ k ≤ n.

=
1
n

n

∑
i=1

2W (yi − fλ ,K,Pn(xi))(yi − fλ ,K,Pn(xi))K(xi,xk).

Denoting wi =W (yi − fλ ,K,Pn(xi)) this means that

λ fλ ,K,Pn(xk) =
1
n

n

∑
i=1

wiyiK(xi,xk)−
1
n

n

∑
i=1

wi fλ ,K,Pn(xi)K(xi,xk) ∀1 ≤ k ≤ n.

Let Iw denote the n×n diagonal matrix with wi at entry i, i. Then



fλ ,K,Pn(x1)

...
fλ ,K,Pn(xn)



=

�
Ω
n
+λ Iw

�−1 Ω
n




y1
...

yn



 (9.16)

and thus fλ ,K,Pn can be written as a reweighted least squares estimator with additional weights
wi compared to Equations (9.6) and (9.7). Of course these weights still depend on the un-
known fλ ,K,Pn , so (9.16) only implicitly defines fλ ,K,Pn . It does suggest the following iterative
reweighting algorithm.

1. Start with simple least squares computing (9.7). Denote the solution f 0
λ ,K,Pn

.

2. At step k+1 compute weights wi,k =W (yi − f k
λ ,K,Pn

(xi)).

3. Solve (9.16) using the weights wi,k. Let the solution be f k+1
λ ,K,Pn

.

204

9. MODEL SELECTION IN KERNEL BASED REGRESSION USING THE INFLUENCE FUNCTION

In Suykens et al. (2002a) it is shown that this algorithm usually converges in very few steps.
In Debruyne et al. (2010) the robustness of such stepwise reweighting algorithm is analyzed
by calculating stepwise influence functions. It is shown that the influence function is stepwise
reduced under certain conditions on the weight function.

For the Huber loss with parameter b Equation (9.15) means that the corresponding weight
function equals W (r) = 1 if |r| ≤ b and W (r) = b/|r| if |r|> b. This gives a clear interpretation
of this loss function: all observations with error smaller than b remain unchanged, but the ones
with error larger than b are downweighted compared to the least squares loss. This also explains
the gain in robustness. One can expect better robustness as b decreases.

It would be possible to compute higher order terms of such k−step estimators as well.
Then one could explicitly use these terms to approximate the leave-one-out error of the k−step
reweighted estimator. In this paper however we use the reweighting only to compute the full
sample estimator fλ ,K,Pn and we assume that it is fully converged to the solution of (9.13). For
the model selection (9.14) is then used.

9.5. Model Selection
Once the approximation of fλ ,K,P−i

n
is obtained, one can proceed with model selection using the

leave-one-out principle. In the next paragraphs we propose a specific implementation taking
into account performance as well as robustness.

9.5.1. Definition

The traditional leave-one-out criterion is given by

LOO(λ ,K) =
1
n

n

∑
i=1

V (yi − fλ ,K,P−i
n
(xi)) (9.17)

with V an appropriate loss function. The values of λ and of possible kernel parameters for
which this criterion is minimal, are then selected to train the model. The idea we investigate is
to replace the explicit leave-one-out by the approximation in (9.12) for least squares and (9.14)
for the Huber loss.

Definition 9.8 The k-th order influence function criterion at a regularization parameter λ > 0
and kernel K for Huber loss KBR with parameter b is defined as

Ck
IF(λ ,K,b) =

1
n

n

∑
i=1

V

�
yi − fλ ,K,Pn(xi)−

k−1

∑
j=1

1
(1−n) j j!

[IFMj]i,i −
1

(1−n)kk!
[IFMk]i,i
1− [Hb]i,i

�
.

For KBR with a least squares loss we write

Ck
IF(λ ,K,∞) =

1
n

n

∑
i=1

V

�
yi − fλ ,K,Pn(xi)−

k−1

∑
j=1

1
(1−n) j j!

[IFMj]i,i −
1

(1−n)kk!
[IFMk]i,i
1− [H]i,i

�
.

since a least squares loss is a limit case of the Huber loss as b → ∞.

Several choices need to be made in practice. For k taking five steps seems to work very well
in the experiments. If we refer to the criterion with this specific choice k = 5 we write C5

IF .
For V one typically chooses the squared loss or the absolute value corresponding to the mean
squared error and the mean absolute error. Note that V does not need to be the same as the loss

205

DEBRUYNE HUBERT SUYKENS

function used to compute fλ ,K,Pn (the latter is always denoted by L). Recall that a loss function
L with bounded first derivative L� is needed to perform robust fitting. It is important to note
that this result following from Proposition 9.5 holds for a fixed choice of λ and the kernel K.
However, if these parameters are selected in a data driven way, outliers in the data might have
a large effect on the selection of the parameters. Even if a robust estimator is used, the result
could be quite bad if wrong choices are made for the parameters due to the outliers. It is thus
important to use a robust loss function V as well. Therefore we set V equal to the absolute value
loss function unless we explicitly state differently. In Section 9.6.1 an illustration is given on
what can go wrong if a least squares loss is chosen for V instead of the absolute value.

9.5.2. Optimizing b

With k and V now specified, the criterion C5
IF can be used to select optimal hyperparameters

for a KBR estimator with L the Huber loss with parameter b. Now the final question remains
how to choose b. In Section 9.4.3 it was argued that b controls the robustness of the estimator
since all observations with error smaller than b are downweighted compared to the least squares
estimator. Thus we want to choose b small enough such that outlying observations receive
sufficiently small weight, but also large enough such that the good non outlying observations
are not downweighted too much. A priori it is quite difficult to find such a good choice for b,
since this will depend on the scale of the errors.

However, one can also treat b as an extra parameter that is part of the optimization, con-
sequently minimizing C5

IF for λ , K and b simultaneously. The practical implementation we
propose is as follows:

1. Let Λ be a set of reasonable values for the regularization parameter λ and let K be a set
of possible choices for the kernel K (for instance a grid of reasonable bandwidths if one
considers the RBF kernel).

2. Start with L the least squares loss. Find good choices for λ and K by minimizing
C5

IF(λ ,K,∞) for all λ ∈ Λ and K ∈ K . Compute the residuals ri with respect to the
least squares fit with these optimal λ and K.

3. Compute a robust estimate of the scale of these residuals. We take the Median Absolute
Deviation (MAD):

σ̂err = MAD(r1, . . . ,rn) =
1

Φ−1(0.75)
median(|ri −median(ri)|) (9.18)

with Φ−1(0.75) the 0.75 quantile of a standard normal distribution.

4. Once the scale of the errors is estimated in the previous way, reasonable choices of b can
be constructed, for example {1,2,3}× σ̂err. This means that we compare downweighting
observations further away than 1, 2, 3 standard deviations. We also want to compare to
the least squares fit and thus set

B = {σ̂err,2σ̂err,3σ̂err,∞}.

5. Minimize C5
IF(λ ,K,b) over all λ ∈ Λ, K ∈ K and b ∈ B. The optimal values of b, λ

and K can then be used to construct the final fit.

206

9. MODEL SELECTION IN KERNEL BASED REGRESSION USING THE INFLUENCE FUNCTION

9.5.3. Generalized Cross Validation

The criterion C5
IF uses influence functions to approximate the leave-one-out error. Other ap-

proximations have been proposed in the literature. In this section we very briefly mention some
results that are described for example by Wahba (1990) in the context of spline regression. The
following result can be proven.

Let P̃−i
n be the sample Pn with observation (xi,yi) replaced by (xi, fλ ,K,P−i

n
(xi)). Suppose the

following conditions are satisfied for any sample Pn:

(i) fλ ,K,P̃−i
n
(xi) = fλ ,K,P−i

n
(xi). (9.19)

(ii) There exists a matrix H such that




fλ ,K,Pn(x1).

...
fλ ,K,Pn(xn)



= H




y1
...

yn



 . (9.20)

Then

fλ ,K,P−i
n
(xi) =

fλ ,K,Pn(xi)−Hi,iyi

1−Hi,i
. (9.21)

For KBR with the least squares loss condition (22) is indeed satisfied (cf. Equation (9.7)), but
condition (9.19) is not, although it holds approximately. Then (9.21) can still be used as an
approximation of the leave-one-out estimator. The corresponding model selection criterion is
given by

CV (λ ,K) =
1
n

n

∑
i=1

V
�

yi − fλ ,K,Pn(xi)

1−Hi,i

�
. (9.22)

We call this approximation CV. Sometimes a further approximation is made replacing every
Hi,i by trace(H)/n. This is called Generalized Cross Validation (GCV, Wahba, 1990). Note that
the diagonal elements of the hatmatrix H play an important role in the approximation with the
influence function too (9.12). Both penalize small values on the diagonal of H.

For KBR with a general loss function one does not have a linear equation of the form of (22),
and thus it is more difficult to apply this approximation. We shall thus use CV for comparison
in the experiments only in the case of least squares.

9.6. Empirical Results
We illustrate the results on a toy example and a small simulation study.

9.6.1. Toy Example

As a toy example 50 data points were generated with xi uniformly distributed on the interval
[2,11] and yi = sin(xi)+ ei with ei Gaussian distributed noise with standard deviation 0.2. We
start with kernel based regression with a least squares loss and a Gaussian kernel. The data are
shown in Figure 9.1(a) as well as the resulting fit with λ = 0.001 and σ = 2.

The first order influence function at [5,0.5] is depicted in Figure 9.1(b) as the solid line. This
reflects the asymptotic change in the fit when a point would be added to the data in Figure 9.1(a)
at the position (5,0.5). Obviously this influence is the largest at the x-position where we put
the outlier, that is, x = 5. Furthermore we see that the influence is local, since it decreases as
we look further away from x = 5. At x = 8 for instance the influence function is almost 0.
When we change z from [5,0.5] to [5,1], the influence function changes too. It still has the
same oscillating behavior, but the peaks are now higher. This reflects the non-robustness of

207

DEBRUYNE HUBERT SUYKENS

(a) (b)

Figure 9.1: (a) Data and least squares fit. (b) Influence functions at [5,0.5] with σ = 1, at [5,1]
with σ = 1 and σ = 2.

the least squares estimator: if we would continue raising the point z, then IF(z; fλ ,K) would
become larger and larger, since it is an unbounded function of z. When it comes down to model
selection, it is interesting to check the effect of the hyperparameters in play. When we change
the bandwidth σ from 1 to 2, the peaks in the resulting influence function in Figure 9.1 are less
sharp and less high. This reflects the loss in stability when small bandwidths are chosen: then
the fit is more sensitive to small changes in the data and thus less stable.

Consider now the approximation of the leave-one-out error using the influence functions.
We still use the same data as in the previous paragraph. The dashed lines in Figure 9.2(a)
show the approximations using (9.11), that is simply cutting off the expansion after a number
of steps, at fixed λ = 0.001 as a function of the bandwidth σ . We observe convergence from
the training error towards the leave-one-out error as the number of terms included is increased.
Unfortunately the convergence rate depends on the value of σ : convergence is quite slow at
small values of σ . This is no surprise looking at (9.12). There we approximated the remainder
term by a quantity depending on (1−Hi,i)−1. When σ is small, the diagonal elements of H
become close to 1. In that case the deleted remainder term can indeed be quite large. Never-
theless, this approach can still be useful if some care is taken not to consider values of λ and
σ that are too small. However, the criterion C5

IF from Definition 9.8 using the approximation
in (9.12) is clearly superior. We see that the remainder term is now adequately estimated and
a good approximation is obtained at any σ . The resulting curve is undistinguishable from the
exact leave-one-out error. The mean absolute difference is 3.2 10−5, the maximal difference
is 1.8 10−4. The CV approximation also yields a good result being indistinguishable from the
exact leave-one-out error on the plot as well. The mean absolute difference is 4.1 10−4 and the
maximal difference equals 1.8 10−3. Thus C5

IF is closer to the true leave-one-out error than CV,
although the difference is irrelevant when it comes down to selecting a good σ .

Figure 9.2 also shows plots for the leave-one-out error and its various approximations at (b)
λ = 0.005 as a function of σ , (c) σ = 1 as a function of λ , (d) σ = 2 as a function of λ . In these
cases as well it is observed that the cutoff strategy yields decent results if a sufficient number
of terms is taken into account and if one does not look at values of λ and σ that are extremely
small. The best strategy is to take the remainder term into account using the criterion Ck

IF from
Definition 9.8.

208

9. MODEL SELECTION IN KERNEL BASED REGRESSION USING THE INFLUENCE FUNCTION

(a) (b)

(c) (d)

Figure 9.2: Comparison of training error (dotted line), approximations using (9.11) (dashed
lines), the proposed criterion Ck

IF with k = 5 (solid line), the exact leave-one-out
error and the CV approximation (both collapsing with Ck

IF on these plots). Situation
(a): as a function of σ at λ = 0.001, (b) as a function of σ at λ = 0.005, (c) as a
function of λ at σ = 1, (d) as a function of λ at σ = 2.

209

DEBRUYNE HUBERT SUYKENS

Figure 9.3: Data with outlier at (4,5). The parameters λ = 0.001 and σ = 2 are fixed. Dashed:
KBR with least squares loss function. Solid: KBR with Huber loss function (b =
0.2).

In Figure 9.3 we illustrate robustness. An (extreme) outlier was added at position (4,5) (not
visible on the plot). This outlier leads to a bad fit when LS-KBR is used with λ = 0.001 and σ =
2 (dashed line). When a Huber loss function is used with b = 0.2 a better fit is obtained that still
nicely predicts the majority of observations. This behavior can be explained by Proposition 9.5.
The least squares loss has an unbounded first derivative and thus the influence of outliers can
be arbitrary large. The Huber loss has a bounded first derivative and thus the influence of
outliers is bounded as well. However, note that in this example as well as in Proposition 9.5
the hyperparameters λ and σ are assumed to have fixed values. In practice one wants to choose
these parameters in a data driven way.

Figure 9.4(a) shows the optimization of σ at λ = 0.001 for KBR with L the Huber loss with
b = 0.2. In the upper panel the least squares loss is used for V in the model selection criteria.
Both exact leave-one-out and C5

IF indicate that a value of σ ≈ 3.6 should be optimal. This
results in the dashed fit in Figure 9.4(b). In the lower panel of Figure 9.4 the L1 loss is used
for V in the model selection criteria. Both exact leave-one-out and C5

IF indicate that a value of
σ ≈ 2.3 should be optimal. This results in the solid fit in Figure 9.4(b). We clearly see that,
although in both cases a robust estimation procedure is used (Huber loss for L), the outlier can
still be quite influential through the model selection. To obtain full protection against outliers,
both the estimation and the model selection step require robustness, for example by selecting
both L and V in a robust way.

Finally let us investigate the role of the parameter b used in the Huber loss function. We
now use C5

IF with V the L1 loss.
When we apply C5

IF to the clean data without the outlier, we observe in Figure 9.5(a) that the
choice of b does not play an important role. This is quite expected: since there are no outliers,
there is no reason why least squares (b = ∞) would not perform well. On the contrary, if we use
a small b such as b = 0.1 we get a slightly worse result. Again this is not a surprise, since with
small b we will downweight a lot of points that are actually perfectly ok.

210

9. MODEL SELECTION IN KERNEL BASED REGRESSION USING THE INFLUENCE FUNCTION

(a) (b)

Figure 9.4: (a) Optimization of σ at λ = 0.001. Upper: using least squares loss V in the model
selection. Lower: using L1 loss V in the model selection. For the estimation the
loss function L is always the Huber loss with b = 0.2. (b) Resulting fits. Dashed
line: σ = 3.6 (optimal choice using V least squares). Solid line: σ = 2.3 (optimal
choice using L1 loss for V .)

(a) (b)

Figure 9.5: C5
IF at λ = 0.001 as a function of σ for several values of b for (a) the clean data

without the outlier, (b) the data with the outlier.

211

DEBRUYNE HUBERT SUYKENS

The same plot for the data containing the outlier yields a different view in Figure 9.5(b).
The values of C5

IF are much higher for least squares than for the Huber loss with smaller b.
Thus it is automatically detected that a least squares loss is not the appropriate choice, which is
a correct assessment since the outlier will have a large effect (cf. the dashed line in Figure 9.3).
The criterion C5

IF indicates a choice b = 0.2, which leads to a better result indeed (cf. the solid
line in Figure 9.3)

9.6.2. Other Examples

This part presents the results of a small simulation study. We consider some well known set-
tings.

• Friedman 1 (d = 10): y(x) = 10sin(πx1x2)+20(x3−1/2)2+10x4+5x5+∑10
i=6 0.xi. The

covariates are generated uniformly in the hypercube in R10.

• Friedman 2 (d = 4): y(x) = 1
3000 (x

2
1 +(x2x3 − (x2x4)−2))1/2, with 0 < x1 < 100, 20 <

x2/(2π)< 280, 0 < x3 < 1, 1 < x4 < 11.

• Friedman 3 (d = 4): y(x) = tan−1(x2x3−(x2x4)
−2

x1
), with the same range for the covariates

as in Friedman 2. For each of the Friedman data sets 100 observations were generated
with Gaussian noise and 200 noise free test data were generated.

• Boston Housing Data from the UCI machine learning depository with 506 instances and
13 covariates. Each split 450 observations were used for training and the remaining 56
for testing.

• Ozone data from ftp://ftp.stat.berkeley.edu/pub/users/breiman/with
202 instances and 12 covariates. Each split 150 observations were used for training and
the remaining 52 for testing.

• Servo data from the UCI machine learning depository with 167 instances and 4 covariates.
Each split 140 observations were used for training and the remaining 27 for testing.

For the real data sets (Boston, Ozone and Servo), new contaminated data set were constructed
as well by adding large noise to 10 training points, making these 10 points outliers.

The hyperparameters λ and σ are optimized over the following grid of hyperparameterval-
ues:

• λ ∈ {50,10,5,3,1,0.8,0.5,0.3,0.1,0.08,0.05,0.01,0.005}×10−3 .

• For each data set 500 distances were calculated between two randomly chosen obser-
vations. Let d(i) be the ith largest distance. Then the following grid of values for σ is
considered:
σ ∈{ 1

2 d(1),d(1),d(50),d(100),d(150),d(200),d(250),d(300),d(350),d(400),d(450),d(500),2d(500)}.

In each replicate the Mean Squared Error of the test data is computed. For every data set
the average MSE over 20 replicates is shown in Table 9.1 (upper table). A two-sided paired
Wilcoxon rank test is used to check statistical significance: values in italic are significantly
different from the smallest value at significance level 0.05. If underlined significance holds
even at significance level 10−4. Standard errors are shown as well (lower table). First we
consider the least squares loss for L with the criterion C5

IF(λ ,σ ,∞) (Definition 9.8), with exact
leave-one-out (9.17) and with CV (9.22). These are the first 3 columns in Table 9.1. We see that

212

ftp://ftp.stat.berkeley.edu/pub/users/breiman/

9. MODEL SELECTION IN KERNEL BASED REGRESSION USING THE INFLUENCE FUNCTION

the difference between these 3 criteria is very small. This means that both CV and C5
IF provide

good approximations of the leave-one-out error.
Secondly, we considered each time the residuals of the least squares fit with optimal λ

and σ according to C5
IF(λ ,K,∞). An estimate σ̂err of the scale of the residuals is computed

as the MAD of these residuals (9.18). Then we applied KBR with a Huber loss and parameter
b= 3σ̂err. The resulting MSE with this loss and λ and σ minimizing C5

IF(λ ,σ ,3σ̂err) is given in
column 4 in Table 9.1. Similar results are obtained for b = 2σ̂err in column 5 and with b = σ̂err
in column 6. For the data sets without contamination we see that using a Huber loss instead of
least squares gives similar results except for the Boston housing data, Friedman 1 and especially
Friedman 2. For those data sets a small value of b is inappropriate. This might be explained
by the relationship between the loss function and the error distribution. For a Gaussian error
distribution least squares is often an optimal choice (cf. maximum likelihood theory). Since the
errors in the Friedman data are explicitly generated as Gaussian, this might explain why least
squares outperforms the Huber loss. For real data sets, the errors might not be exactly Gaussian,
and thus other loss function can perform at least equally well as least squares. For the data sets
containing the outliers the situation changes of course. Now least squares is not a good option
because of its lack of robustness. Clearly the outliers have a large and bad effect on the quality
of the predictions. This is not the case when the Huber loss function is chosen. Then the effect
of the outliers is reduced. Choosing b = 3σ̂err already leads to a large improvement. Decreasing
b leads to even better results (note that the p-values are smaller than 10−4 for any significant
pairwise comparison).

Finally we also consider optimizing b. We apply the algorithm outlined in Section 9.5.2.
Corresponding MSE’s are given in the last column of Table 9.1. For the Friedman 1 and Fried-
man 2 data sets for instance this procedure indeed detects that least squares is an appropriate
loss function and automatically avoids choosing b too small. For the contaminated data sets the
procedure detects that least squares is not appropriate and that changing to a Huber loss with a
small b is beneficial, which is indeed a correct choice yielding smaller MSE’s. In fact, only for
the Friedman 2 data, the automatic choice of b is significantly worse than the optimal choice
(p-value=0.03), whereas the benefits at the contaminated data are large (all p-values < 10−4).

9.7. Conclusion
Heuristic links between the concept of the influence function and concepts as leave-one-out
cross validation and stability were considered in Section 9.2, indicating some interesting appli-
cations of the influence function and the leave-one-out error in previous literature. New results
include the calculation of higher order influence functions and a recursive relation between sub-
sequent terms. It is shown that these theoretical results can be applied in practice to approximate
the leave-one-out estimator. Experiments indicate that the quality of this approximation is quite
good. The approximation is used in a model selection criterion to select the regularization and
kernel parameters.

We discussed the importance of robustness in the model selection step. A specific procedure
is suggested using an L1 loss in the model selection criterion and a Huber loss in the estimation.
Due to an iterative reweighting algorithm to compute such a Huber loss estimator and due to
the fast approximation of the leave-one-out error, everything can be computed fast starting from
the least squares framework. With an a priori choice of the parameter b in the Huber loss this
leads to better robustness if b is chosen small enough. If b is chosen too small on the other hand
this might result in worse predictions. However, this parameter can be selected in a data driven
way as well. Experiments suggest that this often yields a good trade-off between the robustness
of choosing a small b and the sometimes better predictive capacity of least squares.

213

DEBRUYNE HUBERT SUYKENS

Table 9.1: Simulation results. Upper: Mean Squared Errors. Lower: standard errors. Friedman
1 (F1), Friedman 2 (F2), Friedman 3 (F3), Boston Housing (B), Ozone (O), Servo
(S), Boston Housing with outliers (B+o), Ozone with outliers (O+o) and Servo with
outliers (S+o). Italic values are significantly different from the smallest value in
the row with p-value in between 0.05 and 0.001 using a paired Wilcoxon rank test;
underlined values are significant with p-value < 10−4.

b = ∞ (=LS) b = 3σ̂err b = 2σ̂err b = σ̂err (b = optimized)
LOO CV C5

IF C5
IF C5

IF C5
IF C5

IF
F1 1.63 1.63 1.63 1.66 1.70 1.82 1.67
F2 1.30 1.30 1.30 1.42 1.71 3.02 1.39
F3 2.42 2.42 2.42 2.42 2.42 2.37 2.38
B 10.58 10.58 10.58 10.82 11.30 12.21 10.79
O 13.91 13.92 13.91 13.76 13.73 13.91 13.94
S 0.40 0.40 0.40 0.43 0.41 0.41 0.40

B+o 37.54 37.54 37.54 14.60 13.73 12.68 12.78
O+o 78.78 78.78 78.77 21.20 18.85 16.74 16.74
S+o 1.60 1.60 1.60 0.61 0.54 0.46 0.46

b = ∞ (=LS) b = 3σ̂err b = 2σ̂err b = σ̂err (b = optimized)
LOO CV C5

IF C5
IF C5

IF C5
IF C5

IF
F1 0.09 0.09 0.09 0.09 0.10 0.08 0.09
F2 0.14 0.14 0.15 0.16 0.20 0.36 0.15
F3 0.03 0.03 0.03 0.03 0.03 0.05 0.05
B 1.39 1.39 1.39 1.40 1.46 1.51 1.39
O 0.86 0.86 0.87 0.78 0.78 0.75 0.81
S 0.05 0.05 0.05 0.09 0.08 0.09 0.09

B+o 2.91 2.91 2.91 1.12 1.09 1.02 1.04
O+o 3.44 3.44 3.44 1.01 0.97 1.03 1.03
S+o 0.16 0.16 0.16 0.07 0.07 0.08 0.08

214

9. MODEL SELECTION IN KERNEL BASED REGRESSION USING THE INFLUENCE FUNCTION

Acknowledgments
JS acknowledges support from K.U. Leuven, GOA-Ambiorics, CoE EF/05/006, FWO G.0499.04,
FWO G.0211.05, FWO G.0302.07, IUAP P5/22.

MH acknowledges support from FWO G.0499.04, the GOA/07/04-project of the Research Fund
KULeuven, and the IAP research network nr. P6/03 of the Federal Science Policy, Belgium.

Appendix A.
Proof of Theorem 9.6

Let P be a distribution, z ∈ X ×Y and Pε,z = (1− ε)P+ ε∆z with ∆z the Dirac distribution in
z. We start from the representer theorem of DeVito et al. (2004) (a generalization of (9.13)):

2λ fλ ,K,Pε,z = EPε,z [L
�(Y − fλ ,K,Pε,z(X))Φ(X)].

By definition of Pε,z and since E∆zg(X) = g(z) for any function g:

2λ fλ ,K,Pε,z = (1− ε)EP[L�(Y − fλ ,K,Pε,z(X))Φ(X)]+ εL�(zy − fλ ,K,Pε,z(zx))Φ(zx).

Taking the first derivative on both sides with respect to ε yields

2λ ∂
∂ε

fλ ,K,Pε,z =(1− ε)EP[−
∂

∂ε
fλ ,K,Pε,z(X)L��(Y − fλ ,K,Pε,z(X))Φ(X)]

−EP[L�(Y − fλ ,K,Pε ,z(X))Φ(X)]+L�(zy − fλ ,K,Pε,z(zx))Φ(zx)

− ε ∂
∂ε

fλ ,K,Pε,z(zx))L��(zy − fλ ,K,Pε ,z(zx))Φ(zx).

The second derivative equals

2λ ∂
∂ 2ε

fλ ,K,Pε,z =−EP[−
∂

∂ε
fλ ,K,Pε ,z(X)L��(Y − fλ ,K,Pε,z(X))Φ(X)]

+(1− ε)EP[−
∂

∂ 2ε
fλ ,K,Pε,z(X)L��(Y − fλ ,K,Pε,z(X))Φ(X)]

+(1− ε)EP[−
∂

∂ε
fλ ,K,Pε,z(X)L���(Y − fλ ,K,Pε,z(X))(− ∂

∂ε
fλ ,K,Pε,z(X))Φ(X)]

−EP[L��(Y − fλ ,K,Pε,z(X))(− ∂
∂ε

fλ ,K,Pε ,z(X))Φ(X)]

− ∂
∂ε

fλ ,K,Pε,z(zx)L��(zy − fλ ,K,Pε,z(zx))Φ(zx)

− ε ∂
∂ 2ε

fλ ,K,Pε,z(zx)L��(zy − fλ ,K,Pε,z(zx))Φ(zx)

− ε ∂
∂ε

fλ ,K,Pε,z(zx)L���(zy − fλ ,K,Pε ,z(zx))(−
∂

∂ε
fλ ,K,Pε,z(zx))Φ(zx)

−L��(zy − fλ ,K,Pε,z(zx))
∂

∂ε
fλ ,K,Pε,z(zx)Φ(zx).

215

DEBRUYNE HUBERT SUYKENS

Simplifying yields

2λ ∂
∂ 2ε

fλ ,K,Pε,z =2EP[
∂

∂ε
fλ ,K,Pε,z(X)L��(Y − fλ ,K,Pε ,z(X))Φ(X)] (9.23)

− (1− ε)EP[
∂

∂ 2ε
fλ ,K,Pε,z(X)L��(Y − fλ ,K,Pε,z(X))Φ(X)]

+(1− ε)EP[

�
∂

∂ε
fλ ,K,Pε,z(X)

�2
L���(Y − fλ ,K,Pε,z(X))Φ(X)]

−2
∂

∂ε
fλ ,K,Pε ,z(zx)L��(zy − fλ ,K,Pε,z(zx))Φ(zx)

− ε ∂
∂ 2ε

fλ ,K,Pε,z(zx)L��(zy − fλ ,K,Pε,z(zx))Φ(zx)

+ ε
�

∂
∂ε

fλ ,K,Pε,z(zx)

�2
L���(zy − fλ ,K,Pε,z(zx))Φ(zx).

Evaluating at ε = 0 and bringing all terms containing ∂
∂ 2ε fλ ,K,Pε,z to the left hand side of the

equation yields

2λ ∂
∂ 2ε

fλ ,K,Pε,z |ε=0 +EP[
∂

∂ 2ε
fλ ,K,Pε,z(X)|ε=0L��(Y − fλ ,K,P(X))Φ(X)]

= 2EP[
∂

∂ε
fλ ,K,Pε,z(X)|ε=0L��(Y − fλ ,K,P(X))Φ(X)]

+EP[

�
∂

∂ε
fλ ,K,Pε,z |ε=0(X)

�2
L���(Y − fλ ,K,P(X))

−2
∂

∂ε
fλ ,K,P(zx)|ε=0L��(zy − fλ ,K,P(zx))Φ(zx).

Since by definition ∂
∂ε fλ ,K,Pε ,z |ε=0 is IF(z; fλ ,K ,P) and ∂

∂ 2ε fλ ,K,Pε,z |ε=0 is IF2(z; fλ ,K ,P) we have
that

S(IF2(z; fλ ,K ,P)) = 2EP[IF(z; fλ ,K ,P)(X)L��(Y − fλ ,K,P(X))Φ(X)]

+EP[
�
IF(z; fλ ,K ,P)(X)

�2 L���(Y − fλ ,K,P(X))

−2IF(z; fλ ,K ,P)(zx)L��(zy − fλ ,K,P(zx))Φ(zx)

with the operator S defined by S : f → λ f +EPL��(Y − fλ ,K,P(X)) f (X)Φ(X). Christmann and
Steinwart (2007) prove that S is an invertible operator and thus Theorem 9.6 follows.

Proof of Theorem 9.7

First we proof the following for all 2 ≤ k ∈ N:

2λ ∂
∂ kε

fλ ,K(Pε,z) =(1− ε)EP[−
∂

∂ kε
fλ ,K,Pε,z(X)L��(Y − fλ ,K,Pε,z(X))Φ(X)] (9.24)

+ kEP[
∂

∂ k−1ε
fλ ,K,Pε,z(X)L��(Y − fλ ,K,Pε,z(X))Φ(X)]

− kL��(zy − fλ ,K,Pε,z(zx))
∂

∂ k−1ε
fλ ,K,Pε,z(zx)Φ(zx)

− εL��(zy − fλ ,K,Pε,z(zx))
∂

∂ kε
fλ ,K,Pε ,z(zx)Φ(zx).

216

9. MODEL SELECTION IN KERNEL BASED REGRESSION USING THE INFLUENCE FUNCTION

Note that for k = 2 this immediately follows from (9.23). For general k we give a proof by
induction. We assume that (9.24) holds for k and we then prove that it automatically holds for
k+1 as well. Taking the derivatives of both sides in (9.24) we find

λ ∂
∂ k+1ε

fλ ,K(Pε,z) =(1− ε)EP[−
∂

∂ k+1ε
fλ ,K,Pε ,z(X)L��(Y − fλ ,K,Pε,z(X))Φ(X)]

−EP[−
∂

∂ kε
fλ ,K,Pε,z(X)L��(Y − fλ ,K,Pε,z(X))Φ(X)]

+ kEP[
∂

∂ kε
fλ ,K,Pε,z(X)L��(Y − fλ ,K,Pε,z(X))Φ(X)]

− k
∂

∂ kε
fλ ,K,Pε ,z(zx)L��(zy − fλ ,K,Pε ,z(zx))Φ(zx)

− ε ∂
∂ k+1ε

fλ ,K,Pε ,z(zx)L��(zy − fλ ,K,Pε,z(zx))Φ(zx)

− ∂
∂ kε

fλ ,K,Pε,z(zx)L��(zy − fλ ,K,Pε,z(zx))Φ(zx)

from which it follows that (9.24) holds for k+ 1 indeed. Evaluating this expression in ε = 0
yields:

λ ∂
∂ k+1ε

fλ ,K(Pε,z)|ε=0 +EP[
∂

∂ k+1ε
fλ ,K,Pε ,z(X)|ε=0L��(Y − fλ ,K,Pε,z(X))Φ(X)]

= (k+1)EP[
∂

∂ kε
fλ ,K,Pε,z(X)|ε=0L��(Y − fλ ,K,Pε ,z(X))Φ(X)]

− (k+1)
∂

∂ kε
fλ ,K,Pε ,z |ε=0(zx)L��(zy − fλ ,K,Pε,z(zx))Φ(zx).

Thus

S(IFk+1(z; fλ ,K ,P)) = (k+1)
�
EP[IFk(z; fλ ,K ,P)(X)L��(Y − fλ ,K(X))Φ(X)]

− [IFk(z; fλ ,K ,P)(zx)L��(zy − fλ ,K(zx))Φ(zx)]

�
.

Since S is an invertible operator the result in Theorem 9.7 follows.

References
D.D. Boos and R.J. Serfling. A note on differentials and the CLT and LIL for statistical func-

tions. Annals of Statistics, 8:618–624, 1980.

O. Bousquet and A. Elisseeff. Stability and generalization. Journal of Machine Learning Re-
search, 2:499–526, 2001.

A. Christmann and I. Steinwart. On robust properties of convex risk minimization methods for
pattern recognition. Journal of Machine Learning Research, 5:1007–1034, 2004.

A. Christmann and I. Steinwart. Consistency and robustness of kernel based regression.
Bernoulli, 13:799–819, 2007.

M. Debruyne, A. Christmann, M. Hubert, and J.A.K. Suykens. Robustness and stability of
reweighted kernel based regression. Journal of Multivariate Analysis, 101:447–463, 2010.

217

DEBRUYNE HUBERT SUYKENS

E. DeVito, L. Rosasco, A. Caponnetto, M. Piana, and A. Verri. Some properties of regularized
kernel methods. Journal of Machine Learning Research, 5:1363–1390, 2004.

T. Evgeniou, M. Pontil, and T. Poggio. Regularization networks and support vector machines.
Advances in Computational Mathematics, 13:1–50, 2000.

L.T. Fernholz. Von Mises Calculus for Statistical Functionals. Lecture Notes in statistics 19,
Springer, New York, 1983.

F.R. Hampel, E.M. Ronchetti, P.J. Rousseeuw, and W.A. Stahel. Robust Statistics: The Ap-
proach Based on Influence Functions. Wiley, New York, 1986.

P.J. Huber. Robust Statistics. Wiley, New York, 1981.

S. Kutin and P. Niyogi. Almost everywhere algorithmic stability and generalization error. In
A. Daruich and N. Friedman, editors, Proceedings of Uncertainty in AI. Morgan Kaufmann,
Edmonton, 2002.

T. Poggio, R. Rifkin, S. Mukherjee, and P. Niyogi. General conditions for predictivity in learn-
ing theory. Nature, 428:419–422, 2004.

J.A.K. Suykens, J. De Brabanter, L. Lukas, and J. Vandewalle. Weighted least squares sup-
port vector machines : Robustness and sparse approximation. Neurocomputing, 48:85–105,
2002a.

J.A.K. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor, and J. Vandewalle. Least Squares
Support Vector Machines. World Scientific, Singapore, 2002b.

A.N. Tikhonov and V.Y. Arsenin. Solutions of Ill Posed Problems. W.H. Winston, Washington
D.C., 1977.

G. Wahba. Spline Models for Observational Data. CBMS-NSF Regional Conference Series in
Applied Mathematics, SIAM, 1990.

218

Part IV

Ensemble Methods

Overview

Ensemble methods, to a large extent, circumvent the problem of hyperparameter selection, by
averaging the predictions of many models. In recent challenges we have organized, ensem-
ble methods always demonstrated excellent performances. The overall winner of both the
performance prediction challenge and the ALvsPK challenge (agnostic track), Roman Lutz,
uses a serial ensemble called Logitboost (see Fact sheet in Appendix B), a gradient-based
shallow tree-classifier “boosting” method, performing logistic regression. Boosting methods
are serial ensembles incorporating progressively classifiers, which reduce the residual error by
focusing on remaining misclassified examples. In contrast, “bagging” methods yield parallel
ensembles, all members of the ensemble being trained independently on a bootstrap sample
of the training data, drawn at random with replacement. In Chapter 10, Corine Dahinden re-
ports results obtained with Random Forest, an parallel ensemble method based on “bagging”
tree classifiers, which obtained fourth place overall in the performance prediction challenge. In
Chapter 11, Eugene Tuv, Alexander Borisov, George Runger, and Kari Torkkola propose a
combination of parallel and serial ensembles based on gradient tree boosting and on bagging
feature selection. The authors obtained eighth place in the performance prediction challenge
and second place in the ALvsPK challenge (agnostic track). In Chapter 12, Vladimir Nikulin
explores the methods of boosting and bagging with other predictors than decision trees,
including least-square kernel methods and naive Bayes and performs a rather extensive method
comparison. His methods allowed him to win first place in the ALvsPK challenge (prior knowl-
edge track).

221

222

Chapter 10

An Improved Random Forests Approach with Application to
the Performance Prediction Challenge Datasets
Corinne Dahinden DAHINDEN@STAT.MATH.ETHZ.CH

Seminar für Statistik
CH-8092 Zürich, Switzerland

Editor: Isabelle Guyon

Abstract
Random Forests is a popular ensemble technique developed by Breiman (2001) which yields
exceptional performance. These excellent results are achieved with little need to fine-tune
parameters. The method is computationally effective, does not overfit, is robust to noise and
can also be applied when the number of variables is much larger than the number of samples.
We propose a slightly modified Random Forests scheme, with cross-validation as a means for
tuning parameters and estimating error-rates. This simple and computationally very efficient
approach was found to yield better predictive performance on the WCCI 2006 Performance
Prediction Challenge datasets than many algorithms of much higher complexity.
Keywords: Random Forests, Ensemble Methods

10.1. Introduction
During the last couple of years, an overwhelming variety of new classification algorithms have
been developed. It was, and still is a rapidly evolving field, as the constant influx of new appli-
cations creates a need for novel prediction approaches. Many of these methods focus on special
cases, as for example in Bioinformatics, where the small m - large n phenomenon, i.e. many
features but few samples, drew a lot of attention. Just for this particular application, dozens
of algorithms are praised to perform well, but the existence of so many possible classifiers also
makes it hard to keep track and choose the best one. That said, neither is there a widely accepted
consensus on a method that performs well on a wide range of problems from different appli-
cations. Of course we cannot expect a single algorithm to work optimally on all conceivable
applications and moreover, tuning and tailoring classifiers for a special task at hand is difficult,
and mostly requires laborious human interaction. Nevertheless, we regard it as desirable to have
an algorithm with relatively few hyperparameters, a minimal requirement of human input, good
predictive performance on a wide array of datasets from different fields and low computational
cost.

As far as predictive performance is concerned, in recent years, a number of works have re-
ported that ensembles of base learners exhibit substantial performance improvement over single
base learners. The resulting classifiers, referred to as ensemble classifiers, are the aggregation
of classifiers whose individual decisions are combined by weighted or unweighted voting to
classify new samples. Bagging (Breiman, 1996) and Boosting (Freund and Schapire, 1996) are
well-known and popular representatives of this methodology.

© C. Dahinden.

DAHINDEN

While examining the datasets for the WCCI 2006 Performance Prediction Challenge, we
tried a number of different algorithms and observed that ensemble techniques outperformed
other methods by far.

It might be surprising that our final decision fell on a relatively simple algorithm, namely
Random Forests (Breiman, 2001) with small adaptations. This method performs very well, if
not best, on all five datasets of the Challenge which were our test datasets. Random Forests has
shown its success on many applications, and was a very strong competitor in the NIPS 2003
Challenge as well (Saffari, 2006).

10.2. Algorithm
We put our main focus on finding a classifier with good predictive power in the first instance
and estimated the prediction performance simply by cross-validation.

Predictive power is measured in terms of the balanced error rate (BER) which is the average
of the error rates in each class. The datasets under consideration have binary response variables
yk ∈ {−1,1},k ∈ {1, . . . ,m} and the response vector is denoted by Y . The input variables are
stored in a matrix X ∈ Rm×n. The rows consist of the m samples xk ∈ Rn and the columns of
the n different variables. A new observation to be classified is denoted by x ∈ Rn. We apply
Random Forests, an ensemble method, that combines the output from multiple base learners to
improve the performance by using their weighted outcome to predict new data. It can easily
handle large numbers of input variables and provides an importance measure for each variable,
making it also suitable for variable selection.

10.2.1. Classification and Regression Trees – CART

Random Forests are made up of an ensemble of decision trees. A prominent method for fit-
ting trees is CART, an acronym for Classification and Regression Tree (Breiman et al., 1984).
Trees are iteratively built by recursively partitioning the data into regions R1, . . . ,RM , so-called
nodes. The procedure is graphically displayed on the basis of a two-dimensional feature space
in Figures 10.1 and 10.2 below. The decision which node Rt is further split at which variable
j depends on the value of a specific splitting criteria, a so-called impurity measure. For clas-
sification, CART uses the Gini-index as impurity measure. For binary response variables, the
Gini-index at a node Rt is calculated by the following expression:

IG(t) =
2

∑
i=1

p̂ti(1− p̂ti),

where p̂ti is the probability of class i estimated from the samples in node t, e.g. if the node
Rt represents a region with Nt observations, p̂ti =

1
Nt

∑xi∈Rt I(yi = i) is the estimation of this
probability. At each step in the algorithm, the node Rt is split at the variable j and split point s
into a pair of half-planes, so-called subnodes RtL = {x ∈ Rt |x j ≤ s} and RtR = {x ∈ Rt |x j ≥ s}.
The variable j and the split point s are chosen to maximize the decrease in Gini-index. The
decrease in the Gini-index due to a split on variable j and node t is

∆IG(x j, t) = IG(t)− p̂tLIG(tL)− p̂tRIG(tR).

To prevent the decision tree from overfitting the data, the growth of the tree has to be halted at
a predefined stopping criterion or alternatively, the tree can be grown to maximum depth and
then pruned. To illustrate the procedure, we assume a two-dimensional feature space. First,
the feature space is divided into two rectangles R1 and R2 at the split point s1 (see left side of

224

10. AN IMPROVED RANDOM FORESTS APPROACH

Figure 10.1). The feature space is then recursively partitioned into a set of rectangles R1 . . .R5
(see right side of Figure 10.1). The final model can be graphically represented in a tree repre-
sentation such as can be seen in Figure 10.2.

R R2 1 2

11s x

x R1

1

R2

R

R

R4
3

5

1s x s

s

s
x

4

3

2
2

Figure 10.1: Left: The first split is performed at variable x1 at split point s1 and the feature
space is divided into two rectangles R1 and R2. Right: Recursive partition of
feature space in a set of rectangles.

1

2> 1

2

> s

>s

x

x >s
x

x 3

4

s2

1

R2R1 R3
R4 R5

Figure 10.2: Tree representation of the final CART model.

For classifying a new observation, the input vector is put down the tree. This means that
we check to which rectangle R j the new observation belongs to (see e.g. Figure 10.2). Within
that rectangle the classification is performed by majority voting. This means that the most
frequent label within that rectangle is assigned to the new observation. A more comprehensive
description on how to build classification trees is given in Breiman et al. (1984).

10.2.2. Random Forests

Random Forests grows a number of such classification trees. Each tree is grown as follows:

1. A tree of maximal depth is grown on a bootstrap sample of size s of the training set. This
means that we sample s observations with replacement from the training set and fit a tree
using this so-called bootstrap sample. No pruning is performed.

225

DAHINDEN

2. A number s which is much smaller than the total number of variables s � n (typically√
n) is specified, such that at each node, s variables are sampled at random out of the n.

The best split on these variables is used to split the node into two subnodes.

The final classification is given by majority voting of the ensemble of trees in the forest. In
contrast to bagging, an additional layer of randomness is included in step 2 of the algorithm
above. Instead of just constructing trees of different bootstrap samples, step 2 changes the way
the individual trees are constructed, namely at each node the splitting variable is not chosen
among all variables but the best possible split among a random subset of variables is performed.

For our calculations we used the statistical software R (see R Development Core Team,
2007) and the package randomForest by Liaw and Wiener (2002). There are basically two
tuning parameters to adjust for in the Random Forests function in R: The number of trees to
grow and the number of possible splitting variables which are sampled at each node. However,
as is mentioned in Liaw and Wiener (2002), we have also observed that the sensitivity to those
is minimal and the default values are a good choice.

10.2.3. Adaptation of Random Forests

Our experience based on the application of Random Forests to the Performance Prediction Chal-
lenge datasets is that the method performs very well using the R implementation with default
values. It has also been shown on other datasets that Random Forests is superior to compared
classifiers (see for example Breiman, 2001). However, especially for very unbalanced datasets,
there is some potential for improvement, as we noticed while working on the Challenge datasets
and was also observed by others (see for example Dudoit and Fridlyand, 2002). Although Ran-
dom Forests has options to balance the error rates in unbalanced settings, that is either the
introduction of additional class weighting parameters or sampling techniques such as down-
sampling the majority class or over-sampling the minority class, the corresponding outputs did
not fully satisfy us. To improve the performance, we use a slight adaptation of the above algo-
rithm described below.

Random Forests assigns probabilities p̂i to observations. These are the probabilities that the
observation belongs the class i. These probabilities are calculated by the fraction of votes for
the corresponding class in the training data. Since the BER is used as performance measure,
erroneous prediction in the minority class is penalized harder than a misclassification in the
majority class. Therefore the cutoff is lower than 0.5, so that doubtful samples are more likely
assigned to the class with fewer observations. Theoretically, for unbiased probability estimates,
it is optimal to set the cutoff equal to the proportion of samples in the minority class, e.g. for the
Ada dataset, a sample is classified as +1 if p̂1 > 0.248, where 0.248 is the fraction of samples
belonging to the minority class. For reasonably balanced datasets, like Ada with a fraction of 1/4
belonging to the minority class, this works very well with standard Random Forests. However,
our experience is that for very unbalanced settings, it proves beneficial to assign an observation
to the minority class already at a lower cutoff than this proportion. We optimize this cutoff by
cross-validation (see Figure 10.3). This adaptation improves the cross-validated balanced error
rate for unbalanced datasets considerably, while the impact for balanced datasets is low (see
Figure 10.4 and Tables 10.1 and 10.2). The reason why this cutoff optimization is necessary
might be that Random Forests leads to biased probability estimates in very unbalanced settings.
To estimate the accuracy, 10-fold cross-validation is performed. One could also use the out-of-
bag samples (those which are left out while fitting the tree) to perform the cutoff-optimization
and then do cross-validation using the optimized cutoff. To estimate the performance prediction,
which was also part of the Challenge’s scope, we used this cross-validated estimation of the
error rate.

226

10. AN IMPROVED RANDOM FORESTS APPROACH

0.0 0.2 0.4 0.6 0.8

0.
30

0.
35

0.
40

0.
45

Cutoff

BE
R

Hiva Dataset

Cutoff proportional to classes
Optimized cutoff

0.0 0.2 0.4 0.6 0.8

0.
05

0.
10

0.
15

Cutoff
BE

R

Sylva Dataset

Cutoff proportional to classes
Optimized cutoff

Figure 10.3: Cross-Validated BER in dependence of the cutoff value for imbalanced datasets.

0.0 0.2 0.4 0.6 0.8

0.
20

0.
25

0.
30

Cutoff

BE
R

Ada Dataset

Cutoff prop. to classes
Optimized cutoff

0.0 0.2 0.4 0.6 0.8

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Cutoff

BE
R

Gina Dataset

Cutoff prop. to classes
Optimized cutoff

Figure 10.4: Cross-Validated BER in dependence of the cutoff value for balanced datasets.

227

DAHINDEN

10.3. Results
The results of the application of the standard Random Forests procedure without cutoff-adaptation
are summarized in Table 10.1. Table 10.2 yields the results with cutoff-adaptation. Cutoff stands
for the estimated optimal cutoff, calculated by cross-validation. In a second cross-validation
step on the training set, the estimation for the error rate CV BER is calculated with the cutoff
delivered by the first cross-validation. In addition, for the Nova dataset which originally in-
cludes 16969 features and 1754 samples, we reduced the feature dimensionality to 400 by just
using the first 400 principal components. For the other datasets, no preprocessing was needed.
We used 4000 trees for all datasets. As far as computing time is concerned, it took approx-
imately 2 minutes to fit the Random Forests model to the Ada dataset with 48 features and
4147 observations and 2 hours to fit the forest to the Hiva dataset with 1617 features and 3845
observations. The calculations were made on a dual core AMD Opteron 2.6 GHz with 32 GB
RAM.

Table 10.1: Results without
cutoff-adaptation.

Dataset CV
BER

BER on
test set

Ada 0.174 0.191
Gina 0.056 0.049
Hiva 0.272 0.291
Nova 0.083 0.084
Sylva 0.0191 0.0250

Table 10.2: Results with cutoff-adaptation.

Dataset Theoretical
Cutoff

Estimated
Cutoff

CV
BER

BER on
test set

Ada 0.248 0.20 0.165 0.180
Gina 0.492 0.46 0.049 0.041
Hiva 0.035 0.13 0.270 0.299
Nova 0.285 0.34 0.053 0.053
Sylva 0.062 0.19 0.0065 0.0054

One can clearly see the improvement of the cross-validated error rate, if the cutoff is opti-
mized. In addition, the balanced error rate on the test set is listed. The number of samples in
the test set is approximately ten times the sample size of the training set.

In addition, in Table 10.3 our results are directly compared to the Challenge’s best entries.
We clearly see that the adapted Random Forests procedure works fairly well on all dataset.
Even though it has no top ranking entry, its performance seems to be good for a wide range of
problems without further individual dataset adaptations.

10.4. Conclusions
Our research in the course of the WCCI 2006 Performance Prediction Challenge, left us with
the experience that Random Forests seems to keep up even with the most sophisticated algo-
rithms, as far as the predictive performance is concerned. Applying plain standard Random
Forests to the five WCCI 2006 Performance Prediction Challenge datasets leads to very com-
petitive prediction results. However, we suggest a novel extension where the cutoff parameter
is tuned by cross-validation, instead of just using a fixed threshold that is proportional to the
fraction of samples in the minority class. The tuning is done by cross-validation and can be
fully automated. We have shown that this leads to a considerable performance improvement on
the Challenge datasets, especially for very unbalanced data. In addition, Random Forests only
requires small computing efforts, can deal with many input variables and only needs a minimum
of human interaction in the fitting process to perform well.

228

10. AN IMPROVED RANDOM FORESTS APPROACH

Table 10.3: Comparison of our best entries with the Challenge’s best entries.

Dataset
Our best entry

Test
AUC

Test
BER

BER
guess

guess
error

Test score
rank

Ada 0.8200 0.1800 0.1650 0.0150 0.1950 (16)
Gina 0.9587 0.0413 0.0490 0.0077 0.0490 (17)
Hiva 0.7009 0.2994 0.2700 0.0294 0.3284 (32)
Nova 0.9470 0.0530 0.0530 0.0000 0.0530 (15)
Sylva 0.9946 0.0054 0.0065 0.0011 0.0065 (3)
Overall 0.8842 0.1158 0.1087 0.0106 16.6

Dataset
The Challenge’s best entry

Test
AUC

Test
BER

BER
guess

guess
error

Test score
rank

Ada 0.9149 0.1723 0.1650 0.0073 0.1793 (1)
Gina 0.9712 0.0288 0.0305 0.0017 0.0302(1)
Hiva 0.7671 0.2757 0.2692 0.0065 0.2797 (1)
Nova 0.9914 0.0445 0.0436 0.0009 0.0448 (1)
Sylva 0.9991 0.0061 0.0060 0.0001 0.0062 (1)
Overall 0.8910 0.1090 0.1040 0.0079 6.2

Acknowledgments
I would like to thank Professor Peter Bühlmann for the encouragement and the helpful com-
ments.

References
Leo Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.

Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

Leo Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regression
Trees. Statistics/Probability Series. Wadsworth Publishing Company, Belmont, California,
U.S.A., 1984.

Sandrine Dudoit and Jane Fridlyand. Statistical Analysis of Gene Expression Microarray Data,
chapter Classification in microarray experiments. CRC Press, 2002.

Yoav Freund and Robert E. Schapire. Experiments with a new boosting algorithm. In Interna-
tional Conference on Machine Learning, pages 148–156, 1996.

Andy Liaw and Matthew Wiener. Classification and regression by randomforest. R News, 2(3):
18–22, 2002. URL http://CRAN.R-project.org/doc/Rnews/.

R Development Core Team. R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria, 2007. URL http://www.
R-project.org. ISBN 3-900051-07-0.

229

http://CRAN.R-project.org/doc/Rnews/
http://www.R-project.org
http://www.R-project.org

DAHINDEN

Amir Saffari. Variable Selection using Correlation and Single Variable Classifier Methods:
Applications, chapter Feature Extraction: Foundations and Applications, pages 343–358.
Springer-Verlag, 2006.

230

Journal of Machine Learning Research 10(Jul):1341–1366, 2009 Submitted 5/08; Revised 3/09; Published 6/09

Chapter 11

Feature Selection with Ensembles, Artificial Variables, and
Redundancy Elimination
Eugene Tuv EUGENE.TUV@INTEL.COM
Intel, Logic Technology Development
Chandler, AZ, USA

Alexander Borisov ALEXANDER.BORISOV@INTEL.COM
Intel, Logic Technology Development
N.Novgorod, Russia

George Runger RUNGER@ASU.EDU
Arizona State University
Tempe, AZ, USA

Kari Torkkola KARITO@AMAZON.COM

Amazon.com
Seattle, WA, USA

Editor: Isabelle Guyon and Amir Reza Saffari

Abstract
Predictive models benefit from a compact, non-redundant subset of features that improves inter-
pretability and generalization. Modern data sets are wide, dirty, mixed with both numerical and
categorical predictors, and may contain interactive effects that require complex models. This is
a challenge for filters, wrappers, and embedded feature selection methods. We describe details
of an algorithm using tree-based ensembles to generate a compact subset of non-redundant fea-
tures. Parallel and serial ensembles of trees are combined into a mixed method that can uncover
masking and detect features of secondary effect. Simulated and actual examples illustrate the
effectiveness of the approach.
Keywords: trees, resampling, importance, masking, residuals

11.1. Introduction
Large data sets are becoming the norm and traditional methods designed for data sets with
a modest number of features will struggle in the new environment. This problem area was
described by Guyon and Elisseeff (2003) along with other publications in the same issue, and it
has increased in importance since then. Additional comments and examples have been provided
by Liu and Yu (2005) in a recent survey article.

11.1.1. Feature Selection

There are three major categories of feature selection methods. Filter methods score variables,
typically individually, and eliminate some before a model is constructed. The filter needs to be
generated carefully to relate well to the requirements of the modeling task. In particular, the
filter may not consider the value of one variable in the presence of others. For example, the
widely-used value difference metric (VDM) (Stanfill and Waltz, 1986) and its modified version

© 2009 E. Tuv, A. Borisov, G. Runger & K. Torkkola.

TUV BORISOV RUNGER TORKKOLA

(MVDM) (Cost and Salzberg, 1993) consider the conditional probability distribution of the
response at a predictor value. Such a measure is not sensitive to the effects of some predictors
in a model with others present even though interactions among predictors might be critical
for an effective subset. A sequential, subset search is sometimes implemented to improve the
performance when interactions are important, although a greedy search also has disadvantages
in the presence of interactions. Several common filter methods such as ReliefF (Robnik-Sikonja
and Kononenko, 2003), CFS (Hall, 2000), and FOCUS (Almuallin and Dietterich, 1994) were
modified with sequential search and compared by Yu and Liu (2004).

Wrapper methods form a second group of feature selection methods. The prediction ac-
curacy (or the change in accuracy) of a model directly measures the value of a feature set.
Although effective, the exponential number of possible subsets places computational limits for
the wide data sets that are the focus of this work.

Embedded methods form a third group for feature selection. These methods use all the
variables to generate a model and then analyze the model to infer the importance of the vari-
ables. Consequently, they directly link variable importance to the learner used to model the
relationship.

11.1.2. Subset Feature Selection

Fundamentally, the goal of feature selection is to model a target response (or output) variable y,
with a subset of the (important) predictor variables (inputs). This is a general goal and several
more specific objectives can be identified. Each can lead to different strategies and algorithms.
In filtering the interest is to remove irrelevant variables. Another objective is variable ranking
where the interest is in obtaining relative relevance for all input variables with respect to the
target. Finally, we might be interested in a compact, yet effective model, where the goal is to
identify the smallest subset of independent features with the most predictive power, although
a few alternative groups might be reasonable. An important concept here is the masking re-
lationships among the predictor variables. Masking occurs when one variable can effectively
represent others in a model. Along with the related issue of masking, this paper focuses on the
subset selection.

11.1.3. Contributions of this Paper

Existing tree ensembles such as random forest (Breiman, 2001) or gradient boosting trees
(Friedman, 1999) were developed primarily for predictive modeling. In addition, they can pro-
vide an importance ranking of the features, but this information has been considered an ad hoc
benefit. Random forest (RF) is a random subspace method, and is capable of efficiently ranking
features for large data sets. We exploit this property of RF, augment the original data with ar-
tificial contrast variables constructed independently from the target, and use their ranking for
removal of irrelevant variables from the original set. The tree construction method is also mod-
ified to produce a more reliable variable ranking in the presence of high cardinality variables.
A variable masking measure is then introduced that incorporates surrogate variable scores from
ensembles of trees. This forms the basis for redundancy elimination. Residual effects are cal-
culated to enable the method to detect variables of secondary importance. These elements are
integrated into an efficient algorithm for subset selection called ACE (artificial contrasts with
ensembles).

The structure of this paper is as follows. In Section 11.2 we describe previous work and out-
line directions taken in this paper. Section 11.3 describes variable importance measures defined
through tree ensembles and explains how they could be used to remove irrelevant features using
random, artificial features. Next, we introduce a masking measure and use it for redundancy

232

11. FEATURE SELECTION WITH ENSEMBLES

elimination. Section 11.4 describes the details of the ACE algorithm to generate the selected
subset, and compares ACE with its closest competitors in detail. Section 11.5 provides results
from experiments. Section 11.6 provides conclusions.

11.2. Background
This section defines the problem of finding the best subset of features, discusses previous ap-
proaches, and outlines our solution.

11.2.1. Markov Boundaries

Let F be a full set of features. A feature selection solution can be described in terms of a Markov
blanket (Koller and Sahami, 1996). Given a target feature Y , let M ⊂ F and Y /∈ M. M is said
to be a Markov blanket for Y if Y⊥(F −M)|M. That is, Y is conditionally independent of other
features given M. A minimal Markov blanket is referred to as Markov boundary (MB) and such
a subset might be considered a feature selection solution. However, an important issue is that
a MB need not be unique. Redundant features can replace others in a feature subset. Usually
feature redundancy is defined in terms of feature correlation (Hall, 2000). For example, two
features are redundant to each other if their values are completely correlated. In reality, it is not
so straightforward to determine feature redundancy if a feature is partially correlated to a set of
features.

Our goal is to focus on the important case with redundant features and obtain at least one
MB. In most real-life problems exactly determining the MB or measuring feature relevance is
very difficult because of a limited sample size, high time complexity, and noise in the data.
Furthermore, evaluation of the distribution of the input variables and the response always relies
on some model (linear, support vector machine, frequency tables, trees, etc.). In practice, most
algorithms just try to remove irrelevant features and then apply some heuristics that remove
“possibly" redundant variables.

11.2.2. Existing Approaches in Feature Selection

The nature of real life data sets provides strong restrictions for model fitting and feature selection
methods. First, data sets may be very large both in terms of the number of predictors and in
the number of samples (tens of thousands × tens of millions). Second, the predictors and the
response can be of mixed type (both numeric and categoric), and can contain missing values.
Lastly and also very importantly, dependency of the response on predictors can be highly non-
linear, noisy and multivariate.

This leaves most existing methods out of scope for such problems. For example, wrapper
methods (forward selection or backward elimination) are simply computationally unfeasible
when dealing with thousands of predictors. Filter methods are also useless for the minimal
subset selection problem, as they do not deal with the notion of redundancy and most of them are
inherently univariate. However, there are filters that use a “local” feature importance measure
(like RELIEF) that can be considered multivariate (Kira and Rendell, 1992), but still they do not
deal with redundancy giving just a ranked list of features instead of a selected minimal subset.

Subset evaluation filter methods such as CFS (Hall, 2000) are neither suitable because they
do not deal explicitly with redundancy, and have to iterate over many feature subsets incurring
a high time complexity. For example, the time complexity of the CFS is at least quadratic in the
number of features and linear in number of samples. Also CFS is highly sensitive to outliers as
it uses correlations between features.

233

TUV BORISOV RUNGER TORKKOLA

Many embedded methods that use a built-in feature relevance measurement, such as SVM-
RFE (Guyon et al., 2002) and linear regression with backward feature elimination are heavily
dependent on the model (linear or SVM), that can fail to fit the data well. These methods have
at least quadratic complexity in the number of samples for fitting an SVM and at least cubic
complexity in the number of features (O(nm2+m3), where m is the number of features, and n is
number of samples) for fitting a regression model. Data sets with tens of thousands of features
or samples become very time consuming and impractical to handle. For example, SVM-RFE
involves retraining the SVM after features with smallest relevance are removed, thus incurring
at least cubic complexity in number of samples (O(max(m,n)n2)).

An issue that discourages using regression methods and methods that rely on some kind of
distance measure between observations (linear regression, SVM, Kernel-based methods, RE-
LIEF) is the difficulty of dealing with outliers in the input (predictor) space. Also, selection of
important model parameters (kernel width and type, feature relevance thresholds, etc) is non-
obvious, and the results of feature selection depend heavily on them.

Most methods return just a ranked list of features instead of an optimal subset. These meth-
ods include RELIEF, Koller’s Markov blanket based backward elimination (referred to here as
MBBE) (Koller and Sahami, 1996), and SVM-RFE. Some methods such as FCBS use a rel-
evance threshold that is not clear how to adjust (Yu and Liu, 2004). In reality, the user also
obtains a number of feature subsets corresponding to different values of parameters without a
hint of how to choose the best subset.

Many methods work with frequency tables. They can thus deal well with categorical inputs
only. For numerical inputs, they require discretization. Such methods are not always able to
deal with interacting variables and have great difficulties with multivariate dependencies on
numerical inputs. Examples of such methods are FCBS and MBBE. These two algorithms
need discretization because they use an entropy measure computed on frequency tables. If the
number of categories is large, or if we use frequency tables with more than two inputs, the
tables can be sparse and may not represent the data distribution well. Another issue for MBBE
is computational complexity. Considering all feature pairs incurs a quadratic complexity on the
number of features.

Hence we see that most methods at hand are either not applicable at all to the best subset
selection problem, or have some major problems. The most useful methods in such a setting
(that appeared to be applicable to the examples of large “real-life” data in the challenge data
sets discussed in Section 11.5.3) are methods based on backward feature elimination using an
approximate Markov blanket concept (Koller and Sahami, 1996; Yu and Liu, 2004). Our method
approximates the optimal Markov blanket redundancy elimination procedure, but without most
of the drawbacks of previous methods.

11.2.3. Towards Efficient and Approximately Optimal Feature Selection

We propose a method that uses an idea similar to those proposed by Koller and Sahami (1996)
and Yu and Liu (2004) that tries to overcome their limitations. It does not have quadratic time
complexity in the number of features, can deal with thousands of predictors, uses a model
(ensembles of trees) that can be applied to mixed variable types, thus eliminating need for
discretization of numeric inputs, does not require imputation of missing values, captures local
information (like RELIEF), is invariant to a monotone transformation of inputs, thus not very
sensitive to noise and outliers, and deals well with multivariate dependencies.

It is well known that trees and especially ensembles of trees can provide robust and accurate
models in “real-life” data settings. They handle mixed and noisy data, and are scale insensitive.

234

11. FEATURE SELECTION WITH ENSEMBLES

Ensembles of trees have high predictive power and are resistant to over-fitting (Breiman, 2001).
Our approach relies heavily on ensembles of trees.

First, we find irrelevant features that are conditionally independent of the response given
the rest of the features. It is accomplished by comparing the relevance of the original variables
with the relevance of random, artificial features (appended to the original data) constructed
from the same distribution, but independently from the response. These features are referred to
as artificial contrasts. We measure feature relevance as variable importance in random forests
with a modified robust splitting criteria. We assume that if an original variable had a relevance
score not statistically higher than that of an artificial probe (independent from the target by
construction) then it is also independent from the target, irrelevant, and should be removed. Note
that we try to remove irrelevant features by directly assessing conditional independence without
searching for a MB, the existence of which is a much stronger requirement. Although the idea
of artificial contrasts was already used by other researchers in simple filter methods with success
(Stoppiglia et al., 2003), its application to tree ensembles is novel and promising. Actually, our
approach can be considered as non-parametric because all parameters in our algorithm can be
assigned reasonable default values that work well for wide range of problems.

Then the redundant feature elimination step is performed. Redundancy between features
is measured using surrogate scores. The variable with the largest impurity reduction score
at a node is the primary splitter. If surrogate variables (ones that partition the node in same
way as the primary variable) are present, these surrogate variables are considered as “masked”.
Masking scores between all pairs of important variables are computed and evaluated using a
statistical test, and variables masked by more important variables (“approximately redundant”)
are removed iteratively.

Finally, after a set of non-redundant relevant features has been found, our method removes
the influence of the found subset with an ensemble and proceeds. Because redundancy elimi-
nation is approximate in nature this iterative approach is another advantage of our method. It
allows one to recover variables with small importance and to reduce the chance to lose important
variables during redundancy elimination.

11.3. Tree Ensembles for Feature Selection
For our embedded method, we focus on ensembles of decision trees for the following reasons.
Trees can be applied in ubiquitous scenarios so that they provide a good entry point for feature
selection for interdisciplinary, wide data sets. They apply to either a numerical or a categorical
response. They are nonlinear, simple and fast learners that handle also both numerical and
categorical predictors well. They are scale invariant and robust to missing values. A simple
decision tree also provides an embedded measure of variable importance that can be obtained
from the number and the quality of splits that are generated from a predictor variable. However,
a single tree is produced by a greedy algorithm that generates an unstable model. A small
change to the data can result in a very different model. Consequently, ensemble methods have
been used to counteract the instability of a single tree.

Supervised ensemble methods construct a set of simple models, called base learners, and
use their weighted outcome (or vote) to predict new data. That is, ensemble methods combine
outputs from multiple base learners to form a committee with improved performance. Numer-
ous empirical studies confirm that ensemble methods often outperform any single base learner
(Freund and Schapire, 1996; Bauer and Kohavi, 1999; Dietterich, 2000a). The improvement
can be dramatic when a base algorithm is unstable. More recently, a series of theoretical de-
velopments (Bousquet and Elisseeff, 2001; Poggio et al., 2002; Mukherjee et al., 2006; Poggio
et al., 2004) also confirmed the fundamental role of stability for the generalization of a learning

235

TUV BORISOV RUNGER TORKKOLA

algorithm. More comprehensive overviews of ensemble methods were presented by Dietterich
(2000b) and Valentini and Masulli (2002). There are two primary approaches to ensemble con-
struction: parallel and serial.

A parallel ensemble combines independently constructed and diverse base learners. That
is, different base learners should make different errors on new data. An ensemble of such
base learners can outperform any single one of its components since diverse errors cancel
out (Hansen and Salamon, 1990; Amit and Geman, 1997). Parallel ensembles are variance-
reduction techniques, and in most cases, they are applied to unstable, high-variance algorithms
(such as trees). Also, Valentini and Dietterich (2003) showed that ensembles of low-bias sup-
port vector machines (SVMs) often outperformed a single, best-tuned, canonical SVM (Boser
et al., 1992).

Random forest (RF) is an exemplar for parallel ensembles (Breiman, 2001). It is an im-
proved bagging method (Breiman, 1996) that extends the “random subspace” method (Ho,
1998). It grows a forest of random decision trees on bagged samples showing excellent re-
sults comparable with the best known classifiers. A RF can be summarized as follows: (1)
Grow each tree on a bootstrap sample of the training set to maximum depth, (2) Given M pre-
dictors, select at random m < M variables at each node, and (3) Use the best split selected from
the possible splits on these m variables. Note that for every tree grown in RF, about one-third
of the cases are out-of-bag (out of the bootstrap sample). The out-of-bag (OOB) samples can
serve as a test set for the tree grown on the non-OOB data. We discuss later how OOB samples
can be used for feature selection.

In serial ensembles, every new learner relies on previously built learners so that the weighted
combination forms an accurate model. A serial ensemble algorithm is often more complex. It
is targeted to reduce both bias and variance. A serial ensemble results in an additive model
built by a forward-stagewise algorithm. The adaboost algorithm was introduced by Freund
and Schapire (1996). At every step of ensemble construction the boosting scheme adds a new
base learner that is forced (by iteratively reweighting the training data) to concentrate on the
training observations that are misclassified by the previous sequence. Boosting showed dramatic
improvement in accuracy even with very weak base learners (like decision stumps, single split
trees). Breiman (1998) and Friedman et al. (2000) showed that the adaboost algorithm is a form
of gradient optimization in functional space, and is equivalent to a forward-stagewise, additive
algorithm with the exponential loss function Ψ(y,F(x))= exp(−yF(x)) referred to as a gradient
boosted tree (GBT).

11.3.1. Relative Variable Importance Metrics

A single decision tree partitions the input space into a set of disjoint regions, and assigns a
response value to each corresponding region. It uses a greedy, top-down recursive partition-
ing strategy. At every step an exhaustive search is used to test all variables and split points to
achieve the maximum reduction in impurity. Therefore, the tree constructing process itself can
be considered as a type of variable selection (a kind of forward selection, embedded algorithm),
and the impurity reduction due to a split on a specific variable indicates the relative importance
of that variable to the tree model (Breiman et al., 1984). For ensembles, the metric is averaged
over the collection of base learners. Note, that this relative importance automatically incor-
porates variable interaction effects thus being very different from the relevance measured by a
univariate filter method.

For a single decision tree the measure of variable importance is

V I(Xi,T) = ∑
t∈T

∆I(Xi, t), (11.1)

236

11. FEATURE SELECTION WITH ENSEMBLES

where ∆I(Xi, t) is the decrease in impurity due to an actual (or potential) split on variable Xi at a
node t of the optimally pruned tree T (Breiman et al., 1984). Node impurity I(t) for regression
is defined as ∑i∈t(yi − ȳ)2/N(t) where the sum and mean are taken over all observations i in
node t, and N(t) is the number of observations in node t. For classification I(t) = Gini(t) where
Gini(t) is the Gini index of node t defined as

Gini(t) = ∑
i�= j

pt
i pt

j,

and pt
i is the proportion of observations in t whose response label equals i (y = i) and i, j run

through all response class numbers. The Gini index is in the same family of functions as cross-
entropy =−∑i pt

i log(pt
i), and measures node impurity. It is zero when t has observations only

from one class, and is maximum when classes are perfectly mixed. The decrease ∆I(Xi, t)
computes the impurity at the node t and the weighted average of impurities at each child node
of t. The weights are proportional to the number of observations that are assigned to each child
from the split at node t so that ∆I(Xi, t) = I(t)− pLI(tL)− pRI(tR).

For an ensemble of M trees this importance measure is easily generalized. It is simply
averaged over the trees

E(Xi) =
1
M

M

∑
m=1

V I(Xi,Tm). (11.2)

The averaging makes this measure more reliable.
This split weight measure ∆I(Xi, t) in Equation (11.1) can be improved if OOB samples are

used. The split value for a variable is calculated using the training data as usual. However,
the variable selected as the primary splitter uses only the OOB samples. Also, the variable
importance measure is calculated from only the OOB samples. This provides a more accurate
and unbiased estimate of variable importance in each tree and improves the filtering of noise
variables.

Breiman (2001) also proposed a sensitivity based measure of variable relevance evaluated
by a RF. For a classification problem it is summarized as follows: (1) Classify the OOB cases
and count the number of votes cast for the correct class in every tree grown in the forest, (2)
randomly permute the values of variable m in the OOB cases and classify these cases down
the tree, (3) Subtract the number of votes for the correct class in the variable-m-permuted OOB
data from the original OOB data, and (4) Average this number over all trees in the forest to
obtain the raw importance score for variable m. Similar ideas were presented by Parmanto et al.
(1996) and a similar resampling strategy was successfully used in a more traditional model by
Wisnowski et al. (2003). The sensitivity measure is computationally expensive. Furthermore, it
does not account for masking, nor does it consider an iterative process with residuals (that we
describe in Section 11.4.2). Experiments by Tuv (2006) demonstrated that weaker but indepen-
dent predictors can rank higher than stronger, but related predictors. Also, related predictors
can all be identified as important. Neither of these results are desirable for a best subset model
and a more effective algorithm is described in Section 11.4.

With the importance measure (11.2) we can thus merely rank the variables. The following
two subsections discuss how to amend the ranking so that irrelevant variables can be reliably
detected, and how the redundancies among the remaining relevant variables can then be handled.

11.3.2. Removing Irrelevant Features by Artificial Contrasts

Although an ensemble can be used to calculate a relative feature ranking from the variable
importance score in (11.2) the metric does not separate relevant features from irrelevant. Only a
list of importance values is produced without a clear indication which variables to include, and

237

TUV BORISOV RUNGER TORKKOLA

which to discard. Also, trees tend to split on variables with more distinct values. This effect
is more pronounced for categorical predictors with many levels. It often makes a less relevant
(or completely irrelevant) input variable more “attractive” for a split only because it has high
cardinality.

The variable importance score in (11.2) is based on the relevance of an input variable to the
target. Consequently, any stable feature ranking method should favor a relevant input Xi over an
artificially generated variable with the same distribution as Xi but generated to be irrelevant to
the target. That is, a higher variable importance score is expected from a true relevant variable
than from an artificially generated contrast variable. With sufficient replicates in an analysis
one can select important variables from those that have statistically significantly higher variable
importance scores than the contrast variables (Tuv et al., 2006). Here, these contrast variables
are integrated into a subset algorithm. We discuss this in detail in Section 4.

Also, artificial contrasts can be applied to masking discussed in the next subsection. Given
a selected subset of relevant variables, one computes the masking scores of all variables by
elements of this subset, and the masking of contrast variables by this subset. Masking scores
statistically higher than the contrast variables are considered to be real masking. Variables
that are masked are dropped from the relevant subset list over a sequence of iterations of the
algorithm.

11.3.3. Masking Measures

An important issue for variable importance in tree-based models is how to evaluate or rank
variables that were masked by others with slightly higher splitting scores, but could provide as
accurate a model if used instead. One early approach in the CART methodology used surrogate
splits (Breiman et al., 1984). The predictive association of a surrogate variable Xs for the best
splitter X∗ at a tree node T is defined through the probability that Xs predicts the action of X∗

correctly and this is estimated as

p(Xs,X∗) = pL(Xs,X∗)+ pR(Xs,X∗),

where pL(Xs,X∗) and pR(Xs,X∗) define the estimated probabilities that both Xs and X∗ send
a case in T left (right). The predictive measure of association λ (X∗|Xs) between split Xs and
primary split X∗ is defined as

λ (X∗|Xs) =
min(πL,πR)− [1− p(Xs,X∗)]

min(πL,πR)
,

where πL,πR are the proportions of cases sent to the left(or right) by X∗. It measures the relative
reduction in error (1− p(Xs,X∗)) due to using Xs to predict X∗ as compared with the “naive”
rule that matches the action with max(πL,πR) (with error min(πL,πR)). If λ (X∗|Xs)< 0 then Xs

is disregarded as a surrogate for X∗. Sometimes a small, nonnegative threshold is used instead.
The variable importance sum in Equation (11.1) is taken over all internal tree nodes where Xi
is a primary splitter or a surrogate variable (λ (X∗|Xi) > 0 for a primary splitter X∗). Often a
variable that does not appear as a primary splitter in a tree is still ranked high on the variable
importance list constructed using surrogate variables.

We extend the surrogate concept to define a masking score as follows. Variable i is said to
mask variable j in a tree, if there is a split in variable i in a tree with a surrogate on variable j.
We define the masking measure for a pair of variables i, j in tree T as

Mi j(T) = ∑
{t∈T |split on Xi}

w(Xi, t)λ (Xi|Xj),

238

11. FEATURE SELECTION WITH ENSEMBLES

where w(Xi, t) = ∆I(Xi, t) is the decrease in impurity from the primary split on variable Xi, and
summation is done over the nodes where primary split was made on variable Xi. Here we take
into account both the similarity between variables Xi,Xj at the node, and the contribution of
the actual split of variable Xi to the model. For an ensemble the masking measure is simply
averaged over the trees. Note that in general the measure is not symmetric in the variables. One
variable may mask several others, but for a single selected masked variable the reverse may not
be true.

11.4. Algorithm: Ensemble-Based Feature Selection with Artificial
Variables and Redundancy Elimination

We now integrate the previously described concepts and metrics into a subset selection algo-
rithm. The fundamental steps outlined in Section 2.3 consist of using the advantages of a paral-
lel ensemble to detect important variables among potentially a very large feature set, using the
advantages of a serial ensemble to de-mask the important variables, and calculating residuals
and repeating in order to recover variables of secondary importance.

Within the algorithm, artificial contrast variables are re-generated a number of times. Then
the significance from a paired t-test over the replicates is used to identify important variables and
masked variables. Essentially the t-test is used to define thresholds for selection and masking.
These thresholds could also be set as tunable parameters. An advantage of the statistical test is
that the significance of selected variables relative to noise can be quantified.

11.4.1. Algorithm Details

1. Identify Important Variables: Artificially generated noise variables are used to deter-
mine a threshold to test for statistically significant variable importance scores. The test is
used to remove irrelevant variables. Details are presented in the displayed algorithms and
further described as follows.

In each replicate r, r = 1,2, . . . ,R artificial variables are constructed as follows. For every
real variable Xj j = 1,2, . . . ,M a corresponding artificial variable Z j is generated from a
random permutation. Then in each replicate a small RF is trained and variable importance
scores are computed for real and artificial variables. The scores from each replicate r are
compiled into the rth row of a matrix V R× 2M. Furthermore, the 1−α percentile of
the importance scores in replicate r is calculated from only the artificial variables. This
is denoted as vr and the vector of percentiles over the R replicates is v R× 1. For each
real variable Xj a paired t-test compares importance scores for Xj (obtained from the
jth column of V) to the vector of scores v. A test that results in statistical significance
identifies an important variable.

Significance is evaluated through a suitably small p-value. The use of a p-value requires
a feature to consistently score higher than the artificial variables over multiple replicates.
Furthermore, this statistical testing framework also allows any method to control false se-
lections to be applied. We routinely use the Bonferroni adjustment, but a false discovery
rate approach is also reasonable. Each replicate uses a RF with L = 20-50 trees to score
the importance of the original and artificial noise variables. Also, the split weight calcu-
lation for variable importance in (11.2) only uses OOB samples as described previously.

2. Calculate Masking Scores: A masking matrix is computed from independent replicates
in order to evaluate the statistical significance of masking results. Suppose there are m
important variables from step 1. For similar reasons as in the previous step, replicates

239

TUV BORISOV RUNGER TORKKOLA

and noise variables are used to detect masking among the relevant variables. These are
currently the same replicates that are used for variable importance. A set of R independent
GBT models are generated each with L = 10-50 trees. Note that all variables are tested
in each node in each tree in a serial ensemble. Therefore, richer, more effective masking
information is obtained from a serial ensemble than from a random subspace method
like RF. In these calculations, the surrogate scores and the split weights are calculated
from the OOB samples as in the previous step. Let Mr

i, j denote the masking score for
variables Xi and Xj from the ensemble in replicate r, for r = 1,2, . . . ,R. Also, let Mr

i,α
denote the (1−α)-percentile of the masking score in replicate r from the distribution of
scores between variable Xi and the noise variables. That is, Mr

i,α denotes the (1−α)-
percentile of Mr

i, j for j = m+ 1, . . . ,2m. Similar to the check for variable importance, a
paired t-test compares the masking score between variables (Xi,Xj) with masking score
Mr

i,α computed from the noise variables. There is a significant masking between variables
(Xi,Xj) if the paired t-test is significant. Variable Xj is masked by variable Xi if the test is
significant.

3. Eliminate Masked Variables: Masked variables are removed from the list of important
variables as follows. Given a list of important variables upon entry to this step, the vari-
ables are sorted by the importance score calculated in step 2. The most important variable
is added to an exit list, and dropped from the entry list. Assume this is variable Xi. All
variables that are masked by Xi are dropped from the entry list. This is repeated until the
entry list is empty. The exit list represents the unmasked important variables.

4. Generate Residuals for Incremental Adjustment: An iteration is used to enhance the
ability of the algorithm to detect variables that are important, but possibly weaker than
a primary set. Given a current subset of important variables, only this subset is used to
predict the target. Residuals are calculated and form a new target. For a numerical target
the residuals are simply the actual minus the predicted values. For a classification problem
residuals are calculated from a multiclass logistic regression procedure (Friedman et al.,
2000). We predict the log-odds of class probabilities for each class (typically GBT is
used), and then take pseudo residuals as summarized in the following multi-class logistic
regression algorithm. The algorithms are described using the notation in Table 11.1.

The iterations are similar to those used in forward selection. See, for example, Stop-
piglia et al. (2003). The Gram-Schmidt procedure first selects the variable with highest
correlation with the target. To remove the information from this variable the remaining
predictors and the target are orthogonalized with respect to the selected variable. This
provides residuals from the fit of the target to the first selected variable. In the feature
selection method here we do not require orthogonal predictors, but we adjust the target
for the variables already selected through residuals. We also can select more than a sin-
gle variable in each iteration. The method also uses a conservative selection criterion
(Bonferroni adjustment) and the residuals allow a variable to enter on another iteration.
There are similar procedures used elsewhere in regression model building. Least angle
regression (Efron et al., 2004) and projection pursuit methods (Friedman et al., 1981) are
well known examples that use residuals in forward-stagewise modeling.

The algorithm returns to step 1 and continues until no variables with statistically significant
importance scores remain. The current subset of important variables is used for the prediction
model. Whenever step 1 is calculated, all variables are used to build the ensembles—not only
the currently important ones. This approach allows the algorithm to recover partially masked
variables that still contribute predictive power to the model. This can occur after the effect of

240

11. FEATURE SELECTION WITH ENSEMBLES

a masking variable is completely removed, and the partial masking is eliminated. The algo-
rithms for numerical (regression) and categorical (classification) targets are presented as Algo-
rithms 11.1 and 11.2. A separate Algorithm 11.3 describes the variable masking calculations.

Algorithm 11.1: Ensemble-Based Feature Selection, Regression

1. Set Φ ←{}; set F ←{X1, . . . ,XM}; set W = 0 (|W |= M).

2. for r = 1, . . . ,R do

3. {Z1, . . . ,ZM}← permute{X1, . . . ,XM}

4. set FP ← F ∪{Z1, . . . ,ZM}

5. rth row of V = Vr. = gI(FP,Y);
endfor

6. R×1 vector (element wise) v = Percentile1−α(V [·,M+1, . . . ,2M])

7. Set Φ̂ to those {Xj} for which element wise V. j > v
with specified paired t-test significance (0.05)

8. Set Φ̂ = RemoveMasked(Φ̂,W +gI(FP,Y))

9. If Φ̂ is empty, then quit.

10. Φ ← Φ∪ Φ̂;

11. Y = Y −gY (Φ̂,Y)

12. W (Φ̂) =W (Φ̂)+gI(Φ̂,Y)

13. Go to 2.

11.4.2. Comparison to Previous Work

Two earlier methods are closely related to ACE, FCBS (Yu and Liu, 2004) and MBBE (Koller
and Sahami, 1996). We compare our method in detail to these two methods. Because we
use a multivariate model (tree) instead of frequency tables, our method fits in the category of
embedded methods. This is unlike FCBS and MBBE that can be considered as correlation
filters, although Koller works with frequency tables of 2–5 variables.

FCBS first sorts features by correlation with the response using a symmetric uncertainty,
optionally removing the bottom of the list by a user-specified threshold, then

1. The feature most correlated to the response is selected.

2. All features that have correlation with the selected feature higher than it’s correlation with
response are considered redundant and removed. The feature is added to the minimal
subset (and this is an approximate heuristic for Markov blanket filtering).

3. Return to 1).

FCBS is similar in structure to our method, with the following important differences.

241

TUV BORISOV RUNGER TORKKOLA

Algorithm 11.2: Ensemble-Based Feature Selection, Classification

1. set Φ ←{}; Gk(F) = 0,Wk = 0

2. for k = 1, . . . ,K do

3. set V = 0.

4. for r = 1, . . . ,R do
{Z1, . . . ,ZM}← permute{X1, . . . ,XM}
set F ← X ∪{Z1, . . . ,ZM}
Compute class proportion pk(x) = exp(Gk(x))/∑K

l=1 exp(Gl(x))
Compute pseudo-residuals Y k

i = I(Yi = k)− pk(xi)
Vr. = Vr.+gI(F,Y k);

endfor

5. Element wise v = Percentile1−α(V [·,M+1, . . . ,2M])

6. Set Φ̂k to those {Xk} for which V.k > v
with specified paired t-test significance (0.05)

7. Set Φ̂k = RemoveMasked(Φ̂k,Wk +gI(F,Y k))

8. Φ ← Φ∪ Φ̂k;
for k = 1, ...,K do

9. Gk(F) = Gk(F)+gY (Φ̂k,Y k)

10. Wk(Φ̂k) =Wk(Φ̂k)+gI(Φ̂k,Y k)
endfor

endfor

11. If Φ̂k for all k = 1, . . . ,K is empty, then quit.

12. Go to 2.

242

11. FEATURE SELECTION WITH ENSEMBLES

Algorithm 11.3: RemoveMasked(F,W)

1. Let m = |F |.

2. for r = 1, . . . ,R do

3. {Z1, . . . ,Zm}← permute{X1, . . . ,Xm}

4. set FP ← F ∪{Z1, . . . ,Zm}

5. Build GBT model Gr = GBT (FP).

6. Calculate masking matrix Mr = M(Gr) (2m×2m matrix).
endfor

7. Set Mr
i,αm

= Percentile1−αm(Mr[i,m+1, . . . ,2m]), r = 1, . . . ,R

8. Set M∗
i j = 1 for those i, j = 1 . . .m for which Mr

i j > Mr
i,αm

, r = 1, . . . ,R
with specified paired t-test significance (0.05), otherwise set M∗

i j = 0

9. Set L = F,L∗ = {}.

10. Move Xi ∈ L with i = argmaxi Wi to L∗.

11. Remove all Xj ∈ L from L, for which M∗
i j = 1.

12. Return to step 10 if L �= {}.

1. We use tree importance instead of univariate correlation with the response. This makes
ACE much more robust and accurate.

2. We use a surrogate masking measure instead of correlation. This takes the response into
account, not only the correlations between inputs. No arbitrary thresholds for correlation
are used.

3. We compute residuals to find smaller effects reducing the chance to drop a non-redundant
feature.

Koller’s MBBE works as follows:

1. For each feature Xi, find the set Mi of K features (K = 1− 4) that are most correlated to
it. (That is, which provide little information on the response when added to the selected
feature in frequency table models.) Additional information is measured as KL-distance
(Kullback and Liebler, 1951) D(P(y|Xi,Xj),P(y|Xi)). The set Mi is called the approx-
imate Markov blanket for feature Xi. The authors state that K = 1− 2 gives the best
results.

2. For each feature compute the relevance score δi = D(P(y|Mi,Xi),P(y|Mi)). This repre-
sents the additional information it brings when added to its approximate Markov blanket,
and remove features that have the smallest relevance scores (i.e., most redundant).

3. Repeat (1,2) until all features are ranked in the order they are deleted. This method returns
a ranked list of features rather than one subset.

243

TUV BORISOV RUNGER TORKKOLA

Table 11.1: Notation in Algorithms 1–3

K Number of classes (if classification problem)
X set of original variables
Y target variable
M Number of variables
R Number of replicates for t-test
α quantile used for variable importance estimation
αm quantile used for variable masking estimation
Z permuted versions of X
W cumulative variable importance vector.
Wk cumulative variable importance vector for k-th class in classification.
F current working set of variables
Φ set of important variables
V variable importance matrix (R×2M)
Vr. rth row of variable importance matrix V , r = 1 . . .R
V. j jth column of matrix V
gI(F,Y) function that trains an ensemble of L trees based on

variables F and target Y , and returns a row vector
of importance for each variable in F

gY (F,Y) function that trains an ensemble based on variables F
and target Y , and returns a prediction of Y

Gk(F) current predictions for log-odds of k-th class
GBT (F) GBT model built on variable set F
M(G) Masking measure matrix calculated from model G
Mk Masking matrix for k-th GBT ensemble Gt .
M∗ Masking flags matrix

Our ACE algorithm works more like FCBS as it uses only one feature as an approximate
MB for each feature (as does the MBBE algorithm with K = 1). Furthermore, it filters features
by relevance before computing redundancy between the features, and reports a final minimum
feature subset. However, the major difference is that our redundancy measure approximates
KL-distance taking the response into account and uses local information. Thus, it can deal with
multivariate dependencies. MBBE for K > 1 will incur three (or more) dimensional frequency
tables that are hard to deal with if number of categories is large.

The learner g(., .) in the ACE algorithms is an ensemble of trees. Any classifier/regressor
function can be used, from which the variable importance from all variable interactions can be
derived. To our knowledge, only ensembles of trees can provide this conveniently.

The computational complexity of the algorithm is of the same order as the maximal com-
plexity of a RF on the whole feature set and a GBT model on the selected important feature
subset. A GBT model is usually more complex, because all surrogate splits at every tree node
are computed. However, a smaller tree depth setting for the GBT model reduces the calculations
in this part of the algorithm. The complexity is proportional to

(Fsel +Fimpvar)∗N ∗ logN ∗Ntrees∗Nensembles∗Niter+Niter ∗Fimpvar2,

where the variables are defined as follows: Niter is the number of iterations of the ACE algo-
rithm (for example, for the challenge discussed in Section 11.5.3 this was always less than 10

244

11. FEATURE SELECTION WITH ENSEMBLES

and usually 3–4); Nensembles is the number of replicates for t-tests (equal to 20 in the chal-
lenge); Ntrees is the number of trees in the RF or ensemble (equal to 20–100 in the challenge);
N is the number of samples; Fsel is the number of selected variables per tree split in RF (equal
to the square root of the total number features or less); Fimpvar is the number of selected im-
portant variables (for example, for the challenge data set NOVA discussed in Section 11.5.3
this was approximately 400–800 depending on parameters). The algorithm is very fast with
approximately a minute for one feature selection iteration on the challenge NOVA data set with
16K variables with 20 replicates with 70 trees on a Windows XP-based four-processor Xeon (2
x HT) 3.4GHz workstation.

11.5. Experiments
In order to evaluate the goodness of feature selection algorithms, two options have been used in
the literature. The first is not to evaluate the actual feature selection performance at all, but the
performance of a subsequent learner in some task. This facilitates the use of any data set in the
“evaluation” but does not give much useful information at all in characterizing the actual feature
selection. The second option is to directly evaluate the feature selection performance without
using a subsequent proxy task. The latter dictates the need to know the ground truth behind the
data, which typically means that the data must be artificially generated, either completely, or by
adding some redundant and/or irrelevant features to some known data.

As the topic of the paper at hand is a method for the subset feature selection, the first
evaluation method is affected by the choice of the classifier. The effects of feature selection are
mixed in with how well the learner is able to handle redundant or irrelevant features. The results
would thus depend on the choice of learners and on the choice of data sets. Therefore we will
mainly describe experiments with two types of simulated data with known ground truth.

Experiments on data with linear relationships are presented first. Then a nonlinear data gen-
erator is used to study the sensitivity to multiple variable interactions with nonlinear relations.
Further results are from the 2007 International Joint Conference on Neural Networks (IJCNN),
“Agnostic learning vs. prior knowledge challenge & data representation discovery workshop”.
The algorithm described here had the second best performance in the agnostic track. Here we
demonstrate the effect of the subset to predictor performance as compared to the full set of fea-
tures. Also, an actual manufacturing data set as well as a comparison to a previous analysis of
the well known Hepatitis data are also presented in terms of predictive power of the resulting
feature set.

11.5.1. Generated Data with Linear Relationships

The data in this experiment has an additive structure with one numeric response variable and
203 input variables. Inputs x1, . . . ,x100 are highly correlated with one another, and they are all
reasonably predictive of the response (regression R2 ∼ 0.5). But a,b, and c are independent
variables that are much weaker predictors (regression R2 ∼ 0.1). Further u1, . . . ,u100 are i.i.d.
N(0,1) variables that are unrelated to the target. The target variable was generated as an additive
model with additional noise using y = x1 + a+ b+ c+ ε , where ε ∼ N(0,1). This structure is
chosen because it is well known that linear (oblique) relationships are not optimal for a tree
representation. However, they are ideal for correlation-based methods. Thus we have here the
worst possible case for ACE and the best possible case for CFS. The methods were evaluated
on 50 data sets of size 400 samples.

245

TUV BORISOV RUNGER TORKKOLA

ace cfs cfs-gen rfe4 relief4
0

10

20

30

40

50

60

70

80

90

100
Linear data

Figure 11.1: Artificial data with linear relationships. Subset discovery methods (ACE, CFS,
CFS-gen) and methods finding a subset of predefined size four (RFE4, Relief4)
are compared. The results for each method consist of three bars. The first is the
percentage of relevant variables detected (out of four), the second is the percentage
of redundant variables detected (out of 100), and the third is the percentage of
irrelevant variables detected (out of 100). The results are averages over 50 data
sets.

Figure 11.1 depicts the performance of ACE against methods that also discover the subsets
(CFS with best-first search, CFS with genetic search), as well as against some subset ranking
methods (RFE, Relief).

RFE and Relief are ranking methods. In this experiment they were given the advantage of
knowing the number of relevant features beforehand, that is, their task was to “find the best
possible four variable subset” (RFE4, Relief4), whereas ACE and CFS had to also find the
number themselves. A further advantage was given to RFE by matching the underlying support
vector regressor to the problem with a linear kernel (using the standard RBF kernel produced
inferior results). This experiment demonstrates one aspect of the advantages of ACE. In a task
ideal for correlation-based methods but hard for trees, we show equal performance.

11.5.2. Generated Nonlinear Data

Next, experiments were conducted using a well-known data generator (Friedman, 1999), which
produces data sets with multiple non-linear interactions between input variables. The true model
can be designed with relevant, redundant, and noise inputs. We selected 10 relevant inputs plus
random, uniform (0, 1) noise. Also, 20 redundant inputs were used. Each was a random linear
combination of three inputs plus random, uniform noise. Finally, 40 noise inputs were added,
so that 70 features were available to the full model. The target function was generated as a
weighted sum of 10 multidimensional Gaussians, each Gaussian at a time involving about four
input variables randomly drawn from the relevant 10 variables. Thus all of the relevant 10
input variables are involved in the target, to a varying degree. The Gaussian functions also
have a random mean vector and a random covariance matrix as described by Friedman (1999).
Weights for the Gaussians were randomly drawn from U [−1,1].

The data generator produces continuous-valued variables. Thus the data sets can be used as
such for regression problems. Data sets of two different sizes were generated, 1000 and 4000
samples. In order to generate classification problems, the target variable was discretized to two

246

11. FEATURE SELECTION WITH ENSEMBLES

levels. Mixed-type data was generated by randomly discretizing half of the variables, each to
a random number of levels drawn from U [2,32]. There are thus eight different experiments
altogether. For each experiment, 50 data sets were generated with different seeds. Figure 11.2
presents the results for each case as average percentages of features selected in each group
(relevant, redundant, or noise) over the 50 generated data sets.

ace cfs cfs-gen fcbs rfe10 relief10
0

20

40

60
80

numeric, classification, N=1000

ace cfs cfs-gen fcbs rfe10 relief10
0

20

40

60
80

numeric, classification, N=4000

ace cfs cfs-gen fcbs rfe10 relief10
0

20
40

60
80

numeric, regression, N=1000

ace cfs cfs-gen fcbs rfe10 relief10
0

20
40

60
80

numeric, regression, N=4000

ace cfs cfs-gen fcbs rfe10 relief10
0

20

40

60
80

mixed, classification, N=1000

ace cfs cfs-gen fcbs rfe10 relief10
0

20

40

60
80

mixed, classification, N=4000

ace cfs cfs-gen fcbs rfe10 relief10
0

20
40

60
80

mixed, regression, N=1000

ace cfs cfs-gen fcbs rfe10 relief10
0

20
40

60
80

mixed, regression, N=4000

Figure 11.2: Artificial data with nonlinear relationships. Subset discovery methods (ACE, CFS,
CFS-gen, FCBS) and methods finding a subset of predefined size 10 (RFE10, Re-
lief10) are compared. FCBS works only in classification problems. The results for
each method consist of three bars. The first is the percentage of relevant variables
detected (out of 10), the second is the percentage of redundant variables detected
(out of 20), and the third is the percentage of irrelevant variables detected (out of
40). The results are averages over 50 data sets.

RFE and Relief were again given the advantage of knowing the number of relevant features
beforehand, that is, their task was to “find the best possible ten-variable subset”, whereas ACE,
CFS, and FCBS had to also find the number by themselves. A further advantage was given to
RFE by matching the underlying support vector classifier to the problem with an RBF kernel.
Using a linear kernel produced inferior results.

The notable failure of FCBS on this data can be explained as follows. Most numerical
important variables are dropped at the discretization step of FCBS, because MDL discretization
works as a filter method, and it cannot deal with the multivariate dependency from Friedmans’s

247

TUV BORISOV RUNGER TORKKOLA

generator. It works well with discrete variables only when the number of categories is small and
the response is categorical with a small number of categories.

This experiment demonstrates another aspect of the universality of ACE. The only case
where another method (RFE10) showed a superior result was a classification problem with a
smaller sample size and mixed type inputs. Again RFE10 was given the advantage of knowing
the number of relevant features and an appropriate kernel beforehand.

11.5.3. IJCNN 2007 Agnostic Learning vs. Prior Knowledge Challenge

In this experiment we show the effect of the selected subset within various classification tasks.
The ACE feature selection algorithm was applied to the data sets in the Agnostic Learning
Challenge. The number of training/validation/testing instances and the number of features are
shown in the following list:

• ADA, Marketing, 4147/415/41471, 48 features

• GINA, Handwriting recognition, 3153/315/31532, 970 features

• HIVA, Drug discovery, 3845/384/38449, 1617 features

• NOVA, Text, 1754/175/17537, 16969 features

• SYLVA, Ecology, 13086/1309/130857, 216 features

For feature selection with ACE, the number of trees, importance and masking quantiles were
parameters that were optimized. Next GBT with embedded feature selection (to prevent over-
fitting) (Borisov et al., 2006) was built on the subset. The following parameters of GBT were
optimized: number of trees, tree depth, shrinkage, number of selected features per tree node, and
the importance adjustment rate for embedded feature selection, stratified sampling for 0/1 class
proportions, and priors. The optimization strategy (manual) was to set reasonable parameter
values, and then try to adjust each parameter sequentially, so that the test error decreased. The
model was trained on 60% of the training data during parameter optimization. Several passes
over all the GBT parameters were used, and one for the feature selection parameters. Priors
were selected using cross validation. Feature selection and GBT were used on K partitions of
the data and then optimal priors were selected on the remaining part.

Table 11.2 shows the results before and after subset selection for the five challenge data
sets. The CV-error was either preserved or reduced through a good subset. The overall results
were the second best in the agnostic learning challenge. Redundancy elimination was applied
on ADA, HIVA, SYLVA, and feature selection without redundancy elimination was used on
NOVA and GINA.

Table 11.2: IJCNN 2007 Agnostic Learning vs. Prior Knowledge Challenge results.

Original Features CV-error from Best CV-error from
all features subset size selected subset

Ada 47 0.1909 16 0.1855
Gina 970 0.0527 75 0.0506
Hiva 1617 0.2847 221 0.2559
Nova 12993 0.0591 400 0.0518
Sylva 212 0.0133 69 0.0129

248

11. FEATURE SELECTION WITH ENSEMBLES

11.5.4. TIED Data Set

A data set with multiple Markov boundaries was generated by Statnikov and Aliferis (2009).
The data was obtained from a discrete Bayesian network with 1000 variables and a target vari-
able with four classes. A training set was constructed with 750 instances simulated from the
network. The network contained 72 Markov boundaries. Each boundary contained five vari-
ables (one from each of the following subsets):(1){X9}, (2) {X4,X8}, (3){X11,X12,X13}, (4)
{X18,X19,X20}, and (5) {X1,X2,X3,X10}.

The ACE feature selection method described here was used to remove irrelevant features.
After three iterations of the residual calculations described previously the algorithm stopped
with the important variables (and p-values from the artificial contrasts) shown in Table 11.3.
The list of statistically significant variables reproduces all the variables in any of the Markov
boundaries listed above, with false alarms from variables X14,X15, and X29.

Table 11.3: Feature selection scores for the TIED data set. Variables in any Markov boundary
are recovered as significant with three false alarms.

Variable p-value Importance Score
3 0 100.0%
2 0 98.4%

10 0 96.4%
1 1.E-10 96.4%

11 3.E-07 83.3%
12 2.E-07 83.3%
13 5.E-07 79.1%
18 3.E-09 67.5%
19 2.E-07 67.5%
15 2.E-07 41.4%
20 2.E-06 39.5%
29 2.E-06 29.8%

8 3.E-06 26.2%
14 1.E-08 11.6%

4 8.E-06 9.5%
9 6.E-06 8.3%

Although ACE recovered the variables in the Markov boundaries, there are limitations with
the masking methods for a multi-class target. The GBT ensembles model each class (versus
the rest) with a binary logistic function and averages variable masking scores over the binary
models. Consequently, some attenuation of the importance scores are expected. Redundancy
elimination did not effectively eliminate masking in the TIED data. However, we used the TIED
network and TIED data for binary problems with each class versus the rest. For example, for
class 1 versus the rest the TIED network generates the same collection of 72 Markov bound-
aries. The results from ACE without redundancy elimination for the binary target are shown in
Table 11.4. The list of statistically significant variables reproduces all the variables in any of
the Markov boundaries, with no false alarms.

As the importance scores are arranged in decreasing order in Table 11.4, groups of variables
with similar scores become noticeable and these groups correspond to the subsets (equivalence
classes) in the cross-product that defines the Markov boundaries. That is, the most important

249

TUV BORISOV RUNGER TORKKOLA

Table 11.4: Variable importance for TIED data modified for a binary target (class 1 versus
the rest). All variables in the true Markov boundaries are identified with no false
alarms.

Variable Importance Score
4 100.0%
8 100.0%

19 88.1%
18 88.1%
20 88.1%

9 64.8%
13 39.5%
12 39.5%
11 39.5%
10 21.9%

2 21.9%
3 21.9%
1 21.9%
6 0.0%

variables in Table 11.4 are those in the subset {X4,X8} in the Markov boundaries and the last
group matches the subset {X1,X2,X3,X10}. The equivalent groups are clear from their impor-
tance scores in this case.

The analysis with redundancy elimination generated the list of significantly significant vari-
ables in Table 11.5. One equivalent variable from the subset {X1,X2,X3,X10} was missed in the
recovery of a Markov boundary. The contribution from this subset was, however, small. The
predictive performance of a tree ensemble on the recovered variables is nearly identical to a
model on a true Markov boundary. In addition, the three variables {X18,X20,X4} are identified
in Table 11.5 as important, but they are redundant in the true network. Although these comprise
false alarms, the magnitudes of the importance scores indicate that the last three variables are
much less important than the others.

Table 11.5: Variable importance for TIED data modified for a binary target (class 1 versus the
rest) with redundancy elimination.

Variable Importance Score
8 100.0%
9 61.3%

19 43.8%
1 10.2%

18 2.6%
20 0.9%

4 0.3%

250

11. FEATURE SELECTION WITH ENSEMBLES

Similar results (not shown here) were obtained for the binary target class 2 (versus the rest).
Results without any errors were obtained for classes 0 and 3 (each versus the rest). Specifi-
cally, for class 0 the Markov boundaries from the TIED network consist of one element from
{X1,X2,X3,X10}. In this case the ACE analysis without redundancy elimination recovered these
four variables without false alarms. The analysis with redundancy elimination correctly recov-
ered a single variable from this set. Similarly for class 3, without redundancy elimination all
variables in the Markov boundaries {X12,X13,X14} were recovered, and only one variable from
this set was recovered with redundancy elimination.

11.5.5. Manufacturing Data

In multiple real world applications collecting unnecessary variables is a cost issue and finding a
suitable subset is critical in terms of cost-efficiency. As an example we present manufacturing
data from a process that contained approximately 10K rows and consisted of 35 predictors that
were all numerical, continuous measurements. The target was a binary response and approx-
imately 20% of the data belonged in the rare class. Because the data is actual manufacturing
data, the specific variable names are not provided. The data was analyzed extensively with
traditional regression methods (the response was coded as 0 and 1) and models obtained were
complex and not accurate. A list of the results from our algorithm is shown in Table 11.6. It is
not unusual for manufacturing data to consist of related predictors. Without redundancy elimi-
nation, 20 variables were identified as related to the target. However, after masking scores were
used to remove redundant predictors the final subset model consisted of only five predictors.

The predictive accuracy for the binary target was nearly identical using a GBT model with
these 5 predictors to the full set of 35 predictors. Table 11.6 also compares other subset selection
algorithms to ACE in terms of their predictive accuracy and the size of the selected feature set.

A previous analysis of this data by Berrado and Runger (2007) used association rules applied
after the predictors were discretized with simple equal-frequency discretization. Only rules with
consequent equal to the rare target class were considered. A total of 25 rules were detected that
met the minimum support threshold. These rules contained 14 variables and 13 out of 14 are
listed in the Table 11.6. Although the objectives of the association analysis were different, the
relatively high proportion of important variables is consistent with the results in Table 11.6.

11.5.6. Hepatitis Data

The hepatitis data available from the UC-Irvine repository has been widely analyzed. There
are 155 patients and 19 predictors and the response is a binary survival result. Breiman (2001)
considered this data and cited a previous analysis from the Stanford Medical School and another
analysis by Diaconis and Efron (1983). The analysis from the medical school concluded that
the important variables were 6, 12, 14, 19. But Breiman (2001) concluded after a set of analyses
that number 12 or 17 provided predictive power nearly equivalent to the full set of variables,
and that these masked each other. A notable difficulty is the small sample size in this example.

We confirmed the strong masking between variables 12 and 17 (and vice versa) from our
masking matrix. We also obtained a subset model that consists of variables 6, 17, 14, 19, and
11, similar to medical school. Variable 11 was also identified in unpublished lecture notes
by Breiman. The subset selected by our algorithm has the lowest cross-validation error using
logistic regression.

251

TUV BORISOV RUNGER TORKKOLA

Table 11.6: Manufacturing data with a binary target with redundancy elimination excludes
many variables. Only a smaller subset of the relevant predictors remain. We com-
pare the extracted variables to other subset selection algorithms (selected variables
are marked as ‘1’ in the table). The error rate for the full set of variables was 0.146.

ACE without ACE with CFS CFS-gen FCBS
Variables redundancy elim. redundancy elim.

V11 100.0% 72.4% 1 1
V4 96.1% 100.0% 1 1
V5 49.8% 49.4% 1 1 1

V12 48.6% 1 1
V14 46.6% 1 1
V10 43.5% 1 1
V2 43.3% 36.4% 1 1

V13 38.7% 21.6%
V8 30.3% 1
V1 27.9% 1
V9 23.7%
V3 23.6% 1

V19 21.8%
V7 21.5%

V20 20.4%
V26 1
V27 1

Errors 0.145 0.144 0.145 0.190

Table 11.7: Hepatitis data. Features selected from ACE compared to other subset selection
algorithms (selected variables are marked as ‘1’ in the table). The baseline error
rate for the full set of variables was 0.148.

Variables ACE CFS CFS-gen FCBS
malaise-6 1 1 1

albumin-17 1
bilirubin-14 1 1 1

histology-19 1 1 1
spiders-11 1 1 1 1

age-1 1 1
sex-2 1 1 1

ascites-12 1 1 1
varices-13 1 1

Errors 0.142 0.155 0.155 0.194

252

11. FEATURE SELECTION WITH ENSEMBLES

11.6. Conclusions
We have presented an efficient method for feature subset selection that builds upon the known
strengths of the tree ensembles and is designed explicitly to discover a non-redundant, effective
subset of features in large, dirty, and complex data sets.

Our method attempts to eliminate irrelevant variables using statistical comparisons with
artificial contrasts to obtain a threshold for importance estimated from the parallel ensembles of
trees capable of scoring very large number of variables.

It uses serial ensembles to discover significant masking effects for redundancy elimination.
Furthermore we have showed that the redundancy elimination based on feature masking ap-
proximates the Markov blanket redundancy filtering. It also uses an iterative strategy to allow
for weaker predictors to be identified after stronger contributors.

The superior performance of the algorithm is illustrated with a number of experiments on
both artificial and real data as well as by its success in the agnostic learning challenge.

Acknowledgments
This material is partly based upon work supported by the National Science Foundation under
Grant No. 0743160.

References
H. Almuallin and T. G. Dietterich. Learning boolean concepts in the presence of many irrelevant

features. Artificial Intelligence, 69(1-2):279–305, 1994.

Y. Amit and D. Geman. Shape quantization and recognition with randomized trees. Neural
Computation, 9(7):1545–88, 1997.

E. Bauer and R. Kohavi. An empirical comparison of voting classification algorithms: Bagging,
boosting and variants. Machine Learning, 36(1/2):525–536, 1999.

A. Berrado and G.C. Runger. Using metarules to organize and group discovered association
rules. Data Mining and Knowledge Discovery, 14(3):409–431, 2007.

A. Borisov, V. Eruhimov, and E. Tuv. Tree-based ensembles with dynamic soft feature selection.
In I. Guyon, S. Gunn, M. Nikravesh, and L. Zadeh, editors, Feature Extraction Foundations
and Applications: Studies in Fuzziness and Soft Computing. Springer, 2006.

B. Boser, I. Guyon, and V. Vapnik. A training algorithm for optimal margin classifiers. In
D. Haussler, editor, 5th Annual ACM Workshop on COLT, Pittsburgh, PA, pages 144–152.
ACM Press, 1992.

O. Bousquet and A. Elisseeff. Algorithmic stability and generalization performance. In Ad-
vances in Neural Information Processing Systems, volume 13, pages 196–202. MIT Press,
2001.

L. Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.

L. Breiman. Arcing classifiers. The Annals of Statistics, 26(3):801–849, 1998.

L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

253

TUV BORISOV RUNGER TORKKOLA

L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees.
Wadsworth, Belmont, MA, 1984.

S. Cost and S. Salzberg. A wighted nearest neighbor algorithm for learning with symbolic
features. Machine Learning, 10(1):57–78, 1993.

P. Diaconis and B. Efron. Computer intensive methods in statistics. Scientific American, (248):
116–131, 1983.

T. G. Dietterich. An experimental comparison of three methods for constructing ensembles of
decision trees: Bagging, boosting, and randomization. Machine Learning, 40(2):139–157,
2000a.

T. G. Dietterich. Ensemble methods in machine learning. In First International Workshop on
Multiple Classifier Systems 2000, Cagliari, Italy, volume 1857 of Lecture Notes in Computer
Science, pages 1–15. Springer, 2000b.

Bradley Efron, Trevor Hastie, Lain Johnstone, and Robert Tibshirani. Least angle regression.
Annals of Statistics, 32:407–499, 2004.

Y. Freund and R. E. Schapire. Experiments with a new boosting algorithm. In The 13th Inter-
national Conference on Machine Learning, pages 148–156. Morgan Kaufman, 1996.

J. Friedman. Greedy function approximation: a gradient boosting machine. Technical report,
Dept. of Statistics, Stanford University, 1999.

J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: A statistical view of
boosting. Annals of Statistics, 28:832–844, 2000.

Jerome H Friedman, Mark Jacobson, and Werner Stuetzle. Projection pursuit regression. Jour-
nal of the American Statistical Association, 76:817–823, 1981.

I. Guyon and A. Elisseeff. An introduction to variable and feature selection. Journal of Machine
Learning Research, 3:1157–1182, Mar 2003.

Isabelle Guyon, Jason Weston, Stephen Barnhill, and Vladimir Vapnik. Gene selection for
cancer classification using support vector machines. Machine Learning, 46(1-3):389–422,
2002.

M. A. Hall. Correlation-based feature selection for discrete and numeric class machine learning.
In Proceedings of the 17th International Conference on Machine Learning, pages 359–366,
2000.

L. K. Hansen and P. Salamon. Neural network ensembles. IEEE Trans. on Pattern Analysis and
Machine Intelligence, 12(10):993–1001, 1990.

T. K. Ho. The random subspace method for constructing decision forests. IEEE Trans. on
Pattern Analysis and Machine Intelligence, 20(8):832–844, 1998.

Kenji Kira and Larry A. Rendell. A practical approach to feature selection. In ML92: Proceed-
ings of the ninth international workshop on Machine learning, pages 249–256, San Francisco,
CA, USA, 1992. Morgan Kaufmann Publishers Inc. ISBN 1-5586-247-X.

D. Koller and M. Sahami. Toward optimal feature selection. In Proceedings of ICML-96,
13th International Conference on Machine Learning, pages 284–292, Bari, Italy, 1996. URL
citeseer.nj.nec.com/koller96toward.html.

254

citeseer.nj.nec.com/koller96toward.html

11. FEATURE SELECTION WITH ENSEMBLES

S. Kullback and R.A. Liebler. On information and sufficiency. Annals of Mathematical Statis-
tics, 22:76–86, 1951.

H. Liu and L. Yu. Toward integrating feature selection algorithms for classification and cluster-
ing. IEEE Trans. Knowledge and Data Eng., 17(4):491–502, 2005.

S. Mukherjee, P. Niyogi, T. Poggio, and R. Rifkin. Learning theory: Stability is sufficient for
generalization and necessary and sufficient for consistency of empirical risk minimization.
Advances in Computational Mathematics, 25:161–193, 2006.

B. Parmanto, P. Munro, and H. Doyle. Improving committee diagnosis with resampling tech-
niques. In D. S. Touretzky, M. C. Mozer, and M. Hesselmo, editors, Advances in Neural
Information Processing Systems 8, pages 882–888. Cambridge, MA: MIT Press, 1996.

T. Poggio, R. Rifkin, S. Mukherjee, and A. Rakhlin. Bagging regularizes. In CBCL Paper
214/AI Memo 2002-003. MIT, Cambridge, MA, 2002.

T. Poggio, R. Rifkin, S. Mukherjee, and P. Niyogi. General conditions for predictivity in learn-
ing theory. Nature, 428:419–422, 2004.

M. Robnik-Sikonja and I. Kononenko. Theoretical and empirical analysis of relief and relieff.
Machine Learning, 53:23–69, 2003.

C. Stanfill and D. Waltz. Toward memory-based reasoning. Communications of the ACM, 29:
1213–1228, December 1986.

A. Statnikov and C.F. Aliferis. Tied: An artificially simulated dataset with multiple Markov
boundaries. Journal of Machine Learning Research Workshop Conference & Proceedings,
2009. to appear.

H. Stoppiglia, G. Dreyfus, R. Dubois, and Y. Oussar. Ranking a random feature for variable
and feature selection. Journal of Machine Learning Research, 3:1399–1414, March 2003.

E. Tuv. Ensemble learning and feature selection. In I. Guyon, S. Gunn, M. Nikravesh, and
L. Zadeh, editors, Feature Extraction, Foundations and Applications. Springer, 2006.

E. Tuv, A. Borisov, and K. Torkkola. Feature selection using ensemble based ranking against
artificial contrasts. In Proceedings of the International Joint Conference on Neural Networks
(IJCNN), 2006.

G. Valentini and T. Dietterich. Low bias bagged support vector machines. In ICML 2003, pages
752–759, 2003.

G. Valentini and F. Masulli. Ensembles of learning machines. In M. Marinaro and R. Tagliaferri,
editors, Neural Nets WIRN Vietri-02, Lecture Notes in Computer Science. Springer-Verlag,
2002.

J.W. Wisnowski, J.R. Simpson, D.C. Montgomery, and G.C. Runger. Resampling methods for
variable selection in robust regression. Computational Statistics and Data Analysis, 43(3):
341–355, 2003.

L. Yu and H. Liu. Efficient feature selection via analysis of relevance and redundancy. J. of
Machine Learning Research, 5:1205–1224, 2004.

255

256

Chapter 12

Classification with Random Sets, Boosting and
Distance-based Clustering
Vladimir Nikulin VNIKULIN.UQ@GMAIL.COM

Department of Mathematics, University of Queensland, Brisbane, Australia

Editor: Isabelle Guyon

Abstract
Overfitting is commonly a significant problem in classification of high-dimensional data. Ac-
cordingly, it appears to be logical to consider a large number of component-classifiers, each of
which is trained using a relatively small randomly selected subset of the available features. As
an outcome, random sets approach provides an effective means of feature selection by exami-
nation of the features used by the best performing component-classifiers. The proposed method
differs from Breiman’s Random Forests in two respects: firstly, it has non-voting nature; sec-
ondly, the component-classifiers need not be implemented using decision trees. We also pro-
pose a novel boosting technique based on experience/innovation principles. In order to make
some improvement of the training results we can increase attention to the mis-classified pat-
terns by the random increasing of the corresponding weights (innovation). As a starting point
for any iteration we can use weights, which correspond to the best past result (experience).
Lastly, assuming that the data exhibit a clustered structure, and that the relationship between
the target variable and the explanatory features is constant within each cluster, it is reasonable
to construct an ensemble classifier using component-classifiers, each of which is trained on
data drawn from the same cluster. The benefits of these innovations are demonstrated using re-
sults from the IJCNN-2007 Agnostic Learning versus Prior Knowledge challenge which were
among the leading entries.
Keywords: random forests, gradient-based optimization, boosting, cross-validation, distance-
based clustering

12.1. Introduction
This paper contains three new developments comparing with previous publication (Nikulin,
2006a): random sets, heuristical version of boosting and distance-based clustering approach for
an ensemble classifier.

Random Forests (Breiman, 2001) grow a forest of random trees on bagged samples showing
excellent results comparable with the best known classifiers (Tuv et al., 2006). Clearly, the
choice of decision trees as a base model is not necessary, and as an alternative we can use
quadratic minimization (QM) or Naïve Bayes model. Section 12.2.4 introduces a new general
method for feature selection. This method is based on the assumption that any component-
classifier, which is based on relatively small number of features, will not suffer from overfitting.

There are many ways to boost mis-classified pattern. Friedman et al. (2000) present some
reasonable mathematical grounds behind AdaBoost and LogitBoost algorithms for the additive
logistic regression model. Unfortunately, some of the required and essential conditions may
not be fulfilled during optimization process (see Section 12.3), and, as a result, performance
of the algorithm may not be monotonical or stable (Lutz, 2006). As it was noticed in Boulle

© V. Nikulin.

NIKULIN

(2006), the boosting method is theoretically founded to reduce the training bias, but without
guarantee against overfitting. Section 12.3.5 introduces two main types of specially defined
boosting, which are based on experience-innovation (EI) principles (Nikulin and Smola, 2005).
Assuming that overfitting is limited, we propose to apply heuristical boosting to some of the
mis-classified patterns using best past experience as a starting point for any iteration.

Ideally, our target is to find a transformation from multi-dimensional space of features to
one-dimensional Euclidean space in order to maximize the difference between different classes
and minimize volatility inside classes (see, for example, Kernel Fisher Discriminant). As a
next step, we can consider more advanced model using distance-based clustering technique
(see Section 12.4). Note that similar ideas may be found in Kurogi et al. (2006). First, we split
data into k clusters according to the given criterion. Then, we develop an ensemble system as
combined complex of k classifiers, where any classifier was developed independently using data
from the particular cluster.

GLiMix algorithm of the Section 12.4.1 may be useful in order to investigate uniformity of
the training data in the sense of relations between the target and explanatory variables.

Model selection represents a very complex process. The main problem here is that in most
cases settings for the particular model can not be optimised analytically and are very dependent
on the available training datasets. At the same time, most of the models are very flexible and
include many regulation parameters. Proper designed cross-validation (Section 12.2.7) may be
viewed as the most important attribute for the successful performance of the whole system.

Experimental results are presented in the Section 12.5. Most of experiments were conducted
during time of the IJCNN-2007 Agnostic Learning vs. Prior Knowledge Challenge1 (Guyon
et al., 2007). The following 5 real life datasets were used during the Challenge: ADA (mar-
keting), GINA (handwriting), HIVA (drug discovery), NOVA (text classification) and SYLVA
(ecology). The competition had two parallel tracks: “agnostic learning” where data were pre-
processed in a simple feature-based representation, suitable for any data mining algorithm, and
“prior knowledge” where given data were not necessarily in a form of numerical table.

Our overall results (out of 5 complete entries): 1st place in the “prior knowledge” track and
4th place in the “agnostic learning” track. Also, we can report best result in the GINA-prior
track.

It is a well known fact that for various reasons it may not be possible to theoretically analyze
a particular algorithm or to compute its performance in contrast to another. The results of the
proper experimental evaluation are very important as these may provide the evidence that a
method outperforms existing approaches.

12.2. Main Models
Let X = (xt ,yt) , t = 1 . . .n, be a training sample of observations where xt ∈R� is �-dimensional
vector of features, and yt is binary label: yt ∈ {−1,1}. Boldface letters denote vector-columns,
whose components are labeled using a normal typeface. It will be more convenient for us in
some cases to use indexes {1,2} instead of original values {−1,1}.

In practical situation the label yt may be hidden, and the task is to estimate it using vector
of features. Let us consider the most simple linear decision function

ut = u(xt) =
�

∑
j=1

w j · xt j +b (12.1)

where wi are weight coefficients and b is a bias term.

1. http://www.agnostic.inf.ethz.ch/

258

http://www.agnostic.inf.ethz.ch/

12. CLASSIFICATION WITH RANDOM SETS

Definition 12.1 We will call two decision functions u(x) and v(x) as X-equivalent if there exist
two finite constants A ∈ R+ and B ∈ R such that u(x) = A · v(x)+B, ∀x ∈ X.

We can define decision rule as a function of decision function and threshold parameter

ft = f (ut ,∆) =

�
1 if ut ≥ ∆;

−1, otherwise.
(12.2)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(a)
0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(b)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(c)
0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(d)

Figure 12.1: (a) �AUC (blue) and �AUC (red) against BER; (b-d) �BER against BER. Simulation
experiments were conducted using the following parameters: (a-b) q1 = q2 = 100
- balanced case; (c) q1 = 50,q2 = 150; (d) q1 = 20,q2 = 180 - imbalanced case
(see definitions in the Section 12.2.1).

The optimization criterion is to minimize the balanced error rate (BER):

Q(∆) = 0.5
�

q12

q1
+

q21

q2

�
, q1 = q11 +q12, q2 = q21 +q22, (12.3)

where value of qi j equal to the number of j-predictions in the true cases of i = 1 . . .2. Unfortu-
nately, the target function (12.3) can not be optimized directly. Respectively, we will consider
in the following Sections 12.2.2 and 12.2.3 an alternative (differentiable) target functions as-
suming that the corresponding models will produce good solutions in the sense of (12.3).

259

NIKULIN

12.2.1. On the relation between BER and AUC

As an alternative criterion, we used area under ROC curve (AUC). By definition, receiver oper-
ating curve (ROC) is a graphical plot of true positive rates against false positive rates.

It is interesting to clarify relations between BER and AUC using terminology of confusion
matrix.

Let us denote by {qi j} set of data-entries which correspond to qi j, i, j = 1 . . .2.
Accordingly, we denote by S1 = {q11,q21} all data-entries which were classified as negative;

S2 = {q12,q22} all data-entries which were classified as positive.
Without loss of generality we will assume that value of the decision function is −1 on S1

and 1 on S2. This assumption will give us a flexibility to apply an arbitrary permutation within
S1 or S2.

Note that any permutation within S1 or S2 (or both, assuming that data from S1 and S2 are
not mixed) will not affect confusion matrix. Respectively, value of BER will be strictly the
same. In difference, value of AUC may vary significantly.

The upper bound for AUC (see Figure 12.1(a) – blue color)

�AUC =
q22q12

q1q2
+

q11

q1
(12.4)

corresponds to the following sequence:

{q11}{q21}{q12}{q22}. (12.5)

The low bound (see Figure 12.1(a) – red color)

�AUC =
q11q22

q1q2
(12.6)

corresponds to the following sequence:

{q21}{q11}{q22}{q12}. (12.7)

Let us consider a marginal example. Suppose that q12 = 0 and q21 = q2. Then, q11 = q1,
and �AUC = 1. At the same time,

BER =
q21

2q2
= 0.5.

Above situation may happen if classifier ranked data correctly, but threshold parameter ∆
was too big. Respectively, all data were classified as {−1} or S2 = /0.

Now, let us consider more realistic second example. Suppose that q11 = 90,q12 = 10,q21 =
1,q22 = 9. Then, BER = 0.1 in both cases (12.5) or (12.7). But, AUC = 0.99 in the case of
sequence (12.5), and AUC = 0.81 in the case of (12.7).

In fact, any separate re-distribution of the elements within S1 and S2 will not affect decision
making but may change value of AUC significantly.

Let us define an alternative balanced error rate

�BER = 0.5
�

q12

q12 +q22
+

q21

q11 +q21

�
(12.8)

where true and predicted labels were replaced with each other. Figures 12.1(b-d) illustrate non-
symmetrical properties of the BER loss function.

260

12. CLASSIFICATION WITH RANDOM SETS

Table 12.1: Regularization in conjunction with QM model (see Section 12.2.2) in the case of
HIVA-set, used CV-100 where value of threshold parameter ∆ was optimized for
any particular fold (see Section 12.2.7).

N µ Train BER Test BER Mean ∆ Std ∆
1 0.001 0.0326 0.2344 -0.678 0.161
2 0.01 0.0469 0.2222 -0.722 0.147
3 0.02 0.066 0.2188 -0.752 0.13
4 0.03 0.0771 0.2194 -0.772 0.127
5 0.05 0.0925 0.2209 -0.789 0.12
6 0.08 0.1081 0.2235 -0.801 0.108
7 0.1 0.1156 0.224 -0.805 0.103
8 0.12 0.122 0.2253 -0.806 0.101
9 0.15 0.1302 0.2264 -0.808 0.094

10 0.18 0.1377 0.2274 -0.807 0.091
11 0.2 0.1416 0.229 -0.808 0.094
12 0.25 0.1518 0.2297 -0.819 0.081
13 0.3 0.1601 0.2316 -0.829 0.078

12.2.2. QM Model with Regularization

Let us consider the most basic quadratic minimization model with the following target function:

L(w) = Ω(µ,n,w)+
n

∑
t=1

ξt · (yt −ut)
2 (12.9)

where Ω(µ,n,w) = µ ·n ·�w�2 is a regularization term with ridge parameter µ (Wichard, 2006);
non-negative weight coefficients ξ are necessary in order to implement boosting algorithm in
the Section 12.3.

Remark 12.2 The target of the regularization term with parameter µ is to reduce the difference
between training and test results. Value of µ may be optimized using cross-validation as it is
described in the Section 12.2.7 (see, also, Table 12.1).

Remark 12.3 Based on observation of the Table 12.1 (last column) it is interesting to note that
the regularization term Ω may be viewed as a stabilizer of the model: standard deviation of ∆
is decreasing as a function of µ.

The direction of the steepest decent is defined by the gradient vector

g(w) = {g j(w), j = 1..�},

where

g j(w) =
∂L(w)

∂w j
= 2µ ·n ·w j −2

n

∑
t=1

xt jξt (yt −ut) .

Initial values of the linear coefficients wi and bias parameter b may be arbitrary. Then, we
recompute the coefficients

w(k+1) = w(k) +δk ·g(w(k)), (12.10a)

b(k+1) = b(k) +
1
n

n

∑
t=1

ξt · (yt −ut) (12.10b)

261

NIKULIN

where k is a sequential number of iteration. Minimizing (12.9) we find size of the step according
to the formula

δ =
L1 −L2 −µ ·n∑�

j=1 w jg j

∑n
t=1 ξt s2

t +µ ·n∑�
j=1 g2

j
(12.11)

where

L1 =
n

∑
t=1

ξt styt , L2 =
n

∑
t=1

ξt stut , st =
�

∑
j=1

xt jg j.

12.2.3. Relevance Vector Machine

Good performance of pattern classifier is achieved when the number of adjustable parameters
is matched to the size of the training set (Boser et al., 1992). Using above idea as a motivation
we consider relevance vector machine (Tipping, 2001) with regularization

L(w) = Ω(µ,n,w)+�y−Ψw�2 (12.12)

where
Ψ = {ξi ·ξ j ·ψ(xi,x j), i, j = 1..n}

is a kernel matrix and w is vector-column of coefficients, weight coefficients ξ have the same
interpretation as in the previous section. Note that bigger value of ψ(xi,x j) reflects stronger
similarity between patterns xi and x j.

Value of the decision function for the pattern x will be computed according to the following
formula

u(x)∼
n

∑
j=1

w j ·ξ j ·ψ(x,x j),

which does not include bias term because we will need to optimize value of threshold parameter
∆ anyway.

12.2.4. Feature Selection using Random Sets

Let us consider an illustrative example of HIVA-set from the IJCNN-2007 Agnostic Learn-
ing vs. Prior Knowledge challenge. The training sample size is 3845 where any data instance
includes binary target variable and 1617 features. Pure QM model (without regularization) pro-
duced perfect training results with nearly zero value of the balanced error rate. As a next step
we considered 100-folds cross-validation: test BERs were in the range from 0.35 to 0.4, which
indicates very strong overfitting.

Then, we considered sequence of 10000 subsets with 70 randomly selected features (without
repeats). We observed training BERs in the following range: from 0.2164 to 0.3329.

It is hardly possible to expect strong disagreement between training and test results in the
case of only 70 features. The union of 25 top performing subsets includes 1074 different fea-
tures (see Table 12.2).

Firstly, we note that all test results in the Table 12.2 are surprisingly good, see WCCI-2006
Performance Prediction Challenge2. This observation may be explained by the fact that value of
the threshold parameter ∆ was optimized for any particular fold (see Section 12.2.7). Also, we
can see that after some point the model suffers from overfitting. According to our experiments
the optimal model is based on 600–800 features out of available 1617.

2. http://clopinet.com/isabelle/Projects/modelselect/

262

http://clopinet.com/isabelle/Projects/modelselect/

12. CLASSIFICATION WITH RANDOM SETS

Table 12.2: Feature selection using Random Sets (HIVA). The values in the columns “Train
BER” and “Test BER” were generated using 50-folds cross validation. The second
column represents number of features (without repeats) in the union of the first k
top-performing subsets.

Number of subsets Number of features Train BER Test BER Mean ∆ Std ∆
1 70 0.2193 0.2345 -0.886 0.048
2 138 0.2091 0.2429 -0.812 0.081
3 201 0.1742 0.235 -0.806 0.07
4 261 0.1399 0.2024 -0.815 0.078
5 322 0.1146 0.21 -0.802 0.108
6 377 0.1074 0.2108 -0.789 0.085
7 434 0.098 0.2027 -0.786 0.095
8 485 0.0897 0.2064 -0.756 0.09
9 529 0.0805 0.2001 -0.756 0.107

10 575 0.0748 0.2081 -0.743 0.122
11 620 0.0721 0.2114 -0.738 0.13
12 656 0.0698 0.2123 -0.742 0.138
13 702 0.0635 0.2137 -0.704 0.163
14 735 0.0594 0.2082 -0.674 0.15
15 766 0.0561 0.2112 -0.689 0.155
16 797 0.0575 0.2072 -0.684 0.152
17 832 0.0565 0.2121 -0.671 0.147
18 866 0.0553 0.2138 -0.673 0.125
19 905 0.0499 0.2147 -0.677 0.13
20 942 0.0484 0.2158 -0.711 0.139
21 964 0.0466 0.2166 -0.702 0.155
22 996 0.0444 0.218 -0.701 0.142
23 1024 0.0429 0.2264 -0.713 0.16
24 1051 0.0445 0.2235 -0.676 0.139
25 1074 0.0442 0.2289 -0.713 0.148

263

NIKULIN

As an alternative, we can select required number of features according to the highest num-
bers of repeats in the 100–200 top-performing subsets. Further, these repeats may be used in
order to optimize construction of the distance-based splitter (see Section 12.4).

Remark 12.4 According to the experimental results of the Table 12.2 we can make a conclusion
that the model with smaller number of features is more stable: fluctuations of the threshold
parameter are smaller.

Clearly, randomly selected subsets of features can not claim optimality, and we can conduct
further adjustment using Algorithm 12.1.

Algorithm 12.1: Feature Selection
1: Select leading subset, which includes all features from the 1-5 best subsets (found using

RS-method).
2: Split the field of all features into 2 parts without intersection: 1) leading subset with m

features; 2) remaining k = �−m features.
3: Add to the leading subset one feature (randomly selected out of k remaining features).
4: Find the worst performing feature in the leading subset using Leave-One-Out principle, and

remove this feature permanently.
5: k ← k−1.
6: If k = 0 stop the Algorithm, otherwise, goto the Step 3.

Remark 12.5 Algorithm 12.1 requires (m+ 1) · (�−m) optimizations, which appears to be
realistic (in the sense of time), taking into account the fact that one particular optimization may
be very fast assuming that m is sufficiently small.

12.2.5. Naïve Bayes Classifier

The Naïve Bayes modelling approach is based on the assumption that the variables are indepen-
dent within each output label, and simply relies on the estimation of conditional probabilities.
Binary datasets (for example, NOVA or HIVA) represent an ideal case for the illustration of the
concepts of Naïve Bayes approach.

We will need the following definitions

π = P(y = 1); θ j = P(x j = 1|y = 1); γ j = P(x j = 1|y = 0) (12.13)

where probabilities π,θ and γ may be estimated maximizing the following log-likelihood target
function

n

∑
t=1

ξt · [y�t Q1t +(1− y�t)Q2t] (12.14)

where label y�t = 0.5(1+ yt) is taking values {0,1},

Q1t = log{π}+
�

∑
j=1

xt j log{θ j}+
�

∑
j=1

(1− xt j) log{1−θ j}, (12.15a)

Q2t = log{1−π}+
�

∑
j=1

xt j log{γ j}+
�

∑
j=1

(1− xt j) log{1− γ j}. (12.15b)

264

12. CLASSIFICATION WITH RANDOM SETS

Similar to (12.9), the target of the non-negative (weight) coefficients ξ is to implement boosting
algorithm in the Section 12.3.

Required solution is given by the following formulas

π =
∑n

t=1 ξt y�t
∑n

t=1 ξt
; θ j =

∑n
t=1 ξt xt jy�t
∑n

t=1 ξt y�t
; γ j =

∑n
t=1 ξt xt j(1− y�t)
∑n

t=1 ξt(1− y�t)
. (12.16)

Definition 12.6 In order to avoid marginal probabilities it is proposed to use the following
truncation with parameter φ > 0 :

θ ←
�

1−φ if θ > 1−φ ;
φ if θ < φ .

(12.17)

Similar truncation is applicable to π and γ (used value φ = 0.001).

12.2.5.1. ON THE DIFFERENCE BETWEEN RANDOM FORESTS (RF) AND RANDOM SETS
(RS)

Following Boulle (2006), let us denote by ai j ∈ {0,1} indicator for j-feature selection in the
subset i:

�

∑
j=1

ai j = m � �, i = 1..k.

Next, we consider a single Naïve Bayes classifier:

uit =

�
1 if Q1t ≥ Q2t +∆;

−1, otherwise,
(12.18)

where ∆ is a threshold parameter and log-likelihood conditional functions Q1t and Q2t are de-
fined in (12.15a) and (12.15b).

Then, we consider RF-classifier (voting system):

ut =






1 if
k

∑
i=1

uit ≥ 0;

−1, otherwise.

(12.19)

In order to define RS-classifier we will evaluate long sequence of subsets {ai j, i = 1..N, j =
1..�} against the whole training set. The final RS-classifier (non-voting system) has the same
appearance as (12.18). This classifier is based on a new subset of features B = {b j ∈ {0,1}, j =
1..�,∑�

j=1 b j = m1} where m1 ≥ m. Particular configuration of the subset B may be evaluated
using different methods, see for more details Section 12.2.4 and Table 12.2. We conducted
experiments in the case of HIVA-set with m = 70,m1 = 200,N = 60000.

12.2.5.2. LOGLIKELIHOOD BASED FEATURE SELECTION METHOD

We can re-write target function (12.14) using different terms

H +
�

∑
j=1

Hj (12.20)

where
H = A1 log{π}+A2 log{1−π};

265

NIKULIN

Hj = B1 j log{θ j}+B2 j log{1−θ j}+B3 j log{γ j}+B4 j log{1− γ j}
where

A1 =
n

∑
t=1

ξt y�t ; A2 =
n

∑
t=1

ξt(1− y�t);

B1 j =
n

∑
t=1

ξt y�t xt j; B2 j =
n

∑
t=1

ξt y�t (1− xt j);

B3 j =
n

∑
t=1

ξt(1− y�t)xt j; B4 j =
n

∑
t=1

ξt(1− y�t)(1− xt j).

We can not expect that importance of the feature j is significant if the coefficients Bi j, i =
1..4, and the difference between an alternative values θ j and γ j are small. Accordingly, we can
measure importance of the features using ratings R j as it is defined below.

Definition 12.7 Subject to the important truncation (12.17), we propose to calculate likelihood-
based ratings for features according to the following formula

R j = B1 j log{
θ j

γ j
}+B2 j log{

1−θ j

1− γ j
}+B3 j log{

γ j

θ j
}+B4 j log{

1− γ j

1−θ j
}

where bigger value indicates the higher relevance or importance (see Figure 12.2), parameters
θ and γ are defined in (12.16).

12.2.6. Decision Trees

Decision Trees is a non-parametric tool of discriminant analysis, which is designed to represent
decision rules in a form of so called binary trees. Binary trees split training data imposing
univariate linear restrictions and represent resulting clusters hierarchically starting from root
node for the whole training sample itself and ending with relatively homogenous small groups of
observations. For each terminal node forecasted value is assigned, hence resulting tree structure
can be interpreted as a decision rule (Breiman et al., 1984).

More specifically, we define a criterion in order to split R�-space into m Voronoi-regions
Vi, i = 1 . . .m, without intersection. Let us denote by Si = Vi ∪X the corresponding clusters.
Assuming that clusters Si are sufficiently large in order to ensure proper level of confidence we
form decision function:

ut = u(xt) =
m

∑
i=1

ỹiIxt∈Vi , ỹi =
∑xt∈Si yt

#Si

where IA is an indicator of the event A.
We can apply Gini index in order to measure uniformity of any subset S

Gini(S) = ỹ(1− ỹ), ỹ =
∑xt∈S yt

#S
.

Again, binary datasets represent an ideal cases for the illustration of the concepts of decision
trees approach. Considering node S as a starting point we can continue construction of the tree
deeper using feature j, which was not used previously as a splitter and must be selected in order
to maximize the following difference

Gini(S)− p ·Gini(SL)− (1− p) ·Gini(SR)≥ 0, p =
#SL

#S
,

where S = SL ∪SR, SL ∩SR = /0.

266

12. CLASSIFICATION WITH RANDOM SETS

0 200 400 600 800 1000 1200 1400 1600 1800
0

200

400

600

800

(a)

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
0

100

200

300

400

500

600

(b)

Figure 12.2: Feature selection using likelihood method (see Section 12.2.5.2): (a) HIVA and
(b) NOVA-sets where rates are sorted in a decreasing order.

267

NIKULIN

Remark 12.8 In addition, we can apply such general method as threshold-based clustering
with regularization in order to split data into several clusters, which are uniform in the sense of
labels. Note, also, that the clustering process may include tuning of the used distance according
to the given requirements (Nikulin, 2006b).

12.2.7. Cross-Validation

CV is a very important in order to test overfitting, and it may be implemented using different
methods. For example, we can split training data randomly into two subsets (with ratio 9:1)
where bigger subset is to be used for training and smaller subset is to be used for testing. The
most important here is selection of the threshold parameter ∆.

1: We can optimize value of ∆ for any particular folder, and then use an average value in the
final model, or

2: we can optimize general value of ∆ for the whole experiment of 50–200 folds.

In the previous paper (Nikulin, 2006a) we employed first approach. Obviously, this ap-
proach has tendency for an optimistic BER prediction. Besides, as Tables 12.1 and 12.2 demon-
strate fluctuation of the threshold parameter ∆ may be significant. In this competition we de-
cided to apply second strategy, which appears to be more logical (see Figure 12.4).

12.3. Boosting Algorithms
Boosting works by sequentially applying a classification algorithm to re-weighted versions of
the training data, and then taking a weighted majority vote of the sequence of classifiers thus
produced. For many classification algorithms, this simple strategy results in dramatic improve-
ments in performance (Friedman, Hastie, and Tibshirani, 2000).

12.3.1. An Exponential Criterion

The motivation in support of exponential target function is very simple and clear. Let us com-
pare squared and exponential loss functions:

(yt −ut)
2; (12.21a)

exp{−ρ · yt ·ut}, ρ > 0. (12.21b)

using two data instances {1,−1} and {1,4} where first and second values correspond to the
label and decision function. The first example represents a mis-classification, and exponential
loss function (12.21b) detects this misclassification correctly in difference to the squared loss
function (12.21a):

{1,−1} {1,4}
squared 4 9

exponential e2ρ e−4ρ

Similar to the Logit model (Nikulin, 2006a), we can not optimize step-size in the case of
exponential target function. Respectively, we will need to maintain low value of the step-size
in order to ensure stability of the algorithm. As a consequence, the whole optimization pro-
cess may be very slow and time-consuming. The target of the following AdaBoost Algorithm
(Freund and Schapire, 1997) is to facilitate optimization process.

268

12. CLASSIFICATION WITH RANDOM SETS

0 20 40 60 80 100
0.049

0.05

0.051

0.052

0.053

0.054
Synthetic

(a)
0 20 40 60 80 100

0.049

0.05

0.051

0.052

0.053
Synthetic

(b)

0 50 100 150 200
0.18

0.182

0.184

0.186

0.188
ADA (agnostic); AdaBoost

(c)
0 10 20 30 40 50

0.18

0.185

0.19
ADA (agnostic); LogitBoost

(d)

Figure 12.3: BER as a function of boosting iteration. First row illustrates application of EI-
boosting to two synthetic sets, see Section 12.3.6; second row illustrates exper-
iments against ADA-set: (c) application of AdaBoost (see Section 12.3.2) and
EI-boosting (Algorithm 12.2 with α = 1.5 and β = 0.2, red-dashed line); (d) ap-
plication of LogitBoost (see Section 12.3.3) and LogitBoost2 (red-dashed line, see
Section 12.3.4) algorithms.

269

NIKULIN

12.3.2. AdaBoost Algorithm

Let us consider minimizing the criterion (Friedman et al., 2000)

n

∑
t=1

ξ (xt ,yt) · e−yt u(xt) (12.22)

where
ξ (xt ,yt) := exp{−ytF(xt)}. (12.23)

We shall assume that initial values of F(xt) are set to zero.
The following Taylor-approximation is valid under assumption that values of u(xt) are small

exp{−ytu(xt)} ≈
1
2
�
(yt −u(xt))

2 +1
�
. (12.24)

Therefore, we can apply QM-model in order to minimize (12.22). Then, we optimize value of
the threshold parameter ∆ for ut , and find corresponding decision rule ft ∈ {−1,1}.

Next, we will return to (12.22)
n

∑
t=1

ξ (xt ,yt) · e−c·yt · f (xt) (12.25)

where optimal value of the parameter c may be easily found

c =
1
2

log{A
B
} (12.26)

where
A = ∑

yt= f (xt)

ξ (xt ,yt), B = ∑
yt �= f (xt)

ξ (xt ,yt).

Finally (for the current boosting iteration), we update function F :

Fnew(xt)← F(xt)+ c · f (xt), (12.27)

and recompute weight coefficients ξ according to (12.23) (see Figure 12.3(c)).

Remark 12.9 Considering test dataset (labels are not available), we will not be able to opti-
mize value of the threshold parameter ∆. Respectively, we can use either an average (predicted)
value of ∆ in order to transform decision function into decision rule, or we can apply direct
update:

Fnew(xt)← F(xt)+ c ·u(xt)

where value of the parameter c ≤ 1 must be small enough in order to ensure stability of the
algorithm.

12.3.3. LogitBoost Algorithm

Let us parameterize the binomial probabilities by

p(xt) =
e2F(xt)

1+ e2F(xt)
.

The binomial log-likelihood is

y�t log{p(xt)}+(1− y�t) log{1− p(xt)}=− log{1+ exp{−2ytF(xt)}}. (12.28)

270

12. CLASSIFICATION WITH RANDOM SETS

−1 −0.8 −0.6 −0.4 −0.2
0.25

0.3

0.35

0.4

0.45

(a)
0 20 40 60 80 100

0.1

0.2

0.3

0.4

(b)

−0.1 −0.05 0 0.05 0.1
0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

(c)
0 20 40 60 80 100

0.1

0.2

0.3

0.4

0.5

(d)

Figure 12.4: Experiments against HIVA-set. Left column: an average BER as a function of
threshold parameter ∆, which was optimized for the whole CV-experiment with
100 folds (see Section 12.2.7). Right column: behavior of BERs as a function of
fold-index where we used an optimal value of the threshold parameter. First row:
RS+QM+reg.; second row: SVM-RBF.

271

NIKULIN

The following relation is valid

exp{−2ytF(xt)}= ξ (xt)z2
t (12.29)

where
zt =

y�t − p(xt)

ξ (xt)
, ξ (xt) = p(xt)(1− p(xt)).

We can maximize (12.28) using method with Newton’s step, which is based on the matrix
of second derivatives (Nikulin, 2006a). This option may be applicable in a low-dimensional
case, for example, ADA or SYLVA sets. As an alternative, we can consider standard weighted
QM-model:

n

∑
t=1

ξ (xt)(zt −ut)
2. (12.30)

After solution u(xt) was found, we update function p(xt)

p(xt)←






1 if ht ≥ 1;
ht if 0 < ht < 1;

0 if ht ≤ 0
(12.31)

where ht = p(xt) + ξ (xt)u(xt). Then, we recompute weight coefficients ξ , and return to the
minimization criterion (12.30).

Let us consider update of function F assuming that 0 < ht < 1. By definition,

Fnew(xt) =
1
2

log{ ht

1−ht
}= 1

2
log{ p(xt)

1− p(xt)
}+ 1

2
log{1+

u(xt)

1− p(xt)u(xt)
}

≈ F(xt)+ν ·u(xt), ν = 0.5. (12.32)

Remark 12.10 Boosting trick (similar to the well-known kernel trick): as an alternative to
QM-solution, we can apply in (12.27) or (12.32) decision function, which was produced by
another method, for example, Naïve Bayes or Decision Trees (Lutz, 2006).

Remark 12.11 Approximation (12.32) coincides with update formula of Friedman et al. (2000),
and is valid under condition that value of u(xt) is small enough. Lutz (2006) suggests careful
approach with the following range 0.1 ≤ ν ≤ 0.3 depending on the particular dataset. Also, it
appears to be reasonable (Friedman et al., 2000) to restrict values of zt in (12.30). However, ex-
periments against ADA-set (see Figure 12.3(d)) were conducted strictly according to the above
formulas (12.31–12.32) with ν = 0.5.

12.3.4. LogitBoost2 Algorithm

Let us consider logit target function

L(w) =
n

∑
t=1

(yt −φ(ut))
2 , φ(u) = tanh(u). (12.33)

Above target function appears to be more natural comparing with squared loss, but we can
not find an optimal value of the step-size in analytical form. Respectively, we will need to
maintain low value of the step-size in order to ensure stability of the algorithm.

The following simple boosting procedure may be efficient in order to facilitate optimization
process (see Figure 12.3(d)). Essentially, the procedure includes 2 steps (NN2-3):

272

12. CLASSIFICATION WITH RANDOM SETS

−0.5 0 0.5
0.17

0.175

0.18

0.185

0.19

0.195

0.2

(a)
0 20 40 60 80 100

0.14

0.16

0.18

0.2

0.22

0.24

(b)

−0.5 0 0.5
0.178

0.18

0.182

0.184

0.186

0.188

(c)
0 20 40 60 80 100

0.12

0.14

0.16

0.18

0.2

0.22

0.24

(d)

Figure 12.5: Experiments against ADA-set (used LogitBoost). Left column: an average BER
as a function of threshold parameter ∆, which was optimized for the whole CV-
experiment with 100 folds (see Section 12.2.7). Right column: behavior of BERs
as a function of fold-index where we used an optimal value of the threshold pa-
rameter. First row: ADA-agnostic; second row: ADA-prior (see Section 12.5).

273

NIKULIN

1: Set initial values: j = 0, z(j)
t = yt and p(j)(xt) = 0, t = 1..n;

2: find solution of the standard QM-problem

L(w) =
n

∑
t=1

�
z(j)

t −u(j)
t

�2
(12.34)

where j is a sequential number of iteration;

3: re-compute the target function

z(j+1)
t = yt − p(j+1)(xt),

p(j+1)(xt)←






1 if p(j)(xt)+u(j)
t ≥ 1;

p(j)(xt)+u(j)
t if −1 < p(j)(xt)+u(j)

t < 1;

−1 if p(j)(xt)+u(j)
t ≤−1.

(12.35)

4: j ← j+1, and goto step 2.

Repeat K times above steps 2–4 and use p(K)(xt) as a decision function.

Algorithm 12.2: EI-Boosting for the weight coefficients (see Section 12.3.5)
1: Let us consider model (12.9) of the Section 12.2.2.
2: Set initial weights ξ (0) = ξ as uniform.
3: Set initial value of optimal BER Q0 = 1, and
4: select values of parameters α > 1 and 0 < β < 1.
5: Repeat for k = 1..K the following steps 6-8:
6: Evaluate QM model and compute the corresponding value of BER Q.
7: Make update Q0 = Q,ξ (0) = ξ if Q < Q0.
8: Boost mis-classified patterns with probability β

ξt := ξ (0)
t ·α if ft · yt =−1.

9: Based on the above experiment select the optimal value of K.

Remark 12.12 Further, we can extend above model (combined with backpropagation algo-
rithm, see Abid et al. (2006)) to the case of arbitrary neural networks with several hidden
layers where computational speed may be very important.

Remark 12.13 Bootstrap Aggregation was introduced by Breiman (1996) as a means for im-
proving accuracy of estimators, and it appears to be logical to combine bagging and boosting
(Pfahringer, 2000).

274

12. CLASSIFICATION WITH RANDOM SETS

12.3.5. Experience-Innovation Approach

The motivation for EI-approach is very simple: after some standard experiments against ADA
or SY LVA-sets we can make a conclusion that overfitting is very limited. Respectively, we
would be interested to improve training results under expectation that the corresponding test
results will follow. This target may be pursued by the natural approach: we propose to increase
attention to the mis-classified patterns, and we can employ here two main methods: 1) increase
weights (Algorithm 12.2), or 2) increase absolute values of the corresponding target functions
(Algorithm 12.3).

Algorithm 12.3: EI-Boosting for the target function (see Section 12.3.5)
1: Let us consider model (12.9) of the Section 12.2.2.
2: Set initial values of target function z(0) = zt = yt , t = 1..n.
3: Set initial value of optimal BER Q0 = 1, and
4: select values of parameters α > 1 and 0 < β < 1.
5: Repeat for k = 1..K the following steps 6-8:
6: Evaluate QM model and compute the corresponding value of BER Q.
7: Make update Q0 = Q,z(0) = z if Q < Q0.
8: Boost mis-classified patterns with probability β

zt := z(0)t ·α if ft · yt =−1.

9: Based on the above experiment select the optimal value of K.

Remark 12.14 There may be nearly identical vectors of features with opposite labels (see ex-
ample of the Section 12.3.6). Respectively, it appears to be not a good idea to boost all mis-
classified patterns identically.

12.3.6. Synthetic Set

The structure of this example (with non-linear dependence between explanatory variables xi
and target variable y) was motivated by ADA-set: it is very understandable that people with the
same demographical characteristics may or may not have an income of $50,000 per year.

We define target variable according to the following rule:

y :=





1 if

h
1+h

≥ τ;

−1, alternatively,
(12.36)

where
h = exp{z · (x1 − x2 +0.3 · x3)}, (12.37)

z :=

�
1 if θ ≥ 0.8;

1−2 · exp{−λψ}, alternatively,
(12.38)

where λ = 3;τ = 0.45;θ ,ψ ∼ R[0,1]; xi ∼ N (1,1), i = 1..�;�= 3.

Remark 12.15 Role of the regulation parameter z is very essential in (12.37): it is positive in
most cases, but may be, also, negative.

275

NIKULIN

According to the above algorithm we simulated a sample of n = 10000 observations, which
were used for testing of the Algorithms 12.2 and 12.3 (see Figure 12.3).

−4 −2 0 2 4 6 8 10
−1.5

−1

−0.5

0

0.5

1

1.5

(b)

0 0.5 1 1.5 2 2.5 3 3.5
−3

−2

−1

0

1

2

3

(a)

Figure 12.6: Distance-based clustering (see Section 12.4).

12.4. Distance-based Clustering
Let us consider synthetic example (see Figure 12.6(a)) with 384 observations from the Predic-
tive Uncertainty in Environmental Modelling Challenge3 (Gawley et al., 2006).

It is common to start any case study of a regression problem with linear modelling (Bagnall
et al., 2006). The QM model produced MSE = 0.4096 (see red line in Figure 12.6(a)). Then,
we decided to split the data (based on the visual consideration) into 4 clusters: 1) x ≤ 0.7;
2) x > 0.7 and x ≤ 1.8; 3) x > 1.8 and x ≤ 2.3; 4) x > 2.3. As a next step we computed
regression coefficients specifically for the particular clusters. Consequently, we created a non-
linear classifier with MSE = 0.2828 (see blue line in Figure 12.6(a)).

Remark 12.16 Further improvement may be achieved using specially selected transformation
of the target variable. As a result, we can expect to reduce non-uniform variance or het-
eroscedasticity.

3. http://theoval.cmp.uea.ac.uk/~gcc/competition/

276

http://theoval.cmp.uea.ac.uk/~gcc/competition/

12. CLASSIFICATION WITH RANDOM SETS

Figure 12.6(b) illustrates the UDON data-set from the NIPS-2006 data-mining competition4

“Learning when the test and training inputs have different distributions”. Here we used also 4
clusters: 1) x ≤ −1.5; 2) x > −1.5 and x ≤ 1.8; 3) x > 1.8 and x ≤ 5.5; 4) x > 5.5 with
improvement of MSE from 0.6174 to 0.0384.

In the case of real high dimensional data (where visual consideration may not be possible)
we can use k-means algorithm with Euclidean or Manhatten distance and special weight coef-
ficients (12.9). For example, weight coefficients may be computed according to the RS method
(see Section 12.2.4).

We can employ k-means algorithm in order to split available training dataset into several
subsets/clusters where any cluster is represented by centroid. Then, we can compute specific
vector of regression coefficients for any particular cluster.

The combination of two matrices 1) centroids and 2) coefficients may be used as an indirect
non-linear kNN classifier, which may be described as a two steps procedure: for any data in-
stance 1) find nearest centroid, and 2) compute decision function according to the corresponding
vector of linear coefficients.

Remark 12.17 Using prior information (see, for example, Table 12.3), we can split data ac-
cording to one or several features as it is described in the Section 12.2.6. But, in difference to
the Section 12.2.6 uniformity of the clusters in the sense of labels is not an issue here.

Remark 12.18 Also, we can use likelihood-based splitter, see Nikulin and Smola (2005).

12.4.1. Generalized Linear Mixture Model (GLiMix)

The GLiMix is an essentially different comparing with the popular EM-algorithm (Dempster
et al., 1977). Using GLiMix we can investigate uniformity of training data in terms of relations
between the target and explanatory variables. Then, we apply these insights in order to optimize
construction of the distance-based splitter.

The definition of the algorithm is based on the following log-likelihood function:

L(m) =
n

∑
t=1

m

∑
c=1

ptc · log{πc · fσc(yt −utc)}, utc =
�

∑
j=1

wc j · xt j, (12.43)

where ptc are probabilities of memberships of data-instance xt within cluster c; πc,c = 1 . . .m,
are prior probabilities; fσ is a density of normal distribution:

fσ (u)∼
1
σ

exp{− u2

2σ2 }.

In order to simplify notations it is assumed that the constant is one of the features.

Remark 12.19 Note that hard-clustering analogue of the above algorithm GLiC may be found
in Nikulin and Smola (2005).

12.5. Experiments
We considered only three sets in the prior track: ADA, GINA and SYLVA where GINA and
SYLVA have the same format as the corresponding sets from the agnostic track. The data
related to ADA require some preprocessing, which was conducted according to the following
Table 12.3:

277

NIKULIN

Algorithm 12.4: GLiMix
1: Select number of segments m.
2: Select initial values of π , σ and w.
3: Compute probabilities of membership according to Bayesian formula:

ptc =
πc · fσc(yt −utc)

∑m
j=1 π j · fσ j(yt −ut j)

, t = 1..n,c = 1..m. (12.39)

4: Re-compute prior probabilities:

πc =
1
n

n

∑
t=1

ptc. (12.40)

5: Re-compute linear coefficients:

Bcv =
�

∑
j=1

Acv j ·wc j, v = 1..�, (12.41)

where

Bcv =
n

∑
t=1

ptc · yt · xtv; Acv j =
n

∑
t=1

ptc · xtv · xt j.

6: Re-compute standard deviations:

σ2
c =

∑n
t=1 ptc · (yt −utc)2

∑n
t=1 ptc

. (12.42)

7: Repeat above steps 3-6 until convergence.

Table 12.3: Preprocessing of ADA-prior information into numerical matrix with 127 columns
or features.

1 Age categorical with 32 dummy variables (step size is 2 years);
2 Employment categorical with 6 dummy variables;
3 fnlwgt continuous, used transformation: log{ x

9999 +1};
4 Education categorical with 15 dummy variables;
5 Education level continuous, used transformation: log{x+1};
6 Marital status categorical with 6 dummy variables;
7 Profession categorical with 13 dummy variables;
8 Family categorical with 5 dummy variables;
9 Race categorical with 4 dummy variables;
10 Sex dummy variables {0,1};
11 Capital-gain continuous, used transformation: log{ x

100 +1};
12 Capital-loss continuous, used transformation: log{ x

100 +1};
13 Hours per week categorical with 40 dummy variables (step size is 2 hours);
14 Native Country dummy variables {0,1} where 1 was used for USA.

278

12. CLASSIFICATION WITH RANDOM SETS

Table 12.4: Winning results of the IJCNN-2007 Agnostic Learning vs. Prior Knowledge Chal-
lenge (used only 5 last complete entries).

Agnostic track
Data Entrant name Entry name Test-BER AUC

ADA Roman Lutz LogitBoost with trees 0.166 0.9168
GINA Roman Lutz LogitBoost/Doubleboost 0.0339 0.9668
HIVA Vojtech Franc RBF SVM 0.2827 0.7707
NOVA Mehreen Saeed Submit E final 0.0456 0.9552
SYLVA Roman Lutz LogitBoost with trees 0.0062 0.9938

Overall Roman Lutz LogitBoost with trees 0.1117 0.8892
Prior track

ADA Marc Boulle Data Grid 0.1756 0.8464
GINA Vladimir Nikulin vn2 0.0226 0.9777
HIVA Chloe Azencott SVM 0.2693 0.7643
NOVA Jorge Sueiras Boost mix 0.0659 0.9712
SYLVA Roman Lutz Doubleboost 0.0043 0.9957

Overall Vladimir Nikulin vn3 0.1095 0.8949

Tables 12.4 and 12.5 illustrate some of the test results. It appears that none of the models
may be regarded as a perfect for all datasets. Based on our experimental results, which are
presented in the Table 12.5, we can recommend the following selections: LogitBoost for ADA
and SYLVA; RBF-SVM for GINA (γ = 0.013); LinearSVM for NOVA and regularized linear
model for HIVA with ridge parameter µ = 0.07. Note that the entry “SVM+GbO+trees” dated
15th November 2006 with very competitive overall result 0.1139 was produced using only spe-
cially developed original software written in C (means without any involvement of R-packages,
CLOP, TreeNet or similar). Guyon et al. (2007) noted that the best performing complete entries
do not necessarily include best individual entries. For example, if we will optimise the structure
of the complete entries using information of the above Table 12.5, the results will be 0.1125
for agnostic, and 0.1068 for prior tracks. According to our experimental results, an advantage
of SYLVA-prior was not significant in difference to GINA-prior. We spent a lot of time for the
preprocessing of ADA-prior information, and, surprisingly, did not achieved any improvement.
Moreover, the performance of ADA-prior was slightly worse comparing with ADA-agnostic.

We used an opportunity of the challenge to test CLOP Version 1.1 – October, 2006. The
most basic (and sufficient) instructions may be found on the last page of Guyon et al. (2007).
The package is a quite efficient and can produce competitive results in application to any dataset
of the Challenge. It is very easy to arrange suitable cross validations with required number
of folds in order to evaluate any particular model, and there is a wide range of choices. For
example, we can recommend the settings in Table 12.6.

All necessary details in relation to the above models may be found in the file “model_examples.m”
in the directory “../CLOP/sample_code”.

In order to check the quality of the model we used cross-validation as it is described in the
Section 12.2.7 with number of folds from 10 to 100 depending on the complexity of the model.

4. http://different.kyb.tuebingen.mpg.de/

279

http://different.kyb.tuebingen.mpg.de/

NIKULIN

Table 12.5: Some selected experimental results where abbreviation “FS-RS” means feature se-
lection with random sets; “ADA” means package in R, “RF” means randomForest
package in R.

Data Method FS-RS Test-BER AUC

ADA ADA(l = 100,ν = 0.3) 38 0.1751 0.8331
ADA TreeNet (Salford Systems) 38 0.1786 0.8306
ADA CLOP-gentleboost (neural) 38 0.183 0.8213
ADA LogitBoost 38 0.1838 0.8038
ADA Exponential 38 0.1847 0.8066

ADA-prior ADA(l = 50,ν = 0.3) 108 0.1788 0.8225
ADA-prior TreeNet (Salford Systems) 108 0.1817 0.805
ADA-prior Exponential 108 0.186 0.8189
ADA-prior QM 108 0.1875 0.8172
ADA-prior CM2+QM 108 0.1886 0.7892
ADA-prior CLOP-gentleboost (neural) 108 0.195 0.7928

GINA-prior CLOP-svc All 0.0226 0.9777
GINA-prior SVM-RBF 540 0.0266 0.975

GINA CLOP-svc All 0.0503 0.9507
GINA SVM-RBF 720 0.0535 0.9464
GINA RVM 720 0.0546 0.95

HIVA SVM-RBF (γ = 0.05) 797 0.282 0.7104
HIVA QM+reg. (µ = 0.07) 797 0.2833 0.7322
HIVA RVM (µ = 0.1) 797 0.2916 0.7296
HIVA RF (200,30,10) 797 0.2929 0.742
HIVA CLOP-gentleboost (kridge) All 0.297 0.7105
HIVA Naïve Bayes (φ = 0.006,m = 200) 400 0.3025 0.6908

NOVA CLOP-gentleboost (neural) All 0.0471 0.9456
NOVA LinearSVM 3200 0.0589 0.9345
NOVA CLOP-gentleboost (kridge) All 0.0601 0.9289
NOVA RVM+reg. 3200 0.0696 0.9585

SYLVA-prior ADA(l = 50,ν = 0.3) 36 0.0071 0.9959
SYLVA-prior CLOP-gentleboost (neural) All 0.0075 0.9918
SYLVA-prior TreeNet (Salford Systems) 36 0.0076 0.994
SYLVA-prior AdaBoost+trees 36 0.0084 0.9924

SYLVA TreeNet (Salford Systems) 74 0.0082 0.9939
SYLVA RF(600,10,10) 74 0.0084 0.9917
SYLVA AdaBoost+trees 74 0.0087 0.9966
SYLVA ADA(l = 50,ν = 0.3) 74 0.0096 0.9933
SYLVA CLOP-gentleboost (neural) All 0.0115 0.9858

Table 12.6: CLOP settings for GINA and NOVA.

Data Model CLOP-specifications

GINA base_model svc(‘coef0=0.1’, ‘degree=7’, ‘gamma=0.005’, ‘shrinkage=0.01’)
my_model chain(normalize , base_model , bias)

NOVA base_model neural(‘units=1’, ‘shrinkage=0.2’, ‘balance=1’, ‘maxiter=50’)
my_model chain(normalize , gentleboost(base_model , ‘units=5’) , bias)

280

12. CLASSIFICATION WITH RANDOM SETS

12.5.1. Small and Low-Dimensional Datasets

In the case of small datasets we can optimize exponential or logit losses directly using gradient-
based optimization (Nikulin, 2006a). Table 12.7 shows some results, which were obtained using
data of the data-mining competition “Learning when the test and training inputs have different
distributions”.

Table 12.7: Values in the first column “Data” indicate sizes of the samples for training, testing
and validation. The best results are given in bold style. Full convergence of the al-
gorithms was achieved after less than 30000 iterations with step size 0.0001 (about
1min time).

Exponential model Logit model

Data � Train Test Valid ρ Train Test Valid φ
Barley: 400-1000-50 5 0.2625 0.1402 0.1336 0.5 0.2201 0.1229 0.1093 0.0001
Wheat: 400-1000-50 5 0.2288 0.2674 0.3064 0.5 0.2321 0.2694 0.2920 0.005
Schitzel: 280-185-40 3 0.5964 0.6732 0.6879 1 0.5489 0.7439 0.7540 0.1

The competition criterion, an average negative log estimated predictive probability of the
true labels,

− 1
n

�

∑
t:yt=1

log{ p̂(xt)}+ ∑
t:yt=−1

log{1− p̂(xt)}
�

(12.44)

may be computed using values of the decision functions u(xt). We can estimate required values
of probabilities in (12.44) according to the standard method

p̂(xt) =

�
exp{u(xt)+a}

1+ exp{u(xt)+a}

�b

. (12.45)

In order to avoid ∞-result we must apply truncation according to the formula (12.17) where
suitable values of φ may be found in the last column of the Table 12.7.

Remark 12.20 Parameters a and b in (12.45) represent an analogues of the threshold parame-
ter ∆. These parameters may be very effective in application to imbalanced datasets. For exam-
ple, we used 1) a = −1.07,b = 2.51 in the case of Exponential model, and 2) a = −1.51,b =
2.01 in the case of Logit model (Barley, see Table 12.7).

12.6. Concluding Remarks
The main idea behind RS-method may be implemented in conjunction with different base mod-
els: for example, decision trees, quadratic-minimization or Naïve Bayes classifiers. The pro-
posed method is an essentially different comparing with Random Forests where the final clas-
sification is given by the majority of voting on the ensemble of trees in the forest (Dahinden,
2006). Assuming that overfitting is limited we can estimate importance of the single subset
of features according to the training simulation result. Then, based on CV-evaluation, we can
select an optimal number of best performing features and recompute the final classifier.

The motivation for EI-boosting is very simple: heuristical innovation of the best past experi-
ence. Generally, boosting may be efficient in the case when overfitting is limited. Respectively,
it appears to be natural to boost any single RS-classifier.

281

NIKULIN

The current experimental results with Distance-based Clustering are promising and may be
improved further. For example, RS-method or GLiMix algorithm may be efficient in order to
optimize selection of the distance-based splitter.

Finally, we considered in this paper several methods which may be used independently or in
conjunction. We can not expect that any of the methods may demonstrate an absolute superiority
against the others. Therefore, performance of the particular method depends on the dataset, and
the main strength of our approach rests on flexibility.

Acknowledgments
This paper passed very long but useful review process and I would like to thank all involved
reviewers. In particular, I am grateful to Isabelle Guyon and Gavin Cawley.

References
S. Abid, A. Mouelhi, and F. Fnaiech. Accelerating the multilayer perceptron learning with the

Davidon Fletcher Powell algorithm. In International Joint Conference on Neural Networks,
Vancouver, BC, Canada, July 16-21, pages 6421–6426. IEEE, 2006.

A. Bagnall, I. Whittley, M. Studley, M. Pettipher, F. Tekiner, and L. Bull. Variance stabilizing
regression ensembles for environmental models. In International Joint Conference on Neural
Networks, Vancouver, BC, Canada, July 16-21, pages 11004–11110. IEEE, 2006.

B. Boser, I. Guyon, and V. Vapnik. A training algorithm for optimal margin classifiers. In Fifth
COLT, Pittsburgh, USA, pages 144–152, 1992.

M. Boulle. Regularization and averaging of the selective Naive Bayes classifier. In International
Joint Conference on Neural Networks, Vancouver, BC, Canada, July 16-21, pages 2989–
2997. IEEE, 2006.

L. Breiman. Bagging predictors. Machine Learning, 24:123–140, 1996.

L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and regression trees. 1984.

C. Dahinden. Classification with tree-based ensembles applied to the WCCI-2006 performance
prediction challenge datasets. In International Joint Conference on Neural Networks, Van-
couver, BC, Canada, July 16-21, pages 2978–2981. IEEE, 2006.

A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incomplete data via the EM
algorithm. Journal of the Royal Statistical Society, 39:1–38, 1977.

Y. Freund and R. Schapire. A decision-theoretic generalization of online learning and an appli-
cation to boosting. J. Comput. System Sciences, 55:119–139, 1997.

J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a statistical view of
boosting. Annals of Statistics, 28:337–374, 2000.

G. Gawley, M. Haylock, and S. Dorling. Predictive uncertainty in environmental modelling.
In International Joint Conference on Neural Networks, Vancouver, BC, Canada, July 16-21,
pages 11096–11103. IEEE, 2006.

282

12. CLASSIFICATION WITH RANDOM SETS

I. Guyon, A. Saffari, G. Dror, and G. Gawley. Agnostic learning vs. prior knowledge chal-
lenge. In International Joint Conference on Neural Networks, Orlando, Florida, August
12-17. IEEE, 2007.

S. Kurogi, D. Kuwahara, and S. Tanaka. Ensemble of competitive associative nets and multiple
k-fold cross-validation for estimating predictive uncertainty in environmental modelling. In
International Joint Conference on Neural Networks, Vancouver, BC, Canada, July 16-21,
pages 11111–11115. IEEE, 2006.

R. Lutz. LogitBoost with trees applied to the WCCI 2006 performance prediction challenge
datasets. In International Joint Conference on Neural Networks, Vancouver, BC, Canada,
July 16-21, pages 2966–2969. IEEE, 2006.

V. Nikulin. Learning with mean-variance filtering, SVM and gradient-based optimization. In
International Joint Conference on Neural Networks, Vancouver, BC, Canada, July 16-21,
pages 4195–4202. IEEE, 2006a.

V. Nikulin. Weighted threshold-based clustering for intrusion detection systems. International
Journal of Computational Intelligence and Applications, 6(1):1–19, 2006b.

V. Nikulin and A. Smola. Parametric model-based clustering. In B. Dasarathy, editor, Data Min-
ing, Intrusion Detection, Information Assurance, and Data Network Security, 28-29 March
2005, Orlando, Florida, USA, volume 5812, pages 190–201. SPIE, 2005.

B. Pfahringer. Winning the KDD99 classification cup: Bagged Boosting. In SIGKDD Explo-
rations, volume 1 of 2, pages 65–66. ACM SIGKDD, 2000.

M. Tipping. Sparse Bayesian learning and the relevance vector machine. Journal of Machine
Learning Research, 1:211–244, 2001.

E. Tuv, A. Borisov, and K. Torkkola. Feature selection using ensemble based ranking against
artificial contrasts. In International Joint Conference on Neural Networks, Vancouver, BC,
Canada, July 16-21, pages 4183–4187. IEEE, 2006.

J. Wichard. Model selection in an ensemble framework. In International Joint Conference on
Neural Networks, Vancouver, BC, Canada, July 16-21, pages 4189–4194. IEEE, 2006.

283

Part V

Multi-level Inference

Overview

While ensemble methods presented in Part IV are attractive because of their ease of use and
excellent performance, they require significant computer resources and end up with a com-
plex and difficult to interpret classifier. In this part, the authors present advanced techniques
to search for a single optimum model, whose performances can approach or match those of
an ensemble. Robust parameter estimation methods (Part III) addressed overfitting avoidance
at the first level of inference (parameter estimation). Multi-level inference methods address
the problem of overfitting avoidance at the second level of inference: model selection. In
Chapter 13, Gavin C. Cawley and Nicola L. C. Talbot present a method for regularizing the
second level of inference based on Bayesian priors. They use a least-square kernel classifier
(LSSVM) with feature scaling factors (so-called ARD prior). The hyperparameters of the first
level of inference (the so-called “ridge”, aka the Lagrange multiplier for the 2-norm regularizer,
and the kernel parameters) are adjusted on the basis of the leave-one-out (least-square) error, as
given by the PRESS statistic. This criterion is itself regularized by the 2-norm of the vector of
scaling factors. Using the Bayesian prior methodology, the authors obtain a surprisingly simple
and intuitive result: the resulting two-part cost function at the second level of inference weighs
PRESS with the number of training examples and the regularizer with the number of features.
In Chapter 14, H. Jair Escalante, Manuel Montes and Enrique Sucar devote their attention
to the problem of full model selection, namely the search for an optimum model in a large
combinatorial space offered by a machine learning toolbox. They use the CLOP package pro-
vided by the challenge organizers (See Appendix C) and an efficient search method, “particle
swarm optimization”, which is a biologically inspired search algorithm. The authors ranked
fourth overall in the ALvsPK challenge (agnostic track) and Juha Reunanen, using also an ex-
tensive search strategy (see Appendix A) obtained second place, also with CLOP models. In
Chapter 15, Gautam Kunapuli, Jong-Shi Pang, and Kristin P. Bennett use bilevel optimiza-
tion to simultaneously optimize parameters and hyperparameters, and thus have the two-levels
of inference talk together in the optimization process. All these pioneering works point to a
new direction of research in which, via a proper overfitting prevention at the second level of
inference, it is possible to do full model selection is the large model spaces offered by machine
learning toolboxes.

287

288

Journal of Machine Learning Research 8(Apr):841–861, 2007 Submitted 11/06; Published 4/07

Chapter 13

Preventing Over-Fitting during Model Selection via Bayesian
Regularisation of the Hyper-Parameters
Gavin C. Cawley GCC@CMP.UEA.AC.UK

Nicola L. C. Talbot NLCT@CMP.UEA.AC.UK

School of Computing Sciences
University of East Anglia
Norwich, United Kingdom NR4 7TJ

Editor: Isabelle Guyon

Abstract
While the model parameters of a kernel machine are typically given by the solution of a

convex optimisation problem, with a single global optimum, the selection of good values for
the regularisation and kernel parameters is much less straightforward. Fortunately the leave-
one-out cross-validation procedure can be performed or a least approximated very efficiently
in closed form for a wide variety of kernel learning methods, providing a convenient means
for model selection. Leave-one-out cross-validation based estimates of performance, however,
generally exhibit a relatively high variance and are therefore prone to over-fitting. In this paper,
we investigate the novel use of Bayesian regularisation at the second level of inference, adding
a regularisation term to the model selection criterion corresponding to a prior over the hyper-
parameter values, where the additional regularisation parameters are integrated out analytically.
Results obtained on a suite of thirteen real-world and synthetic benchmark datasets clearly
demonstrate the benefit of this approach.

13.1. Introduction
Leave-one-out cross-validation (Lachenbruch and Mickey, 1968; Luntz and Brailovsky, 1969;
Stone, 1974) provides the basis for computationally efficient model selection strategies for a
variety of kernel learning methods, including the Support Vector Machine (SVM) (Cortes and
Vapnik, 1995; Chapelle et al., 2002), Gaussian Process (GP) (Rasmussen and Williams, 2006;
Sundararajan and Keerthi, 2001), Least-Squares Support Vector Machine (LS-SVM) (Suykens
and Vandewalle, 1999; Cawley and Talbot, 2004), Kernel Fisher Discriminant (KFD) analysis
(Mika et al., 1999; Cawley and Talbot, 2003; Saadi et al., 2004; Bo et al., 2006) and Kernel Lo-
gistic Regression (KLR) (Keerthi et al., 2005; Cawley and Talbot, 2007). These methods have
proved highly successful for kernel machines having only a small number of hyper-parameters
to optimise, as demonstrated by the set of models achieving the best average score in the WCCI-
2006 performance prediction challenge1 (Cawley, 2006; Guyon et al., 2006). Unfortunately,
while leave-one-out cross-validation estimators have been shown to be almost unbiased (Luntz
and Brailovsky, 1969), they are known to exhibit a relatively high variance (e.g. Kohavi, 1995).
A kernel with many hyper-parameters, for instance those used in Automatic Relevance De-
termination (ARD) (e.g. Rasmussen and Williams, 2006) or feature scaling methods (Chapelle
et al., 2002; Bo et al., 2006), may provide sufficient degrees of freedom to over-fit leave-one-out

1. http://www.modelselect.inf.ethz.ch/index.php

© 2007 G.C. Cawley & N.L.C. Talbot. Reprinted with permission for JMLR

http://www.modelselect.inf.ethz.ch/index.php

CAWLEY TALBOT

cross-validation based model selection criteria, resulting in performance inferior to that obtained
using a less flexible kernel function. In this paper, we investigate the novel use of regularisation
(Tikhonov and Arsenin, 1977) of the hyper-parameters in model selection in order to ameliorate
the effects of the high variance of leave-one-out cross-validation based selection criteria, and
so improve predictive performance. The regularisation term corresponds to a zero-mean Gaus-
sian prior over the values of the kernel parameters, representing a preference for smooth kernel
functions, and hence a relatively simple classifier. The regularisation parameters introduced in
this step are integrated out analytically in the style of Buntine and Weigend (1991), to provide a
Bayesian model selection criterion that can be optimised in a straightforward manner via, e.g.,
scaled conjugate gradient descent (Williams, 1991).

The paper is structured as follows: The remainder of this section provides a brief overview
of the least-squares support vector machine, including the use of leave-one-out cross-validation
based model selection procedures, given in sufficient detail to ensure the reproducibility of
the results. Section 13.2 describes the use of Bayesian regularisation to prevent over-fitting
at the second level of inference, i.e. model selection. Section 13.3 presents results obtained
over a suite of thirteen benchmark datasets, which demonstrate the utility of this approach.
Section 13.4 provides discussion of the results and suggests directions for further research.
Finally, the work is summarised and directions for further work are outlined in Section 13.5.

13.1.1. Least Squares Support Vector Machine

In the remainder of this section, we provide a brief overview of the least-squares support vector
machine (Suykens and Vandewalle, 1999) used as the testbed for the investigation of the role of
regularisation in the model selection process described in this study. Given training data,

D = {(xi, yi)}�i=1 , where xi ∈ X ⊂ Rd and yi ∈ {−1,+1},

we seek to construct a linear discriminant, f (x) = φ(x) ·w+ b, in a feature space, F , defined
by a fixed transformation of the input space, φ : X → F . The parameters of the linear dis-
criminant, (w, b), are given by the minimiser of a regularised (Tikhonov and Arsenin, 1977)
least-squares training criterion,

L =
1
2
�w�2 +

1
2µ

�

∑
i=1

[yi −φ(xi) ·w−b]2 , (13.1)

where µ is a regularisation parameter controlling the bias-variance trade-off (Geman et al.,
1992). Rather than specify the feature space directly, it is instead induced by a kernel function,
K : X ×X → R, which evaluates the inner-product between the projections of the data onto
the feature space, F , i.e. K (x,x�) = φ(x) · φ(x�). The interpretation of an inner-product in a
fixed feature space is valid for any Mercer kernel (Mercer, 1909), for which the Gram matrix,
K = [ki j = K (xi,x j)]

�
i, j=1 is positive semi-definite, i.e.

aT Ka ≥ 0, ∀ a ∈ R�, a �= 0.

The Gram matrix effectively encodes the spatial relationships between the projections of the
data in the feature space, F . A linear model can thus be implicitly constructed in the feature
space using only information contained in the Gram matrix, without explicitly evaluating the
positions of the data in the feature space via the transformation φ(·). Indeed, the representer
theorem (Kimeldorf and Wahba, 1971) shows that the solution of the optimisation problem
(13.1) can be written as an expansion over the training patterns,

w =
�

∑
i=1

αiφ(xi) =⇒ f (x) =
�

∑
i=1

αiK (xi,x)+b.

290

13. PREVENTING OVER-FITTING DURING MODEL SELECTION

The advantage of the “kernel trick” then becomes apparent; a linear model can be constructed
in an extremely rich, high- (possibly infinite-) dimensional feature space, using only finite-
dimensional quantities, such as the Gram matrix, K. The “kernel trick” also allows the con-
struction of statistical models that operate directly on structured data, for instance strings, trees
and graphs, leading to the current interest in kernel learning methods in computational biol-
ogy (Schölkopf et al., 2004) and text-processing (Joachims, 2002). The Radial Basis Function
(RBF) kernel,

K (x,x�) = exp
�
−η�x− x��2� (13.2)

is commonly encountered in practical applications of kernel learning methods, here η is a kernel
parameter, controlling the sensitivity of the kernel function. The feature space for the radial
basis function kernel consists of the positive orthant of an infinite-dimensional unit hyper-sphere
(e.g. Shawe-Taylor and Cristianini, 2004). The Gram matrix for the radial basis function kernel
is thus of full rank (Micchelli, 1986), and so the kernel model is able to form an arbitrary
shattering of the data.

13.1.1.1. A DUAL TRAINING ALGORITHM

The basic training algorithm for the least-squares support vector machine (Suykens and Vande-
walle, 1999) views the regularised loss function (13.1) as a constrained minimisation problem:

min
w,b,εi

1
2
�w�2 +

1
2µ

�

∑
i=1

ε2
i subject to εi = yi −w ·φ(xi)−b.

The primal Lagrangian for this constrained optimisation problem gives the unconstrained min-
imisation problem defined by the following regularised loss function,

L =
1
2
�w�2 +

1
2µ

�

∑
i=1

ε2
i −

�

∑
i=1

αi {w ·φ(xi)+b+ εi − yi} , (13.3)

where α = (α1,α2, . . . ,α�) ∈ R� is a vector of Lagrange multipliers. The optimality conditions
for this problem can be expressed as follows:

∂L
∂w

= 0 =⇒ w =
�

∑
i=1

αiφ(xi) (13.4)

∂L
∂b

= 0 =⇒
�

∑
i=1

αi = 0 (13.5)

∂L
∂εi

= 0 =⇒ αi =
εi

µ
, ∀i ∈ {1,2, . . . , �} (13.6)

∂L
∂αi

= 0 =⇒ w ·φ(xi)+b+ εi − yi = 0, ∀ i ∈ {1,2, . . . , �}. (13.7)

Using (13.4) and (13.6) to eliminate w and ε = (ε1,ε2, . . . ,ε�), from (13.7), we find that

�

∑
j=1

α jφ(x j) ·φ(xi)+b+µαi = yi ∀ i ∈ {1,2, . . . , �}. (13.8)

Noting that K (x,x�) = φ(x) · φ(x�), the system of linear equations, (13.8) and (13.5), can be
written more concisely in matrix form as

�
K +µI 1

1T 0

��
α
b

�
=

�
y
0

�
,

291

CAWLEY TALBOT

where K = [ki j = K (xi,x j)]
�
i, j=1, I is the �× � identity matrix and 1 is a column vector of

� ones. The optimal parameters for the model of the conditional mean can then be obtained
with a computational complexity of O(�3) operations, using direct methods, such as Cholesky
decomposition (Golub and Van Loan, 1996).

13.1.1.2. EFFICIENT IMPLEMENTATION VIA CHOLESKY DECOMPOSITION

A more efficient training algorithm can be obtained, taking advantage of the special structure
of the system of linear equations (Suykens et al., 2002). The system of linear equations to be
solved in fitting a least-squares support vector machine is given by,

�
M 1
1T 0

��
α
b

�
=

�
y
0

�
, (13.9)

where M = K +µI. Unfortunately the matrix on the left-hand side is not positive definite, and
so we cannot solve this system of linear equations directly using the Cholesky decomposition.
However, the first row of (13.9) can be re-written as

M
�
α +M−11b

�
= y (13.10)

Rearranging (13.10), we see that α = M−1 (y−1b), using this result to eliminate α , the second
row of (13.9) can be written as,

1T M−11b = 1T M−1y (13.11)

The system of linear equations can then be re-written as
�

M 0
0T 1T M−11

��
α +M−11b

b

�
=

�
y

1T M−1y

�
. (13.12)

In this case, the matrix on the left hand side is positive-definite, as M = K + λ I is positive-
definite and 1T M−11 is positive since the inverse of a positive definite matrix is also positive
definite. The revised system of linear equations (13.12) can be solved as follows: First solve

Mρ = 1 and Mν = y, (13.13)

which may be performed efficiently using the Cholesky factorisation of M. The model parame-
ters of the least-squares support vector machine are then given by

b =
1T ν
1T ρ

and α = ν −ρb.

The two systems of linear equations (13.13) can be solved efficiently using the Cholesky de-
composition of M = RT R, where R is the upper triangular Cholesky factor of M.

13.1.2. Leave-One-Out Cross-Validation

Cross-validation (Stone, 1974) is commonly used to obtain a reliable estimate of the test error
for performance estimation or for use as a model selection criterion. The most common form,
k-fold cross-validation, partitions the available data into k disjoint subsets. In each iteration a
classifier is trained on a different combination of k− 1 subsets and the unused subset is used
to estimate the test error rate. The k-fold cross-validation estimate of the test error rate is then
simply the average of the test error rate observed in each of the k iterations, or folds. The most
extreme form of cross-validation, where k = � such that the test partition in each fold consists

292

13. PREVENTING OVER-FITTING DURING MODEL SELECTION

of only a single pattern, is known as leave-one-out cross-validation (Lachenbruch and Mickey,
1968) and has been shown to provide an almost unbiased estimate of the test error rate (Luntz
and Brailovsky, 1969). Leave-one-out cross-validation is however computationally expensive,
in the case of the least-squares support vector machine a naïve implementation having a com-
plexity of O(�4) operations. Leave-one-out cross-validation is therefore normally only used in
circumstances where the available data are extremely scarce such that the computational ex-
pense is no longer prohibitive. In this case the inherently high variance of the leave-one-out
estimator (Kohavi, 1995) is offset by the minimal decrease in the size of the training set in
each fold, and so may provide a more reliable estimate of generalisation performance than con-
ventional k-fold cross-validation. Fortunately leave-one-out cross-validation of least-squares
support vector machines can be performed in closed form with a computational complexity of
only O(�3) operations Cawley and Talbot (2004). Leave-one-out cross-validation can then be
used in medium to large scale applications, where there may be a few thousand data-points,
although the relatively high variance of this estimator remains potentially problematic.

13.1.2.1. VIRTUAL LEAVE-ONE-OUT CROSS-VALIDATION

The optimal values of the parameters of a Least-Squares Support Vector Machine are given by
the solution of a system of linear equations:

�
K +µI 1

1T 0

��
α
b

�
=

�
y
0

�
. (13.14)

The matrix on the left-hand side of (13.14) can be decomposed into block-matrix representation,
as follows: �

K +µI 1
1T 0

�
=

�
c11 cT

1
c1 C1

�
=C.

Let [α(−i);b(−i)] represent the parameters of the least-squares support vector machine during
the ith iteration of the leave-one-out cross-validation procedure, then in the first iteration, in
which the first training pattern is excluded,

�
α(−1)

b(−1)

�
=C−1

1 [y2, . . . ,y�,0]T .

The leave-one-out prediction for the first training pattern is then given by,

ŷ(−1)
1 = cT

1

�
α(−1)

b(−1)

�
= cT

1 C−1
1 [y2, . . . ,y�,0]T

Considering the last � equations in the system of linear equations (13.14), it is clear that
[c1 C1] [α1, . . . ,α�,b]T = [y2, . . . ,y�,0]T , and so

ŷ(−1)
1 = cT

1 C−1
1 [c1 C1]

�
αT ,b

�T
= cT

1 C−1
1 c1α1 + c1 [α2, . . . ,α�,b]

T .

Noting, from the first equation in the system of linear equations (13.14), that y1 = c11α1 +
cT

1 [α2, . . . ,α�,b]
T , thus

ŷ(−1)
1 = y1 −α1

�
c11 − cT

1 C−1
1 c1

�

Finally, via the block matrix inversion lemma,
�

c11 cT
1

c1 C1

�−1
=

�
κ−1 −κ−1c1C−1

1
C−1

1 +κ−1C−1
1 cT

1 c1C−1
1 −κ−1C−1

1 cT
1

�
,

293

CAWLEY TALBOT

where κ = c11 −cT
1 C−1

1 c, and noting that the system of linear equations (13.14) is insensitive to
permutations of the ordering of the equations and of the unknowns, we have that,

yi − ŷ(−i)
i =

αi

C−1
ii

. (13.15)

This means that, assuming the system of linear equations (13.14) is solved via explicit inversion
of C, a leave-one-out cross-validation estimate of an appropriate model selection criterion can be
evaluated using information already available a by-product of training the least-squares support
vector machine on the entire dataset (c.f. Sundararajan and Keerthi, 2001).

13.1.2.2. EFFICIENT IMPLEMENTATION VIA CHOLESKY FACTORISATION

The leave-one-out cross-validation behaviour of the least-squares support vector machine is
described by (13.15). The coefficients of the kernel expansion, α , can be found efficiently, via
Cholesky factorisation, as described in Section 13.1.1.2. However we must also determine the
diagonal elements of C−1 in an efficient manner. Using the block matrix inversion formula, we
obtain

C−1 =

�
M 1
1T 0

�−1

=

�
M−1 +M−11S−1

M 1T M−1 −M−11S−1
M

−S−1
M 1T M−1 S−1

M

�

where M = K + µI and SM = −1T M−11 = −1T η is the Schur complement of M. The inverse
of the positive definite matrix, M, can be computed efficiently from its Cholesky factorisation,
via the SYMINV algorithm (Seaks, 1972), for example using the LAPACK routine DTRTRI
(Anderson et al., 1999). Let R = [ri j]

�
i, j=1 be the lower triangular Cholesky factor of the positive

definite matrix M, such that M = RRT . Furthermore, let

S = [si j]
�
i, j=1 = R−1, where sii =

1
rii

and si j =−sii

i−1

∑
k=1

riksk j,

represent the (lower triangular) inverse of the Cholesky factor. The inverse of M is then given
by M−1 = ST S. In the case of efficient leave-one-out cross-validation of least-squares support
vector machines, we are principally concerned only with the diagonal elements of M−1, given
by

M−1
ii =

i

∑
j=1

s2
i j =⇒ C−1

ii =
i

∑
j=1

s2
i j +

ρ2
i

SM
∀ i ∈ {1,2, . . . , �}.

The computational complexity of the basic training algorithm is O(�3) operations, being
dominated by the evaluation of the Cholesky factor. However, the computational complex-
ity of the analytic leave-one-out cross-validation procedure, when performed as a by-product
of the training algorithm, is only O(�) operations. The computational expense of the leave-
one-out cross-validation procedure therefore becomes increasingly negligible as the training set
becomes larger.

13.1.3. Model Selection

The virtual leave-one-out cross-validation procedure described in the previous section provides
the basis for a simple automated model selection strategy for the least-squares support vector
machine. Perhaps the most basic model selection criterion is provided by the Predicted REsidual

294

13. PREVENTING OVER-FITTING DURING MODEL SELECTION

Sum of Squares (PRESS) criterion (Allen, 1974), which is simply the leave-one-out estimate of
the sum-of-squares error,

Q(θ) = 1
2

�

∑
i=1

�
yi − ŷ(−i)

i

�2
(13.16)

A minimum of the model selection criterion is often found via a simple grid-search procedure
in the majority of practical applications of kernel learning methods. However, this is rarely
necessary and often highly inefficient as a grid-search spends a large amount of time investigat-
ing hyper-parameter values outside the neighbourhood of the global optimum. A more efficient
approach uses the Nelder-Mead simplex algorithm (Nelder and Mead, 1965), as implemented
by the fminsearch function of the MATLAB optimisation toolbox. An alternative easily im-
plemented approach uses conjugate gradient methods, with the required gradient information
estimated by the method of finite differences, and implemented by the fminunc function from
the MATLAB optimisation toolbox. In this study however, we use scaled conjugate gradient
descent (Williams, 1991), with the required gradient information evaluated analytically, as this
is approximately twice as efficient.

13.1.3.1. PARTIAL DERIVATIVES OF THE PRESS MODEL SELECTION CRITERION

Let θ = {θ1, . . . ,θn} = {λ ,η1, . . . ,ηd} represent the vector of hyper-parameters for a least-
squares support vector machine, where η1, . . . ,ηd represent the kernel parameters. The PRESS
statistic Allen (1974) can be written as

Q(θ) = 1
2

�

∑
i=1

�
r(−i)

i

�2
, where r(−i)

i = yi − ŷ(−i)
i =

αi

C−1
ii

. (13.17)

Using the chain rule, the partial derivative of the PRESS statistic, with respect to an individual
hyper-parameter, θ j, is given by,

∂Q(θ)
∂θ j

=
�

∑
i=1

∂Q(θ)
∂ r(−i)

i

∂ r(−i)
i

∂θ j
,

where
∂Q(θ)
∂ r(−i)

i

= r(−i)
i =

αi

C−1
ii

and
∂ r(−i)

i
∂θ j

=
∂αi

∂θ j

1
C−1

ii
− αi

�
C−1

ii
�2

∂C−1
ii

∂θ j
,

such that
∂Q(θ)

∂θ j
=

�

∑
i=1

αi

C−1
ii

�
∂αi

∂θ j

1
C−1

ii
− αi

�
C−1

ii
�2

∂C−1
ii

∂θ j

�
. (13.18)

We begin by deriving the partial derivatives of the model parameters,
�
αT b

�T , with respect to
the hyper-parameter θ j. The model parameters are given by the solution of a system of linear
equations, such that �

αT b
�T

=C−1 �yT 0
�T

.

Using the following identity for the partial derivatives of the inverse of a matrix,

∂C−1

∂θ j
=−C−1 ∂C

∂θ j
C−1, (13.19)

295

CAWLEY TALBOT

we obtain,
∂
�
αT b

�T

∂θ j
=−C−1 ∂C

∂θ j
C−1 �yT 0

�
=−C−1 ∂C

∂θ j

�
αT b

�T
.

Note the computational complexity of evaluating the partial derivatives of the model parameters
is O(�2), as only two successive matrix-vector products are required. The partial derivatives of
the diagonal elements of C−1 can be found using the inverse matrix derivative identity (13.19).
For a kernel parameter, ∂C/∂η j will generally be fully dense, and so the computational com-
plexity of evaluating the diagonal elements of ∂C−1/∂η j will be O(�3) operations. If, on the
other hand, we consider the regularisation parameter, µ , we have that

∂C
∂ µ

=

�
I 0

0T 0

�
,

and so the computation of the partial derivatives of the model parameters, with respect to the
regularisation parameter, is slightly simplified,

∂
�
αT b

�T

∂ µ
=−C−1 �αT b

�T
.

More importantly, as ∂C/∂ µ is diagonal, the diagonal elements of (13.19) can be evaluated
with a computational complexity of only O(�2) operations. This suggests that it may be more
efficient to adopt different strategies for optimising the regularisation parameter, µ , and the
vector of kernel parameters, η , (c.f. Saadi et al., 2004). For a kernel parameter, η j, the partial
derivatives of C with respect to η j are given by the partial derivatives of the kernel matrix, i.e.

∂C
∂η j

=

�
∂K/∂η j 0

0T 0

�
.

For the spherical radial basis function kernel, used in this study, the partial derivative with
respect to the kernel parameter is given by

∂K (x,x�)
∂η

=−K (x,x�)�x− x��2. (13.20)

Finally, since the regularisation parameter, µ , and the scale parameter of the radial basis func-
tion kernel are strictly positive quantities, in order to permit the use of an unconstrained optimi-
sation procedure, we adopt the parameterisation �θ j = log2 θ j, such that

∂Q(θ)
∂ �θ j

=
∂Q(θ)

∂θ j

∂θ j

∂ �θ j
where

∂θ j

∂ �θ j
= θ j log2. (13.21)

13.1.3.2. AUTOMATIC RELEVANCE DETERMINATION

Automatic Relevance Determination (ARD) (e.g. Rasmussen and Williams, 2006), also known
as feature scaling (Chapelle et al., 2002; Bo et al., 2006), aims to identify informative input
features as a natural consequence of optimising the model selection criterion. This can be most
easily achieved using an elliptical radial basis function kernel,

K (x,x�) = exp

�
−

d

∑
i=1

ηi[xi − x�i]
2

�
, (13.22)

296

13. PREVENTING OVER-FITTING DURING MODEL SELECTION

that incorporates individual scaling factors for each input dimension. The partial derivatives
with respect to the kernel parameters are then given by,

∂K (x,x�)
∂ηi

=−K (x,x�)[xi − x�i]
2. (13.23)

Generalisation performance is likely to be enhanced if irrelevant features are down-weighted. It
is therefore hoped that minimising the model selection criterion will lead to very small values
for the scaling factors associated with redundant input features, allowing them to be identified
and pruned from the model.

13.2. Bayesian Regularisation in Model Selection
In order to overcome the observed over-fitting in model selection using leave-one-out cross-
validation based methods, we propose to add a regularisation term (Tikhonov and Arsenin,
1977) to the model selection criterion, which penalises solutions where the kernel parameters
take on unduly large values. The regularised model selection criterion is then given by

M(θ) = ζ Q(θ)+ξ Ω(θ), (13.24)

where ξ and ζ are additional regularisation parameters, Q(θ) is the model selection criterion,
in this case the PRESS statistic and Ω(θ) is a regularisation term,

Q(θ) = 1
2

�

∑
i=1

�
yi − ŷ(−i)

i

�2
and Ω(θ) = 1

2

d

∑
i=1

η2
i .

In this study we have left the regularisation parameter, µ , unregularised. However, we have now
introduced two further regularisation parameters ξ and ζ for which good values must also be
found. This problem may be solved by taking a Bayesian approach and adopting an ignorance
prior and integrating out the additional regularisation parameters analytically in the style of
Buntine and Weigend (1991). Adapting the approach taken by Williams (1995), the regularised
model selection criterion (13.24) can be interpreted as the posterior density in the space of the
hyper-parameters,

P(θ |D) ∝ P(D |θ)P(θ),
by taking the negative logarithm and neglecting additive constants. Here P(D |θ) represents the
likelihood with respect to the hyper-parameters and P(θ) represents our prior beliefs regarding
the hyper-parameters, in this case that they should have a small magnitude, corresponding to a
relatively simple model. These quantities can be expressed as

P(D |θ) = Z−1
Q exp{−ζ Q(θ)} and P(θ) = Z−1

Ω exp{−ξ Ω(θ)}

where ZQ and ZΩ are the appropriate normalising constants. Assuming the data represent an
i.i.d. sample, the likelihood in this case is Gaussian,

P(D |θ) =
�

∏
i=1

1√
2πσ

exp





−

�
yi − ŷ(−i)

i

�2

2σ2





where ζ =

1
σ2 =⇒ ZQ =

�
2π
ζ

��/2

Likewise, the prior is a Gaussian, centred on the origin,

P(θ) =
d

∏
i=1

1�
2π/ξ

exp
�
−ξ

2
η2

i

�
such that ZΩ =

�
2π
ξ

�d/2

297

CAWLEY TALBOT

Minimising (13.24) is thus equivalent to maximising the posterior density with respect to the
hyper-parameters. Note that the use of a prior over the hyper-parameters is in accordance with
normal Bayesian practice and has been investigated in the case of Gaussian Process classifiers
by Williams and Barber (1998). The combination of frequentist and Bayesian approaches at the
first and second levels of inference is however somewhat unusual. The marginal likelihood is
dependent on the assumptions of the model, which may not be completely appropriate. Cross-
validation based procedures may therefore be more robust in the case of model mis-specification
(Wahba, 1990). It seems reasonable for the model to be less sensitive to assumptions at the
second level of inference than the first, and so the proposed approach represents a pragmatic
combination of techniques.

13.2.1. Elimination of Second Level Regularisation Parameters ξ and ζ

Under the evidence framework proposed by MacKay (1992a,b,c) the hyper-parameters ξ and
ζ are determined by maximising the marginal likelihood, also known as the Bayesian evidence
for the model. In this study, however we opt to integrate out the hyper-parameters analytically,
extending the work by Buntine and Weigend (1991) and Williams (1995) to consider Bayesian
regularisation at the second level of inference, namely the selection of good values for the
hyper-parameters. We begin with the prior over the hyper-parameters, which depends on ξ ,

P(θ |ξ) = ZΩ(ξ)−1 exp{−ξ Ω} .

The regularisation parameter ξ may then be integrated out analytically using a suitable prior,
P(ξ),

P(θ) =
�

P(θ |ξ)P(ξ)dξ .

The improper Jeffreys’ prior, P(ξ) ∝ 1/ξ is an appropriate ignorance prior in this case as ξ is a
scale parameter, noting that ξ is strictly positive,

p(θ) = 1
(2π)d/2

� ∞

0
ξ d/2−1 exp{−ξ Ω}dξ

Using the Gamma integral
� ∞

0 xν−1e−µxdx = Γ(ν)/µν (Gradshteyn and Ryzhic, 1994, equation
3.384), we obtain

p(θ) = 1
(2π)d/2

Γ(d/2)
Ωd/2 =⇒ − log p(θ) ∝ d

2
logΩ.

Finally, adopting a similar procedure to eliminate ζ , we obtain a revised model selection crite-
rion with Bayesian regularisation,

L =
�

2
logQ(θ)+ d

2
logΩ(θ). (13.25)

in which the regularisation parameters have been eliminated. As before, this criterion can be
optimised via standard methods, such as the Nelder-Mead simplex algorithm (Nelder and Mead,
1965) or scaled conjugate gradient descent (Williams, 1991). The partial derivatives of the
proposed Bayesian model selection criterion are given by

∂L
∂θi

=
�

2Q(θ)
∂Q(θ)

∂θi
+

d
2Ω(θ)

∂Ω(θ)
∂θi

and
∂Ω(θ)

∂ηi
= ηi.

298

13. PREVENTING OVER-FITTING DURING MODEL SELECTION

The additional computational expense involved in Bayesian regularisation of the model selec-
tion criterion is only O(d) operations, and is extremely small in comparison with the O(�3) op-
erations involved in obtaining the leave-one-out error (including the cost of training the model
on the entire dataset). Per iteration of the model selection process, the cost of the Bayesian
regularisation is therefore minimal. There seems little reason to suppose that the regularisation
will have an adverse effect on convergence, and this seems to be the case in practice.

13.2.2. Relationship with the Evidence Framework

Under the evidence framework of MacKay (1992a,b,c) the regularisation parameters, ξ and ζ ,
are selected so as to maximise the marginal likelihood, also known as the Bayesian evidence,
for the model. The log-evidence is given by

logP(D) =−ξ Ω(θ)−ζ Q(θ)− 1
2

log |A|+ d
2

logξ +
�

2
logζ − �

2
log{2π} ,

where A is the Hessian of the regularised model selection criterion (13.24) with respect to the
hyper-parameters, θ . Setting the partial derivatives of the log evidence with respect to the
regularisation parameters, ξ and ζ , equal to zero, we obtain the familiar update formulae,

ξ new =
γ

2Ω(θ)
and ζ new =

�− γ
2Q(θ)

,

where γ is the number of well defined hyper-parameters, i.e. the hyper-parameters for which
the optimal value is primarily determined by the log-likelihood term, Q(θ) rather than by the
regulariser, Ω(θ). In the case of the L2 regularisation term, corresponding to a Gaussian prior,
the number of well determined hyper-parameters is given by

γ =
n

∑
j=1

λ j

λ j +ξ

where, λi, . . . ,λn represent the eigenvalues of the Hessian of the unregularised model selection
criterion, Q(θ) with respect to the kernel parameters. Comparing the partial derivatives of the
regularised model selection criterion (13.24) with those of the Bayesian criterion (13.25), re-
veals that the Bayesian regularisation scheme is equivalent to optimising the regularised model
selection criterion (13.24) assuming that the regularisation parameters, ξ and ζ , are continu-
ously updated according to the following update rules,

ξ eff =
d

2Ω(θ)
and ζ eff =

�

2Q(θ)
.

This exactly corresponds to the “cheap and cheerful” approximation of the evidence frame-
work suggested by MacKay (1994), which assumes that all of the hyper-parameters are well-
determined and that the number of hyper-parameters is small in relation to the number of train-
ing patterns. Since γ ≤ d, it seems self evident that the proposed Bayesian regularisation scheme
will be prone to a degree of under-fitting, especially in the case of a feature scaling kernel with
many redundant features. The theoretical and practical pros and cons of the integrate-out ap-
proach and the evidence framework are discussed in some detail by MacKay (1994) and Bishop
(1995) and references therein. However, the integrate-out approach does not require the eval-
uation of the Hessian matrix of the original selection criterion, Q(θ), which is likely to prove
computationally prohibitive.

299

CAWLEY TALBOT

13.3. Results
In this section, we present experimental results demonstrating the benefits of the proposed
model selection strategy incorporating Bayesian regularisation to overcome the inherent high
variance of leave-one-out cross-validation based selection criteria. Table 13.2 shows a compari-
son of the error rates of least-squares support vector machines, using model selection procedures
with, and without, Bayesian regularisation, (LS-SVM and LS-SVM-BR respectively) over the
suite of thirteen public domain benchmark datasets used in the study by Mika et al. (2000).
Results obtained using a Gaussian process classifier (Rasmussen and Williams, 2006), based on
the expectation propagation method, are also provided for comparison (EP-GPC). The same set
of 100 random partitions of the data (20 in the case of the larger image and splice bench-
marks) to form training and test sets used in that study are also used here. In each case, model
selection is performed independently for each realisation of the dataset, such that the standard
errors reflect the variability of both the training algorithm and the model selection procedure
with changes in the sampling of the data. Both conventional spherical and elliptical radial basis
kernels are used for all kernel learning methods, so that the effectiveness of each algorithm for
automatic relevance determination can be assessed. The use of multiple training/test partitions
allows an estimate of the statistical significance of differences in performance between algo-
rithms to be computed. Let x̂ and ŷ represent the means of the performance statistic for a pair
of competing algorithms, and ex and ey the corresponding standard errors, then the z statistic is
computed as

z =
ŷ− x̂�
e2

x + e2
y

.

The z-score can then be converted to a significance level via the normal cumulative distribution
function, such that z= 1.64 corresponds to a 95% significance level. All statements of statistical
significance in the remainder of this section refer to a 95% level of significance.

Table 13.1: Details of datasets used in empirical comparison.

Dataset Training Testing Number of Input
Patterns Patterns Replications Features

Banana 400 4900 100 2
Breast cancer 200 77 100 9
Diabetis 468 300 100 8
Flare solar 666 400 100 9
German 700 300 100 20
Heart 170 100 100 13
Image 1300 1010 20 18
Ringnorm 400 7000 100 20
Splice 1000 2175 20 60
Thyroid 140 75 100 5
Titanic 150 2051 100 3
Twonorm 400 7000 100 20
Waveform 400 4600 100 21

300

13. PREVENTING OVER-FITTING DURING MODEL SELECTION

Table
13.2:

Error
rates

of
least-squares

supportvector
m

achine,w
ith

and
w

ithoutB
ayesian

regularisation
of

the
m

odelselection
criterion,in

this
case

the
PR

ESS
statistic

(A
llen,1974),and

G
aussian

process
classifiers

over
thirteen

benchm
ark

datasets
(R

ätsch
etal.,2001),using

both
standard

radialbasis
function

and
autom

atic
relevance

determ
ination

kernels.The
results

forthe
EP-G

PC
w

ere
obtained

using
the

M
ATLA

B
softw

are
accom

panying
the

book
by

R
asm

ussen
and

W
illiam

s
(2006).The

results
foreach

m
ethod

are
presented

in
the

form
of

the
m

ean
error

rate
over

testdata
for

100
realisations

of
each

dataset(20
in

the
case

of
the

im
age

and
splice

datasets),along
w

ith
the

associated
standard

error.
The

bestresults
are

show
n

in
boldface

and
the

second
bestin

italics
(w

ithoutim
plication

of
statistical

significance).

D
ataset

R
adialBasisFunction

Autom
atic

R
elevance

D
eterm

ination

LSSV
M

LSSV
M

-BR
EP-G

PC
LSSV

M
LSSV

M
-BR

EP-G
PC

Banana
10.60

±
0.052

10.59
±

0.050
10.41

±
0.046

10.79
±

0.072
10.73

±
0.070

10.46
±

0.049

Breastcancer
26.73

±
0.466

27.08
±

0.494
26.52

±
0.489

29.08
±

0.415
27.81

±
0.432

27.97
±

0.493

D
iabetes

23.34
±

0.166
23.14

±
0.166

23.28
±

0.182
24.35

±
0.194

23.42
±

0.177
23.86

±
0.193

Flare
solar

34.22
±

0.169
34.07

±
0.171

34.20
±

0.175
34.39

±
0.194

33.61
±

0.151
33.58

±
0.182

G
erm

an
23.55

±
0.216

23.59
±

0.216
23.36

±
0.211

26.10
±

0.261
23.88

±
0.217

23.77
±

0.221

H
eart

16.64
±

0.358
16.19

±
0.348

16.65
±

0.287
23.65

±
0.355

17.68
±

0.623
19.68

±
0.366

Im
age

3.00
±

0.158
2.90

±
0.154

2.80
±

0.123
1.96

±
0.115

2.00
±

0.113
2.16

±
0.068

R
ingnorm

1.61
±

0.015
1.61

±
0.015

4.41
±

0.064
2.11

±
0.040

1.98
±

0.026
8.58

±
0.096

Splice
10.97

±
0.158

10.91
±

0.154
11.61

±
0.181

5.86
±

0.179
5.14

±
0.145

7.07
±

0.765

Thyroid
4.68

±
0.232

4.63
±

0.218
4.36

±
0.217

4.68
±

0.199
4.71

±
0.214

4.24
±

0.218

Titanic
22.47

±
0.085

22.59
±

0.120
22.64

±
0.134

22.58
±

0.108
22.86

±
0.199

22.73
±

0.134

Tw
onorm

2.84
±

0.021
2.84

±
0.021

3.06
±

0.034
5.18

±
0.072

4.53
±

0.077
4.02

±
0.068

W
aveform

9.79
±

0.045
9.78

±
0.044

10.10
±

0.047
13.56

±
0.141

11.48
±

0.177
11.34

±
0.195

301

CAWLEY TALBOT

13.3.1. Performance of Models Based on the Spherical RBF Kernel

The results shown in the first three data columns of Table 13.2 show the performance of LS-
SVM, LS-SVM-BR and EP-ARD models based on the spherical Gaussian kernel. The per-
formance of LS-SVM models with and without Bayesian regularisation are very similar, with
neither model proving significantly better than the other on any of the datasets. This seems
reasonable given that only two hyper-parameters are optimised during model selection and so
there is little scope for over-fitting the PRESS model selection criterion and the regularisation
term will have little effect. The LS-SVM model with Bayesian regularisation is significantly
out-performed by the Gaussian Process classifier on one benchmark banana, but performs
significantly better on a further four (ringnorm, splice, twonorm, waveform). Demšar
(2006) recommends the use of the Wilcoxon signed rank test for assessing the statistical signif-
icance of differences in performance over multiple datasets. According to this test, neither the
LSSVM-BR nor the EP-PGC is statistically superior at the 95% level of significance.

13.3.2. Performance of Models Based on the Elliptical RBF Kernel

The performances of LS-SVM, LS-SVM-BR and EP-GPC models based on the elliptical Gaus-
sian kernel, which includes a separate scale parameter for each input feature, are shown in the
last three columns of Table 13.2. Before evaluating the effects of Bayesian regularisation in
model selection it is worth noting that the use of elliptical RBF kernels does not generally im-
prove performance. For the LS-SVM, the elliptical kernel produces significantly better results
on only two benchmarks (image and splice) and significantly worse results on a further
eight (banana, breast cancer, diabetis, german, heart, ringnorm, twonorm,
waveform), with the degradation in performance being very large in some cases (e.g. heart).
This seems likely to be a result of the additional degrees of freedom involved in the model se-
lection process, allowing over-fitting of the PRESS model selection criterion as a result of its
inherently high variance. Note that fully Bayesian approaches, such as the Gaussian Process
Classifier, are also unable to reliably select kernel parameters for the elliptical RBF kernel. The
elliptical kernel is significantly better on only three benchmarks (flare solar, image and
splice), while being significantly worse on six (breast cancer, diabetis, heart,
ringnorm, twonorm and waveform).

In the case of the elliptical RBF kernel, the use of Bayesian regularisation in model selection
has a dramatic effect on the performance of LS-SVM models, with the LS-SVM-BR model
proving significantly better than the conventional LS-SVM on nine of the thirteen benchmarks
(breast cancer, diabetis, flare solar, german, heart, ringnorm, splice,
twonorm and waveform) without being significantly worse on any of the remaining four
datasets. This demonstrates that over-fitting in model selection, due to the larger number of
kernel parameters, is likely to be the significant factor causing the relatively poor performance
of models with the elliptical RBF kernel. Again, the Gaussian Process classifier is significantly
better than the LS-SVM with Bayesian regularisation on the banana and twonorm datasets,
but is significantly worse on four of the remaining eleven (diabetis, heart, ringnorm
and splice). Again, according to the Wilcoxon signed rank test, neither the LSSVM-BR nor
the EP-PGC is statistically superior at the 95% level of significance. However the magnitude
of the difference in performance between LSSVM-BR and EP-GPC approaches tends to be
greatest when the LSSVM-BR out-performs EP-GPC, most notably on the heart, splice
and ringnorm data sets. This provides some support for the observation of Wahba (1990)
that cross-validation based model selection procedures should be more robust against model
mis-specification (see also Rasmussen and Williams, 2006).

302

13. PREVENTING OVER-FITTING DURING MODEL SELECTION

13.4. Discussion
The experimental evaluation presented in the previous section demonstrates that over-fitting can
occur in model selection, due to the variance of the model selection criterion. In many cases the
minimum of the selection criterion using the elliptical RBF kernel is lower than that achievable
using the spherical RBF kernel, however this results in a degradation in generalisation perfor-
mance. Using the PRESS statistic, the over-fitting is likely to be most severe in cases with a
small number of training patterns, as the variance of the leave-one-out estimator decreases as
the sample size becomes larger. Using the standard LSSVM, the elliptical RBF kernel only
out-performs the spherical RBF kernel on two of the thirteen datasets, image and splice,
which also happen to be the two largest datasets in terms of the number of training patterns. The
greatest degradation in performance is obtained on the heart benchmark, the third smallest.
The heart dataset also has a relatively large number of input features (13). A large number of
input features introduces a many additional degrees of freedom to optimise the model selection
criterion, and so will generally tend to encourage over-fitting. However, there may be a compact
subset of highly relevant features with the remainder being almost entirely uninformative. In
this case the advantage of suppressing the noisy inputs is so great that it overcomes the pre-
disposition towards over-fitting, and so results in improved generalisation (as observed in the
case of the image and splice benchmarks). Whether the use of an elliptical RBF kernel will
improve or degrade generalisation largely depends on such characteristics of the data that are
not known a-priori, and so it seems prudent to consider a range of kernel functions and select
the best via cross-validation.

The experimental results indicate that Bayesian regularisation of the hyper-parameters is
generally beneficial, without at this stage providing a complete solution to the problem of over-
fitting the model selection criterion. The effectiveness of the Bayesian regularisation scheme is
to a large extent dependent on the appropriateness of the prior imposed on the hyper-parameters.
There is no reason to assume that the simple Gaussian prior used here is in any sense optimal,
and this is an issue where further research is necessary (see Section 13.4.2). The compari-
son of the integrate-out approach and the evidence framework highlights a deficiency of the
simple Gaussian prior. It suggests that the integrate-out approach is likely to result in mild over-
regularisation of the hyper-parameters in the presence of a large number of irrelevant features,
as the corresponding hyper-parameters will be ill-determined.

The LSSVM with Bayesian regularisation of the hyper-parameters does not significantly
out-perform the expectation propagation based Gaussian process classifier over the suite of
thirteen benchmark datasets considered. This is not wholly surprising as the EP-GPC is at
least very close to the state-of-the-art, indeed it is interesting that the EP-GPC does not out-
perform such a comparatively simple model. The EP-GPC uses the marginal likelihood as the
model selection criterion, which gives the probability of the data, given the assumptions of
the model (Rasmussen and Williams, 2006). Cross-validation based approaches, on the other
hand, provide an estimate of generalisation performance that does not depend on the model
assumptions, and so may be more robust against model mis-specification Wahba (1990). The
no free lunch theorems suggest that, at least in terms of generalisation performance, there is a
lack of inherent superiority of one classification method over another, in the absence of a-priori
assumptions regarding the data. This implies that if one classifier performs better than another
on a particular dataset it is because the inductive biases of that classifier provide a better fit to
the particular pattern recognition task, rather than to its superiority in a more general sense. A
model with strong inductive biases is likely to benefit when these biases are well suited to the
data, but will perform badly when they do not. While a model with weak inductive biases will

303

CAWLEY TALBOT

be more robust, it is less likely to perform conspicuously well on any given dataset. This means
there are complementary advantages and disadvantages to both approaches.

13.4.1. Relationship to Existing Work

The use of a prior over the hyper-parameters is in accordance with normal Bayesian practice
and has been used in Gaussian Process classification (Williams and Barber, 1998). The prob-
lem of over-fitting in model selection has also been addressed by Qi et al. (2004), in the case of
selecting informative features for a logistic regression model using an Automatic Relevance De-
termination (ARD) prior (c.f. Tipping, 2000). In this case, the Expectation Propagation method
(Minka, 2001) is used to obtain a deterministic approximation of the posterior, and also (as a
by-product) a leave-one-out performance estimate. The latter is then used to implement a form
of early-stopping (e.g. Sarle, 1995) to prevent over-fitting resulting from the direct optimization
of the marginal likelihood until convergence. It seems likely that this approach would be also
be beneficial in the case of tuning the hyper-parameters of the covariance function of Gaussian
process model, using either the leave-one-out estimate arising from the EP approximation, or an
approximate leave-one-out estimate from the Laplace approximation (c.f. Cawley and Talbot,
2007).

13.4.2. Directions for Further Research

In this paper, the regularisation term corresponds to a simple spherical Gaussian prior over the
kernel parameters. One direction of research would be to investigate alternative regularisation
terms. The first possibility would be to use a regularisation term corresponding to a separable
Laplace prior,

Ω(θ) = 1
2

d

∑
i=1

|ηi| =⇒ p(θ) =
d

∏
i=1

ξ
2

exp{−ξ |ηi|}

Setting the derivative of the regularised model selection criterion (13.24) to zero, we obtain
����

∂Q
∂ηi

����=
ξ
ζ

if |ηi|> 0 and
����

∂Q
∂ηi

����<
ξ
ζ

if |ηi|= 0,

which implies that if the sensitivity of the leave-one-out error, Q(θ), falls below ξ/ζ , the value
of the hyper-parameter, ηi will be set exactly to zero, effectively pruning that input from the
model. In this way explicit feature selection may be obtained as a consequence of (regularised)
model selection. The model selection criterion with Bayesian regularisation then becomes

L =
�

2
logQ(θ)+N logΩ(θ)

where N is the number of input features with non-zero scale factors. This potentially overcomes
the propensity towards under-fitting the data that might be expected when using the Gaussian
prior, as the pruning action of the Laplace prior means that the values of all remaining hyper-
parameters are well-determined by the data. In the case of the Laplace prior, the integrate-out
approach is exactly equivalent to continuous updates of the hyper-parameters according to the
update formulae under the evidence framework (Williams, 1995). Alternatively, defining a prior
over the function of a model seems more in accordance with Bayesian ideals than choosing a
prior over the parameters of the model. The use of a prior over the hyper-parameters based on

304

13. PREVENTING OVER-FITTING DURING MODEL SELECTION

the smoothness of the resulting model also provides a potential direction for future research. In
this case, the regularisation term might take the form,

Ω(θ) = 1
2�

�

∑
i=1

d

∑
j=1

�
∂ 2ŷi

∂x2
i j

�2

,

directly penalising models with excess curvature. This regularisation term corresponds to curva-
ture driven smoothing in multi-layer perceptron networks (Bishop, 1993), except that the model
output ŷi is viewed as a function of the hyper-parameters, rather than of the weights. A penalty
term based on the first-order partial derivatives is also feasible (c.f. Drucker and Le Cun, 1992).

13.5. Conclusion
Leave-one-out cross-validation has proved to be an effective means of model selection for a
variety of kernel learning methods, provided the number of hyper-parameters to be tuned is
relatively small. The use of kernel functions with large numbers of parameters often provides
sufficient degrees of freedom to over-fit the model selection criterion, leading to poor generali-
sation. In this paper, we have proposed the use of regularisation at the second level of inference,
i.e. model selection. The use of Bayesian regularisation is shown to be effective in reducing
over-fitting, by ensuring the values of the kernel parameters remain small, giving a smoother
kernel and hence a less complex classifier. This is achieved with only a minimal computational
expense as the additional regularisation parameters are integrated out analytically using a ref-
erence prior. While a fully Bayesian model selection strategy is conceptually more elegant, it
may also be less robust to model mis-specification. The use of leave-one-out cross-validation
in model selection and Bayesian methods at the next level seems to be a pragmatic compro-
mise. The effectiveness of this approach is clearly demonstrated in the experimental evaluation
where, on average, the LS-SVM with Bayesian regularisation out-performs the expectation-
propagation based Gaussian process classifier, using both spherical and elliptical RBF kernels.

Acknowledgments
The authors would like to thank the organisers of the WCCI model selection workshop and
performance prediction challenge and the NIPS multi-level inference workshop and model se-
lection game, and fellow participants for the stimulating discussions that have helped to shape
this work. We also thank Carl Rasmussen and Chris Williams for their advice regarding the
EP-GPC and the anonymous reviewers for their detailed and constructive comments that have
significantly improved this paper.

References
D. M. Allen. The relationship between variable selection and prediction. Technometrics, 16:

125–127, 1974.

E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Green-
baum, S. Hammarling, A. McKenney, and D. Sorenson. LAPACK Users’ Guide. SIAM Press,
third edition, 1999.

C. M. Bishop. Curvature-driven smoothing: a learning algorithm for feedforward networks.
IEEE Transactions on Neural Networks, 4(5):882–884, September 1993.

305

CAWLEY TALBOT

C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press, 1995.

L. Bo, L. Wang, and L. Jiao. Feature scaling for kernel Fisher discriminant analysis using
leave-one-out cross-validation. Neural Computation, 18:961–978, April 2006.

W. L. Buntine and A. S. Weigend. Bayesian back-propagation. Complex Systems, 5:603–643,
1991.

G. C. Cawley. Leave-one-out cross-validation based model selection criteria for weighted LS-
SVMs. In Proceedings of the International Joint Conference on Neural Networks (IJCNN-
2006), pages 2970–2977, Vancouver, BC, Canada, July 16–21 2006.

G. C. Cawley and N. L. C. Talbot. Efficient leave-one-out cross-validation of kernel Fisher
discriminant classifiers. Pattern Recognition, 36(11):2585–2592, November 2003.

G. C. Cawley and N. L. C. Talbot. Fast leave-one-out cross-validation of sparse least-squares
support vector machines. Neural Networks, 17(10):1467–1475, December 2004.

G. C. Cawley and N. L. C. Talbot. Approximate leave-one-out cross-validation for kernel lo-
gistic regression. Machine Learning (submitted), 2007.

C. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee. Choosing multiple parameters for
support vector machines. Machine Learning, 46(1):131–159, 2002.

C. Cortes and V. Vapnik. Support vector networks. Machine Learning, 20:273–297, 1995.

J. Demšar. Statistical comparisons of classifiers over multiple data sets. Journal of Machine
Learning Research, 7:1–30, 2006.

H. Drucker and Y. Le Cun. Improving generalization performance using double back-
propagation. IEEE Transactions on Neural Networks, 3(6):991–997, 1992.

S. Geman, E. Bienenstock, and R. Doursat. Neural networks and the bias/variance dilema.
Neural Computation, 4(1):1–58, 1992.

G. H. Golub and C. F. Van Loan. Matrix Computations. The Johns Hopkins University Press,
Baltimore, third edition edition, 1996.

I. S. Gradshteyn and I. M. Ryzhic. Table of Integrals, Series and Products. Academic Press,
fifth edition, 1994.

I. Guyon, A. R. Saffari Azar Alamdari, G. Dror, and J. Buhmann. Performance prediction
challenge. In Proceedings of the International Joint Conference on Neural Networks (IJCNN-
2006), pages 1649–1656, Vancouver, BC, Canada, July 16–21 2006.

T. Joachims. Learning to Classify Text using Support Vector Machines - Methods, Theory and
Algorithms. Kluwer Academic Publishers, 2002.

S. S. Keerthi, K. B. Duan, S. K. Shevade, and A. N. Poo. A fast dual algorithm for kernel
logistic regression. Machine Learning, 61(1–3):151–165, November 2005.

G. S. Kimeldorf and G. Wahba. Some results on Tchebycheffian spline functions. J. Math.
Anal. Applic., 33:82–95, 1971.

306

13. PREVENTING OVER-FITTING DURING MODEL SELECTION

R. Kohavi. A study of cross-validation and bootstrap for accuracy estimation and model se-
lection. In Proceedings of the Fourteenth International Conference on Artificial Intelligence
(IJCAI), pages 1137–1143, San Mateo, CA, 1995. Morgan Kaufmann.

P. A. Lachenbruch and M. R. Mickey. Estimation of error rates in discriminant analysis. Tech-
nometrics, 10(1):1–11, February 1968.

A. Luntz and V. Brailovsky. On estimation of characters obtained in statistical procedure of
recognition (in Russian). Techicheskaya Kibernetica, 3, 1969.

D. J. C. MacKay. Bayesian interpolation. Neural Computation, 4(3):415–447, 1992a.

D. J. C. MacKay. A practical Bayesian framework for backprop networks. Neural Computation,
4(3):448–472, 1992b.

D. J. C. MacKay. The evidence framework applied to classification networks. Neural Compu-
tation, 4(5):720–736, 1992c.

D. J. C. MacKay. Hyperparameters : optimise or integrate out? In G. Heidbreder, editor,
Maximum Entropy and Bayesian Methods. Kluwer, 1994.

J. Mercer. Functions of positive and negative type and their connection with the theory of
integral equations. Philosophical Transactions of the Royal Society of London, A, 209:415–
446, 1909.

C. A. Micchelli. Interpolation of scattered data: Distance matrices and conditionally positive
definite functions. Constructive Approximation, 2:11–22, 1986.

S. Mika, G. Rätsch, J. Weston, B. Schölkopf, and K.-R. Müller. Fisher discriminant analysis
with kernels. In Neural Networks for Signal Processing, volume IX, pages 41–48. IEEE
Press, New York, 1999.

S. Mika, G. Rätsch, J. Weston, B. Schölkopf, A. J. Smola, and K.-R. Müller. Invariant feature
extraction and classification in feature spaces. In S. A. Solla, T. K. Leen, and K.-R. Müller,
editors, Advances in Neural Information Processing Systems, volume 12, pages 526–532.
MIT Press, 2000.

T. P. Minka. Expectation propagation for approximate Bayesian inference. In Proceedings of
the 17th Annual Conference on Uncertainty in Artificial Intelligence, pages 362–369. Morgan
Kauffmann, 2001.

J. A. Nelder and R. Mead. A simplex method for function minimization. Computer Journal, 7:
308–313, 1965.

Y. Qi, T. P. Minka, R. W. Picard, and Z. Ghahramani. Predictive automatic relevance determi-
nation by expectation propagation. In Proceedings of the 21st International Conference on
Machine Learning, pages 671–678, Banff, Alberta, Canada, July 4–8 2004.

C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. Adaptive
Computation and Machine Learning. MIT Press, 2006.

G. Rätsch, T. Onoda, and K.-R. Müller. Soft margins for AdaBoost. Machine Learning, 42(3):
287–320, March 2001.

307

CAWLEY TALBOT

K. Saadi, N. L. C. Talbot, and G. C. Cawley. Optimally regularised kernel Fisher discriminant
analysis. In Proceedings of the 17th International Conference on Pattern Recognition (ICPR-
2004), volume 2, pages 427–430, Cambridge, United Kingdom, August 23–26 2004.

W. S. Sarle. Stopped training and other remidies for overfitting. In Proceedings of the 27th
Symposium on the Interface of Computer Science and Statistics, pages 352–360, Pittsburgh,
PA, USA, June 21–24 1995.

B. Schölkopf, K. Tsuda, and J.-P. Vert. Kernel Methods in Computational Biology. MIT Press,
2004.

T. Seaks. SYMINV : An algorithm for the inversion of a positive definite matrix by the Cholesky
decomposition. Econometrica, 40(5):961–962, September 1972.

J. Shawe-Taylor and N. Cristianini. Kernel methods for Pattern Analysis. Cambridge University
Press, 2004.

M. Stone. Cross-validatory choice and assessment of statistical predictions. Journal of the
Royal Statistical Society, B 36(1):111–147, 1974.

S. Sundararajan and S. S. Keerthi. Predictive approaches for choosing hyperparameters in Gaus-
sian processes. Neural Computation, 13(5):1103–1118, May 2001.

J. A. K. Suykens and J. Vandewalle. Least squares support vector machine classifiers. Neural
Processing Letters, 9(3):293–300, June 1999.

J. A. K. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor, and J. Vandewalle. Least Squares
Support Vector Machines. World Scientific, 2002.

A. N. Tikhonov and V. Y. Arsenin. Solutions of ill-posed problems. John Wiley, New York,
1977.

M. E. Tipping. Sparse Bayesian learning and the relevance vector machine. Journal of Machine
Learning Research, 1:211–244, June 2000.

G. Wahba. Spline models for observational data. SIAM Press, Philadelphia, PA, 1990.

C. K. I. Williams and D. Barber. Bayesian classification with Gaussian processes. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 20(12):1342–1351, December 1998.

P. M. Williams. A Marquardt algorithm for choosing the step size in backpropagation learning
with conjugate gradients. Technical Report CSRP-229, University of Sussex, February 1991.

P. M. Williams. Bayesian regularization and pruning using a Laplace prior. Neural Computa-
tion, 7(1):117–143, 1995.

308

Journal of Machine Learning Research 10(Feb):405–440, 2009 Submitted 01/07; Published 02/09

Chapter 14

Particle Swarm Model Selection
Hugo Jair Escalante HUGO.JAIR@GMAIL.COM

Manuel Montes MMONTESG@INAOEP.MX

Luis Enrique Sucar ESUCAR@INAOEP.MX

Department of Computational Sciences
National Institute of Astrophysics, Optics and Electronics
Puebla, México, 72840

Editor: Isabelle Guyon and Amir Saffari

Abstract
This paper proposes the application of particle swarm optimization (PSO) to the problem of
full model selection, FMS, for classification tasks. FMS is defined as follows: given a pool of
preprocessing methods, feature selection and learning algorithms, to select the combination of
these that obtains the lowest classification error for a given data set; the task also includes the
selection of hyperparameters for the considered methods. This problem generates a vast search
space to be explored, well suited for stochastic optimization techniques. FMS can be applied to
any classification domain as it does not require domain knowledge. Different model types and
a variety of algorithms can be considered under this formulation. Furthermore, competitive yet
simple models can be obtained with FMS. We adopt PSO for the search because of its proven
performance in different problems and because of its simplicity, since neither expensive com-
putations nor complicated operations are needed. Interestingly, the way the search is guided
allows PSO to avoid overfitting to some extend. Experimental results on benchmark data sets
give evidence that the proposed approach is very effective, despite its simplicity. Furthermore,
results obtained in the framework of a model selection challenge show the competitiveness of
the models selected with PSO, compared to models selected with other techniques that focus
on a single algorithm and that use domain knowledge.
Keywords: Full model selection, machine learning challenge, particle swarm optimization,
experimentation, cross validation

14.1. Introduction
Model selection is the task of picking the model that best describes a data set (Hastie et al.,
2001). Since the phrase describing a data set can be interpreted in several different ways,
the model selection task can denote diverse related problems, including: variable and feature
selection (Bengio and Chapados, 2003; Guyon et al., 2006a; Guyon and Elisseeff, 2003), sys-
tem identification (Voss and Feng, 2002; Nelles, 2001), parameter-hyperparameter optimization
(Guyon et al., 2006b; Kim et al., 2002; Hastie et al., 2001; Cawley and Talbot, 2007b; Escalante
et al., 2007), and discretization (Boullé, 2007; Hue and Boullé, 2007). In this paper we give
a broader interpretation to this task and call it full model selection (FMS). The FMS problem
consists on the following: given a pool of preprocessing methods, feature selection and learning
algorithms, select the combination of these that obtains the lowest classification error for a given
data set. This task also includes the selection of hyperparameters for the considered methods,
resulting in a vast search space that is well suited for stochastic optimization techniques.

© 2009 H.J. Escalante, M. Montes & L.E. Sucar. Reprinted with permission for JMLR

ESCALANTE MONTES SUCAR

Adopting a broader interpretation to the model selection problem allows us to consider dif-
ferent model types and a variety of methods, in contrast to techniques that consider a single
model type (i.e. either learning algorithm or feature selection method, but not both) and a sin-
gle method (e.g. neural networks). Also, since neither prior domain knowledge nor machine
learning knowledge is required, FMS can be applied to any classification problem without mod-
ification. This is a clear advantage over ad-hoc model selection methods that perform well on
a single domain or that work for a fixed algorithm. This will help users with limited machine
learning knowledge, since FMS can be seen as a black-box tool for model selection. Machine
learning experts can also benefit from this approach. For example, several authors make use of
search strategies for the selection of candidate models (Lutz, 2006; Boullé, 2007; Reunanen,
2007; Wichard, 2007), the FMS approach can be adopted for obtaining such candidate models.

One could expect a considerable loss of accuracy by gaining generality. However, this is
not the case of the proposed approach since in international competitions it showed comparable
performance to other techniques that were designed for a single algorithm (i.e. doing hyperpa-
rameter optimization) and to methods that took into account domain knowledge (Guyon et al.,
2008). The main drawback is the computational cost to explore the vast search space, particu-
larly for large data sets. But, we can gain efficiency without a significant loss in accuracy, by
adopting a random subsampling strategy, see Section 14.4.3. The difficult interpretability of
the selected models is another limitation of the proposed approach. However, naive users may
accept to trade interpretably for ease-of-use, while expert users may gain insight in the problem
at hand by analyzing the structure of the selected model (type of preprocessing chosen, number
of features selected, linearity or non-linearity of the predictor).

In this paper, we propose to use particle swarm optimization (PSO) for exploring the full-
models search space. PSO is a bio-inspired search technique that has shown comparable per-
formance to that of evolutionary algorithms (Angeline, 1998; Reyes and Coello, 2006). Like
evolutionary algorithms, PSO is useful when other techniques such as gradient descend or direct
analytical discovery are not applicable. Combinatoric and real-valued optimization problems in
which the optimization surface possesses many locally optimal solutions, are well suited for
swarm optimization. In FMS it must be found the best combination of methods (for prepro-
cessing, feature selection and learning) and simultaneously optimizing real valued functions
(finding pseudo-optimal parameters for the considered methods), in consequence, the applica-
tion of PSO is straightforward.

The methodological differences between swarm optimization and evolutionary algorithms
have been highlighted by several authors (Angeline, 1998; Kennedy and Eberhart, 1995, 2001).
However a difference in performance has not been demonstrated in favor of either method.
Such demonstration would be a difficult task because no black-box stochastic optimization al-
gorithm can outperform another over all optimization problems, not even over random search
(Wolpert and Macready, 1997; van den Bergh, 2001). We selected PSO instead of evolutionary
algorithms because of its simplicity and generality as no important modification was made for
applying it to FMS. PSO is easier to implement than evolutionary algorithms because it only
involves a single operator for updating solutions. In contrast, evolutionary algorithms require
a particular representation and specific methods for cross-over, mutation, speciation and selec-
tion. Furthermore, PSO has been found to be very effective in a wide variety of applications,
being able to produce good solutions at a very low computational cost (Gudise and Venayag-
amoorthy, 2003; Hernández et al., 2004; Xiaohui et al., 2003; Yoshida et al., 2001; Robinson,
2004; Kennedy and Eberhart, 2001; Reyes and Coello, 2006).

PSO is compared to pattern search (PS) in order to evaluate the added value of using the
swarm strategy instead of another intensive search method. We consider PS among other search
techniques because of its simplicity and proved performance in model selection (Momma and

310

14. PARTICLE SWARM MODEL SELECTION

Bennett, 2002; Bi et al., 2003; Dennis and Torczon, 1994). Cross validation (CV) is used in
both techniques for assessing the goodness of models. Experimental results in benchmark data
give evidence that both PSO and PS are effective strategies for FMS. However, it was found
that PSO outperforms PS, showing better convergence behavior and being less prone to over-
fitting. Furthermore, the proposed method was evaluated in the context of a model selection
competition in which several specialized and prior-knowledge based methods for model selec-
tion were used. Models selected with PSO were always among the top ranking models through
the different stages of the challenge (Guyon et al., 2006c, 2007, 2008; Escalante et al., 2007).
During the challenge, our best entry was ranked 8th over all ranked participants, 5th among the
methods that did not use domain knowledge and 2nd among the methods that used the software
provided by the organizers (Guyon et al., 2006c, 2007, 2008). In this paper we outperform the
latter entry while reducing the computational burden by using a subsampling strategy; our best
entry is currently the top-ranked one among models that do not use prior domain knowledge
and 2nd over all entries, see Section 14.4.3.

PSO has been widely used for parameter selection in supervised learning (Kennedy and
Eberhart, 1995, 2001; Salerno, 1997; Gudise and Venayagamoorthy, 2003). However, param-
eter selection is related with the first level of inference in which, given a learning algorithm,
the task is to find parameters for such algorithm in order to describe the data. For example, in
neural networks the adjustment of weights between units according to some training data is a
parameter selection problem. Hyperparameter optimization, on the other hand, is related with
the second level of inference, that is, finding parameters for the methods that in turn should
determine parameters for describing the data. In the neural network example, selecting the op-
timal number of units, the learning rate, and the number of epochs for training the network is a
hyperparameter optimization problem. FMS is capable of operating across several levels of in-
ference by simultaneously performing feature selection, preprocessing and classifier selection,
and hyperparameter optimization for the selected methods. PSO has been used for hyperparam-
eter optimization by Voss et al. (Voss and Feng, 2002), however they restricted the problem to
linear systems for univariate data sets, considering one hundred data observations. In this paper
we are going several steps further: we applied PSO for FMS considering non-linear models in
multivariate data sets with a large number of observations.

Parallel to this work, Gorissen et al. used genetic algorithms for meta-model selection in
regression tasks (Gorissen, 2007; Gorissen et al., 2008), a similar approach that emerged totally
independently to our proposal. One should note, however, that this method has been used for a
different task in low dimensional data sets; most results are reported for 2D data. Even with this
dimensionality the method has been run for only a few iterations with a small population size.
Their use of a genetic algorithm required the definition of specific operators for each of the con-
sidered models. Gorissen et al. considered seven different models (including neural networks
and kernel methods) that required of 18 different genetic operators for creation, mutation and
cross-over (Gorissen, 2007; Gorissen et al., 2008). Additionally, general operators for specia-
tion and selection were also defined. In the present work a single operator was used for updating
solutions, regardless of the considered models. This clearly illustrates the main advantage of
PSO over genetic algorithms, namely generality and simplicity.

The main contribution of this work is experimental: we provide empirical evidence indi-
cating that by using PSO we were able to perform intensive search over a huge space and
succeeded in selecting competitive models without significantly overfitting. This is due to the
way the search is guided in PSO: performing a broad search around promising solutions but
not overdoing in terms of really fine optimization. This sort of search is known to help avoid-
ing overfitting by undercomputing (Dietterich, 1995). Experimental results supported by some
a posteriori analysis give evidence of the validity of our approach. The way we approached

311

ESCALANTE MONTES SUCAR

the model selection problem and the use of a stochastic-search strategy are also contributions.
To the best of our knowledge there are no similar works that consider the FMS problem for
classification tasks.

The rest of this paper is organized as follows. In the next section we describe the general
PSO algorithm. In Section 14.3, we describe the application of PSO to FMS. Section 14.4
presents experimental results in benchmark data; comparing the performance of PSO to that
of PS in FMS and analyzing the performance of PSO under different parameter settings; also,
are described the results obtained in the framework of a model selection competition. In Sec-
tion 14.5, we analyze mechanisms in PSMS that allow to select competitive models without
overfitting the data. Finally, in Section 14.6, we present the conclusions and outline future
research directions.

14.2. Particle swarm optimization (PSO)
PSO is a population-based search algorithm inspired by the behavior of biological communities
that exhibit both individual and social behavior; examples of these communities are flocks of
birds, schools of fishes and swarms of bees. Members of such societies share common goals
(e.g. finding food) that are realized by exploring its environment while interacting among them.
Proposed by Kennedy et al. (Kennedy and Eberhart, 1995), PSO has become an established
optimization algorithm with applications ranging from neural network training (Kennedy and
Eberhart, 1995; Salerno, 1997; Kennedy and Eberhart, 2001; Gudise and Venayagamoorthy,
2003; Engelbrecht, 2006) to control and engineering design (Hernández et al., 2004; Xiaohui
et al., 2003; Yoshida et al., 2001; Robinson, 2004). The popularity of PSO is due in part to the
simplicity of the algorithm (Kennedy and Eberhart, 1995; Reyes and Coello, 2006; Engelbrecht,
2006), but mainly to its effectiveness for producing good results at a very low computational
cost (Gudise and Venayagamoorthy, 2003; Kennedy and Eberhart, 2001; Reyes and Coello,
2006). Like evolutionary algorithms, PSO is appropriate for problems with immense search
spaces that present many local minima.

In PSO each solution to the problem at hand is called a particle. At each time t, each particle,
i, has a position xt

i =< xt
i,1,x

t
i,2, . . . ,x

t
i,d > in the search space; where d is the dimensionality

of the solutions. A set of particles S = {xt
1,xt

2, . . . ,xt
m} is called a swarm. Particles have an

associated velocity value that they use for flying (exploring) through the search space. The
velocity of particle i at time t is given by vt

i =< vt
i,1,v

t
i,2, . . . ,v

t
i,d >, where vt

i,k is the velocity for
dimension k of particle i at time t. Particles adjust their flight trajectories by using the following
updating equations:

vt+1
i, j =W × vt

i, j + c1 × r1 × (pi, j − xt
i, j)+ c2 × r2 × (pg, j − xt

i, j) (14.1)

xt+1
i, j = xt

i, j + vt+1
i, j (14.2)

where pi, j is the value in dimension j of the best solution found so far by particle i; pi =<
pi,1, . . . , pi,d > is called personal best. pg, j is the value in dimension j of the best particle found
so far in the swarm (S); pg =< pg,1, . . . , pg,d > is considered the leader particle. Note that
through pi and pg each particle i takes into account individual (local) and social (global) infor-
mation for updating its velocity and position. In that respect, c1,c2 ∈R are constants weighting
the influence of local and global best solutions, respectively. r1,r2 ∼ U [0,1] are values that
introduce randomness into the search process. W is the so called inertia weight, whose goal
is to control the impact of the past velocity of a particle over the current one, influencing the
local and global exploration abilities of the algorithm. This is one of the most used improve-
ments of PSO for enhancing the rate of convergence of the algorithm (Shi and Eberhart, 1998,

312

14. PARTICLE SWARM MODEL SELECTION

1999; van den Bergh, 2001). For this work we considered an adaptive inertia weight specified
by a triplet W = (wstart ,w f ,wend); where wstart and wend are the initial and final values for W ,
respectively, and w f indicates the fraction of iterations in which W is decreased. Under this
setting W is decreased by W =W −wdec from iteration t = 1 (where W = wstart) up to iteration
t = I ×w f (after which W = wend); where wdec =

wstart−wend
I×w f

and I is the maximum number of
iterations. This setting allows us to explore a large area at the start of the optimization, when
W is large, and to slightly refine the search later by using a smaller inertia weight (Shi and
Eberhart, 1998, 1999; van den Bergh, 2001).

An adaptive W can be likened to the temperature parameter in simulated annealing (Kirk-
patrick et al., 1983); this is because, in essence, both parameters influence the global and local
exploration abilities of their respective algorithms, although in different ways. A constant W
is analogous to the momentum parameter p in gradient descend with momentum term (Qian,
1999), where weights are updated by considering both the current gradient and the weight
change of the previous step (weighed by p). Interestingly, the inertia weight is also similar
to the weight-decay constant (γ) used in machine learning to prevent overfitting. In neural net-
works the weights are decreased by (1− γ) in each learning step, which is equivalent to add
a penalty term into the error function that encourages the magnitude of the weights to decay
towards zero (Bishop, 2006; Hastie et al., 2001); the latter penalizes complex models and can
be used to obtain sparse solutions (Bishop, 2006).

The pseudo code of the PSO algorithm considered in this work is shown in Algorithm 14.1;
default recommended values for the FMS problem are shown as well (these values are based
on the analysis of Section 14.2.1 and experimental results from Section 14.4.2). The swarm is
randomly initialized, considering restrictions on the values that each dimension can take. Next,
the goodness of each particle is evaluated and pg, p1,...,m are initialized. Then, the iterative PSO
process starts, in each iteration: i) the velocities and positions of each particle in every dimen-
sion are updated according to Equations (14.1) and (14.2); ii) the goodness of each particle is
evaluated; iii) pg and p1,...,m are updated, if needed; and iv) the inertia weight is decreased. This
process is repeated until either a maximum number of iterations is reached or a minimum fitness
value is obtained by a particle in the swarm (we used the first criterion for FMS); eventually, an
(locally) optimal solution is found.

A fitness function is used to evaluate the aptitude (goodness) of candidate solutions. The
definition of a specific fitness function depends on the problem at hand; in general it must reflect
the proximity of the solutions to the optima. A fitness function F : Ψ →R, where Ψ is the space
of particles positions, should return a scalar fxi for each particle position xi, indicating how far
particle i is from the optimal solution to the problem at hand. For FMS the goal is to improve
classification accuracy of full models. Therefore, any function F , which takes as input a model
and returns an estimate of classification performance, is suitable (see Section 14.3.3).

Note that in Equation (14.1) every particle in the swarm knows the best position found so
far by any other particle within the swarm, that is pg. Under this formulation a fully-connected
swarm-topology is considered in which every member knows the leader particle. This topology
has shown to converge faster than any other topology (Kennedy and Mendes, 2002; Reyes and
Coello, 2006; Kennedy and Eberhart, 2001; Engelbrecht, 2006). With this topology, however,
the swarm is prone to converge to local minima. We tried to overcome this limitation by using
the adaptive inertia weight, W .

14.2.1. PSO Parameters

Selecting the best parameters (W,c1,c2,m, I) for PSO is another model selection task. In the
application of PSO for FMS we are dealing with a very complex problem lying in the third level

313

ESCALANTE MONTES SUCAR

Algorithm 14.1: Particle swarm optimization.
Require: [Default recommended values for FMS]
– c1,c2: individual/social behavior weights; [c1 = c2 = 2]
– m: swarm size; [m = 5]
– I: number of iterations; [I = 50]
– F(Ψ → R): fitness function; [F(Ψ → R) = 2−fold CV BER]
– W: Inertia weight W = (1.2, 0.5, 0.4)
Set decrement factor for W (wdec =

wstart−wend
I×w f

)
Initialize swarm (S = {x1,x2, . . . ,xm})
Compute fx1,...,m = F(x1,...,m) (Section 14.3.3)
Locate leader (pg) and set personal bests (p1,...,m = x1,...,m)
t = 1
while t < I do

for all xi ∈ S do
Calculate velocity vi for xi (Equation (14.1))
Update position of xi (Equation (14.2))
Compute fxi = F(xi)
Update pi (if necessary)

end for
Update pg (if necessary)
if t < �I ×w f � then

W =W −wdec
end if
t++

end while
return pg

314

14. PARTICLE SWARM MODEL SELECTION

of inference. Fortunately, several empirical and theoretical studies have been performed about
the parameters of PSO from which useful information can be obtained (Shi and Eberhart, 1998,
1999; Kennedy and Mendes, 2002; Reyes and Coello, 2006; Ozcan and Mohan, 1998; Clerc
and Kennedy, 2002; van den Bergh, 2001). In the rest of this section the PSO parameters are
analyzed in order to select appropriate values for FMS. Later on, in Section 14.4.2, results of
experiments with PSO for FMS under different parameter settings are presented.

We will start analyzing c1,c2 ∈R, the weighting factors for individual and social behavior. It
has been shown that convergence is guaranteed1 for PSO under certain values of c1,c2 (van den
Bergh, 2001; Reyes and Coello, 2006; Ozcan and Mohan, 1998; Clerc and Kennedy, 2002).
Most convergence studies have simplified the problem to a single one-dimensional particle,
setting φ = c1 × r1 + c2 × r2, and pg and pi constant (van den Bergh, 2001; Reyes and Coello,
2006; Ozcan and Mohan, 1998; Clerc and Kennedy, 2002). A complete study including the
inertia weight is carried out by Van Den Bergh (van den Bergh, 2001). In agreement with
this study the value φ < 3.8 guarantees eventual convergence of the algorithm when the inertia
weight W is close to 1.0. For the experiments in this work it was fixed c1 = c2 = 2, with these
values we have φ < 3.8 with high probability P(φ < 3.8)≈ 0.9, given the uniformly distributed
numbers r1,r2 (van den Bergh, 2001). The configuration c1 = c2 = 2 also has been proven,
empirically, to be an effective choice for these parameters (Kennedy and Eberhart, 1995; Shi
and Eberhart, 1998, 1999; Kennedy and Mendes, 2002).

Note, however, the restriction that W remains close to 1.0. In our experiments we considered
a value of W = 1.2 at the beginning of the search, decreasing it during 50% (i.e. w f = 0.5) of
the PSO iterations up to the value W = 0.4. In consequence, it is possible that at the end of
the search process the swarm may show divergent behavior. In practice, however, the latter
configuration for W resulted very useful for FMS, see Section 14.4. This selection of W should
not be surprising since even the configuration W=(1,1,0) has obtained better results than using
a fixed W in empirical studies (Shi and Eberhart, 1998). Experimental results with different
configurations of W for FMS give evidence that the configuration we selected can provide
better models than using constant W, see Section 14.4.2; although further experiments need to
be performed in order to select the best W configuration for FMS.

With respect to m, the size of the swarm, experimental results suggest that the size of the
population does not damage the performance of PSO (Shi and Eberhart, 1999), although slightly
better results have been obtained with a large value of m, (Shi and Eberhart, 1999). Our experi-
mental results in Section 14.4.2 confirm that the selection of m is not crucial, although (contrary
to previous results) slightly better models are obtained by using a small swarm size. The latter
is an important result for FMS because using a small number of particles reduces the number of
fitness function evaluations, and in consequence the computational cost of the search.

Regarding the number of iterations, to the best of our knowledge, there is no work on the
subject. This is mainly due to the fact that this issue depends mostly on the complexity of
the problem at hand and therefore a general rule cannot be derived. For FMS the number of
iterations should not be large to avoid oversearching (Dietterich, 1995). For most experiments
in this paper we fixed I = 100. However, experimental results in Section 14.4.2 show that by
running PSO for a smaller number of iterations is enough to obtain models of the same, and
even better, generalization performance. This gives evidence that early stopping can be an
useful mechanism to avoid overfitting, see Section 14.5.

1. Note that in PSO we say that the swarm converges iff limt→inf pgt = p, where p is an arbitrary position in the search
space and t indexes iterations of PSO. Since p refers to an arbitrary position, this definition does not mean either
convergence to local or global optimum, but convergence to the global best position in the swarm (van den Bergh,
2001; Reyes and Coello, 2006; Engelbrecht, 2006).

315

ESCALANTE MONTES SUCAR

14.3. Particle swarm model selection
Since one of the strong advantages of PSO is its simplicity, its application to FMS is almost
direct. Particle swarm full model selection (hereafter PSMS, that is the application of PSO to
FMS) is described by the pseudocode in Algorithm 14.1, in this section are presented additional
details about PSMS: first we describe the pool of methods considered in this work; then, we
describe the representation of particles and the fitness function used; finally, we briefly discuss
complexity issues. The code of PSMS is publicly available from the following website http:
//ccc.inaoep.mx/~hugojair/code/psms/.

14.3.1. The challenge learning object package

In order to implement PSMS we need to define the models search space. For this purpose we
consider the set of methods in a machine learning toolbox from which full models can be gener-
ated. Currently, there are several machine learning toolboxes, some of them publicly available
(Franc and Hlavac, 2004; van der Heijden et al., 2004; Wichard and Merkwirth, 2007; Witten
and Frank, 2005; Saffari and Guyon, 2006; Weston et al., 2005); even there is a track of this jour-
nal (JMLR) dedicated to machine learning software. This is due to the increasing interest from
the machine learning community in the dissemination and popularization of this research field
(Sonnenburg, 2006). The Challenge Learning Object Package2 (CLOP) is one of such devel-
opment kits distributed under the GNU license (Saffari and Guyon, 2006; Guyon et al., 2006c,
2007, 2008). CLOP is a Matlab® toolbox with implementations of feature-variable selection
methods and machine learning algorithms (CLOP also includes the PSMS implementation used
in this work). The list of available preprocessing, feature selection and postprocessing methods
in the CLOP toolbox is shown in Table 14.1; a description of the learning algorithms available
in CLOP is presented in Table 14.2. One should note that this version of CLOP includes the
methods that best performed in a model selection competition (Guyon et al., 2008; Cawley and
Talbot, 2007a; Lutz, 2006).

In consequence, for PSMS the pool3 of methods to select from are those methods described
in Tables 14.1 and 14.2. In CLOP a typical model consists of the chain, which is a grouping
object that allows us to perform serial concatenation of different methods. A chain may in-
clude combinations of (several/none) feature selection algorithm(s) followed by (several/none)
preprocessing method(s), in turn followed by a learning algorithm and finally (several/none)
postprocessing algorithm(s). For example, the model given by:
chain{gs(f max = 8),standardize(center=1),neural(units=10,s=0.5,balance=1,iter=10)}
uses gs for feature selection, standardization of data and a balanced neural network classifier
with 10 hidden units, learning rate of 0.5, and trained for 10 iterations. In this work chain ob-
jects that include methods for preprocessing, feature selection and classification are considered
full-models. Specifically, we consider models with at most one feature selection method, but
allowing to perform preprocessing before feature selection and viceversa, see Section 14.3.2.
The bias method was used as postprocessing in every model tested to set an optimal threshold
in the output of the models in order to minimize their error. The search space in FMS is given
by all the possible combinations of methods and hyperparameters; an infinite search space due
to the real valued parameters.

2. http://clopinet.com/CLOP/
3. Notice that the CLOP package includes also the spider package (Weston et al., 2005) which in turn includes other

implementations of learning algorithms and preprocessing methods. However, in this work we only used CLOP
objects.

316

http://ccc.inaoep.mx/~hugojair/code/psms/
http://ccc.inaoep.mx/~hugojair/code/psms/
http://clopinet.com/CLOP/

14. PARTICLE SWARM MODEL SELECTION

Table 14.1: Feature selection (FS), preprocessing (Pre) and postprocessing (Pos) objects avail-
able in CLOP. A brief description of the methods and their hyperparameters is
presented.

ID Object name F Hyperparameters Description
1 Ftest FS fmax, wmin, pval , f drmax Feature ranking according the F-statistic
2 Ttest FS fmax, wmin, pval , f drmax Feature ranking according the T-statistic
3 aucfs FS fmax, wmin, pval , f drmax Feature ranking according to the AUC criterion
4 odds-ratio FS fmax, wmin, pval , f drmax Feature ranking according to the odds ratio statistic
5 relief FS fmax, wmin, knum Relief ranking criterion
6 rffs FS fmax, wmin Random forest used as feature selection filter
7 svcrfe FS fmax Recursive feature elimination filter using svc
8 Pearson FS fmax, wmin, pval , f drmax Feature ranking according to the Pearson correlation coef.
9 ZFilter FS fmax, wmin Feature ranking according to a heuristic filter
10 gs FS fmax Forward feature selection with Gram-Schmidt orth.
11 s2n FS fmax, wmin Signal-to-noise ratio for feature ranking
12 pc− extract FS fmax Extraction of features with PCA
1 normalize Pre center Normalization of the lines of the data matrix
2 standardize Pre center Standardization of the features
3 shi f t − scale Pre takelog Shifts and scale data
1 bias Pos none Finds the best threshold for the output of the classifiers

Table 14.2: Available learning objects with their respective hyperparameters in the CLOP pack-
age.

ID Object name Hyperparameters Description
1 zarbi none Linear classifier
2 naive none Naïve Bayes
3 klogistic none Kernel logistic regression
4 gkridke none Generalized kridge (VLOO)
5 logitboost units number, shrinkage, depth Boosting with trees (R)
6 neural units number, shrinkage, maxiter, balance Neural network (Netlab)
7 svc shrinkage, kernel parameters (coef0, degree, gamma) SVM classifier
8 kridge shrinkage, kernel parameters (coef0, degree, gamma) Kernel ridge regression
9 rf units number, balance, mtry Random forest (R)

10 lssvm shrinkage, kernel parameters (coef0, degree, gamma), balance Kernel ridge regression

317

ESCALANTE MONTES SUCAR

14.3.2. Representation

In PSO each potential solution to the problem at hand is considered a particle. Particles are rep-
resented by their position, which is nothing but a d−dimensional numerical vector (d being the
dimensionality of the solution). In FMS potential solutions are full-models, in consequence, for
PSMS we need a way to codify a full-model by using a vector of numbers. For this purpose we
propose the representation described in Equation (14.3), the dependence on time (t) is omitted
for clarity.

xi =< xi,pre,yi,1...Npre ,xi, f s,yi,1,...Nf s ,xi,sel ,xi,class,yi,1,...Nclass > (14.3)

Where xi,pre ∈ {1, . . . ,8} represents a combination of preprocessing methods. Each com-
bination is represented by a binary vector of size 3 (i.e. the number of preprocessing meth-
ods considered), there are 23 = 8 possible combinations. Each element of the binary vector
represents a single preprocessing method; if the value of the kth element is set to 1 then the
preprocessing method with ID = k is used (see Table 14.1). For example, the first combination
< 0,0,0 > means no preprocessing; while the seventh < 1,1,0 > means that this model (xi)
uses normalization and standardization as preprocessing. yi,1...Npre codify the hyperparameters
for the selected combination of preprocessing methods, Npre = 3 because each preprocessing
method has a single hyperparameter; note that the order of the preprocessing methods is fixed
(i.e. standardization can never be performed before normalization), in the future we will relax
this constraint. xi, f s ∈ {0, . . . ,12} represents the ID of the feature selection method used by
the model (see Table 14.1), and yi,1...Nf s its respective hyperparameters; Nf s is set to the max-
imum number of hyperparameters that any feature selection method can take. xi,sel is a binary
variable that indicates whether preprocessing should be performed before feature selection or
viceversa. xi,class ∈ {1, . . . ,10} represents the classifier selected and yi,1,...Nclass its respective
hyperparameters; Nclass is the maximum number of hyperparameters that a classifier can take.
This numerical codification must be decoded and used with the chain grouping object for ob-
taining a full-model from a particle position xi. Note that the dimensionality of each particle is
d = 1+Npre +1+Nf s +1+1+Nclass = 16.

14.3.3. Fitness function

In FMS it is of interest to select models that minimize classification errors on unseen data
(i.e. maximizing generalization performance). Therefore, the fitness function (F) should relate
a model with an estimate of its classification performance in unseen data. The simplicity of
PSMS allows us to use any classification performance measure as F , because the method does
not require derivatives. Thus, valid options for F include mean absolute error, balanced error
rate, squared root error, recall, precision, area under the ROC curve, etcetera. For this work it
was used the balanced error rate (BER) as F . BER takes into account misclassification rates
in both classes, which prevents PSMS of selecting biased models (favoring the majority class)
in imbalanced data sets. Furthermore, BER has been used in machine learning challenges as
leading error measure for ranking participants (Guyon et al., 2007, 2008). The BER of model ψ
is the average of the misclassifications obtained by ψ over the classes in a data set, as described
in Equation (14.4):

BER(ψ) =
E++E−

2
(14.4)

where E+ and E− are the misclassifications rates for the positive and negative classes, respec-
tively.

The selection of the fitness function is a crucial aspect in PSO. However, for PSMS, the
critical part lies in the way an estimate of generalization performance of a model (given F and
training data) is obtained, and not in the fitness function itself. This is the main challenge of

318

14. PARTICLE SWARM MODEL SELECTION

model selection, since error estimates using training data are very optimistic about the behavior
of models on unseen data, this phenomenon is known as overfitting (Bishop, 2006; Hastie et al.,
2001; Nelles, 2001). In order to overcome overfitting the BER was calculated using a k−fold
cross validation (k-fold CV) approach (Note that the BER is still obtained from training data).
This is the only explicit mechanism of PSMS to avoid overfitting. k-fold CV is the most used
hold-out approach for model selection (Nelles, 2001; Hastie et al., 2001; Cawley and Talbot,
2007b). Using a high value for k, say k = N where N is the training set size (i.e. leave one out
- CV), the error estimate is almost unbiased, but can have high variance because the N training
sets are very similar to each other (Nelles, 2001; Cawley and Talbot, 2007b); furthermore,
computation time could be a serious problem (Hastie et al., 2001; Nelles, 2001). With a low
value for k, the estimate can have low variance but the bias could be a problem. The selection of
an optimal k is still an open problem in the model selection field. For this work were performed
experiments with k ∈ {2,5,10}, but no statistically-significant difference, among these values,
was found, see Section 14.4.2.

14.3.4. Computational complexity

As we have seen, the search space in the FMS problem is composed by all the possible models
that can be built given the considered methods and their hyperparameters. This is an infinite
search space even with the restriction imposed to the values that models can take; this is the main
drawback of FMS. However, the use of particle swarm optimization (PSO) allows us to harness
the complexity of this problem. Most algorithms used for FMS cannot handle very big search
spaces. But PSO is well suited to large search spaces: it converges fast and has a manageable
computational complexity (Kennedy and Eberhart, 2001; Reyes and Coello, 2006). As we can
see from Algorithm 14.1, PSO is very simple and does not involve expensive operations.

The computational expensiveness of PSMS is due to the fitness function we used. For each
selected model the fitness function should train and evaluate such model k−times. Depending
on the model complexity this process can be performed on linear, quadratic or higher order
times. Clearly, computing the fitness function using the entire training set, as opposed to k-fold
CV, could reduce PSMS complexity, although we could easily overfit the data. For a single
run of PSMS the fitness function should be evaluated ρ = m× (I + 1) times, with m being the
swarm size and I the number of iterations. Suppose the computational complexity of model λ
is bounded by λO then the computational complexity of PSMS will be bounded by ρ × k×λO.
Because λO is related to the computational complexity of model λ (which depends on the size
and dimensionality of the data set) this value may vary dramatically. For instance, computing
the fitness function for a naïve Bayes model in a high dimensional data set takes around two
seconds4, whereas computing the same fitness function for the same data set could take several
minutes if a support vector classifier is used.

In order to reduce the computational cost of PSMS we could introduce a complexity penalty-
term into the fitness function (this is current work). A simpler alternative solution is calculating
the fitness function for each model using only a small subset of the available data; randomly
selected and different each time. This approach can also be useful for avoiding local minima.
The subsampling heuristic was used for high-dimensional data sets and for data sets with a
large number of examples. Experimental results show an important reduction of processing
time, without a significant loss of accuracy, see Section 14.4.3. We emphasize that complexity
is due to the nature of the FMS problem. With this approach, however, users will be able to

4. Most of the experiments were carried out on a workstation with PentiumT M 4 processor at 2.5 GHz, and 1 gigabyte
in RAM.

319

ESCALANTE MONTES SUCAR

obtain models for their data without requiring knowledge on the data or on machine learning
techniques.

14.4. Experimental results
In this section results of experiments with PSMS using benchmark data from two different
sources are presented. First, we present results on a suite of benchmark machine learning data
sets5 used by several authors (Mika et al., 2000; Rätsch et al., 2001; Cawley and Talbot, 2007b);
such data sets are described in Table 14.3, ten replications (i.e. random splits of training and
testing data) of each data set were considered. These data sets were used to compare PSO to
PS in the FMS problem (Section 14.4.1) and to study the performance of PSMS under different
settings (Section 14.4.2).

Table 14.3: Data sets used in the comparison of PSO and PS, ten replications (i.e. random splits
of training and testing sets) for each data set were considered.

ID Data set Training
Patterns

Testing
Patterns

Input Fea-
tures

1 Breast cancer 200 77 9
2 Diabetes 468 300 8
3 Flare solar 666 400 9
4 German 700 300 20
5 Heart 170 100 13
6 Image 1300 1010 20
7 Splice 1000 2175 60
8 Thyroid 140 75 5
9 Titanic 150 2051 3

Next we applied PSMS to the data sets used in a model selection competition (Section 14.4.3).
The goal of the latter experiments is to compare the performance of PSMS against other model
selection strategies.

14.4.1. A comparison of PSO and PS

In the first set of experiments we compared the performance of PSO to that of another search
strategy in the FMS problem. The goal was to evaluate the advantages of using the swarm strat-
egy over another intensive search method. Among the available search techniques we selected
PS because of its simplicity and proved performance in model selection (Dennis and Torczon,
1994; Momma and Bennett, 2002; Bi et al., 2003). PS is a direct search method that samples
points in the search space in a fixed pattern about the best solution found so far (the center of
the pattern). Fitness values are calculated for the sampled points trying to find a minimizer; if
a new minimum is find then the center of the pattern is changed, otherwise the search step is
reduced by half; this process is iterated until a stop criteria is met. The considered PS algorithm
described in Algorithm 14.2 is an adaptation of that proposed by Momma et al. for hyperpa-
rameter optimization of support vector regression (Momma and Bennett, 2002; Bi et al., 2003).

The input to PS is the pattern P and the search step ∆. Intuitively, P specifies the direc-
tion of the neighboring solutions that will be explored; while ∆ specifies the distance to such
neighboring solutions. There are several ways to generate P; for this work we used the nearest

5. http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm.

320

http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm

14. PARTICLE SWARM MODEL SELECTION

Algorithm 14.2: Pattern search. pi is the ith column of P, Nc the number of columns in P.
Require:
– Ips: number of iterations
– F(Ψ → R): fitness function
– P: pattern
– ∆: search step
Initialize solution qi (i = 1)
Compute fqi = F(qi) (Section 14.3.3)
Set qg = qi; fmin = fqi
while i < Ips do

for all p j ∈ P1,...,Nc−1 do
s j = ∆.p j
q j = qg + s j
Compute fq j = F(q j)
if fq j < fmin then

Update qg (qg = q j, fmin = fq j)
end if
i++

end for
∆ = ∆/2

end while
return qg

neighbor sampling pattern (Momma and Bennett, 2002). Such pattern is given numerically by
P = [Id −Id 0T

1×d], where Id is the identity matrix of size d; 01×d is a vector of size 1×d with all
zero entries; d is the dimensionality of the problem. ∆, a vector of size 1×d, is the search step
by which the space of solutions is explored. We defined ∆ = qmaxvals−qminvals

2 , where qmaxvals and
qminvals are the maximum and minimum values that the solutions can take, respectively. Each
iteration of PS involves the evaluation of Nc −1 solutions (where Nc is the number of columns
of P). Solutions are updated by adding s j (j ∈ 1, . . . ,Nc −1) to the current-best solution qg;
where each s j is obtained by multiplying (element-by-element) the search step vector ∆ and
the jth column of P. qg is replaced by a new solution q j only if fq j < fmin = fqg . The output
of PS is qg, the solution with the lowest fitness value; we encourage the reader to follow the
references for further details (Momma and Bennett, 2002; Dennis and Torczon, 1994).

For applying PS to the FMS problem (hereafter PATSMS) the solution qg was initialized in
the same way that each particle in the swarm was initialized for PSMS (i.e. randomly). The
same representation, fitness function and restrictions on the values that each dimension can
take were considered for both methods, see Section 14.3. Under these settings PS is a very
competitive baseline for PSO.

In each experiment described below, we let PS and PSO perform the same number of fitness
function evaluations, using exactly the same settings and data sets, guaranteeing a fair compar-
ison. Since both methods use the same fitness function and perform the same number of fitness
function evaluations, the difference in performance indicates the gain we have by guiding the
search according to Equations (14.1) and (14.2)). As recommended by Demsar, we used the
Wilcoxon signed-rank test for the comparison of the resultant models (Demsar, 2006). In the
following we will refer to this statistical test with 95% of confidence when mentioning statistical
significance.

321

ESCALANTE MONTES SUCAR

We compared the FMS ability of PSMS and PATSMS by evaluating the accuracy of the
selected models at the end of the search process; that is, we compared the performance of
models pg and qg in Algorithms 14.1 and 14.2, respectively. We also compared the performance
of the solutions tried through the search. For each trial we fixed the number of iterations for
PSMS to I = 100 with a swarm size of m= 10. In consequence, both search strategies performed
m× (I +1) = 1010 evaluations of the fitness function in each run. Because more than 180,000
models were tested we used 2−fold CV for computing the fitness function. In each trial the
training set was used for FMS and the resultant model was evaluated in the test set. This process
was repeated for each replica of each data set described in Table 14.3. Averaged results of this
experiment are shown in Table 14.4. We show the average CV error obtained through the search
process (CV-BER) and the error obtained by the selected model, at the end of the search, in the
test set (test-BER).

Table 14.4: Average and variance of test-BER and CV-BER obtained by models selected with
PSMS and PATSMS, the best results are shown in bold. test-BER is the BER ob-
tained by the selected model using the test set (averaged over 10 replications of
each data set). CV-BER is the average of CV BER obtained by each of the candi-
date solutions through the search process (averaging performed over all particles
and iterations and over 10 replications of each data set) .

ID Data set PATSMS
test-BER

PSMS test-
BER

PATSMS
CV-BER

PSMS CV-
BER

1 Breast-cancer 36.98+−0.08 33.59+−0.12 32.64+−0.06 32.96+−0.01
2 Diabetes 26.07+−0.03 25.37+−0.02 25.39+−0.02 26.48+−0.05
3 Flare-solar 32.87+−0.02 32.65+−0.01 32.69+−0.01 33.13+−0.01
4 German 28.65+−0.02 28.28+−0.02 31.00+−0.00 31.02+−0.00
5 Heart 19.50+−0.19 17.35+−0.06 16.96+−0.07 19.93+−0.03
6 Image 3.58+−0.01 2.50+−0.01 11.54+−0.10 15.88+−0.04
7 Splice 13.94+−0.99 9.46+−0.25 18.01+−0.05 19.15+−0.07
8 Thyroid 10.84+−0.39 5.98+−0.06 11.15+−0.20 15.49+−0.12
9 Titanic 29.94+−0.00 29.60+−0.00 27.19+−0.13 27.32+−0.13

The performance of both search strategies is similar. PSMS outperformed PATSMS through
all of the data sets at the end of the search process (Columns 3 and 4 in Table 14.4). The
test-BER differences are statistically significant for all but the flare-solar and german data sets.
In the latter data sets the hypothesis that models selected with PATSMS and PSMS perform
equally cannot be rejected. However, note that for these data sets the models selected with
PSMS outperformed those selected with PATSMS in 6 out of 10 replications. Globally, we
noticed that from the 90 trials (9−data sets, × 10−replications for each, see Table 14.3), 68.9%
of the models selected with PSMS outperformed those obtained with PATSMS. While only in
22.2% of the runs PATSMS outperformed PSMS, in the rest both methods tied in performance.
A statistical test over these 90 results was performed and a statistically-significant difference,
favoring PSMS, was found. Despite PATSMS being a strong baseline, these results give evidence
that PSMS outperforms PATSMS at the end of the search process.

Columns five and six in Table 14.4 show the average BER obtained with each strategy
through the 1010 evaluations for each data set (averaged over replications). CV-BER reflects
the behavior of the search strategies through the search process. PATSMS slightly outperformed
PSMS in this aspect, though the difference is statistically significant only for the Heart, image

322

14. PARTICLE SWARM MODEL SELECTION

and thyroid data sets. The slight superior performance of PATSMS in CV-BER is due to the
pattern we used and the search procedure itself. PATSMS performs a finer grained search over
a restricted search area around the initial solution qg. The latter results in a lower CV-BER
because PATSMS always moves the pattern towards the local minimum nearest to the initial
solution, qg. PSMS, on the other hand, explores a much larger search space because the search
is not only guided by the best solution found so far (pg), but also by the individual best solutions
of each particle (p1,...,m). The latter produces a higher CV-BER in average because, even when
the CV-BER of the final models is low, many models of varied CV-BER performance are tried
through the search.

In Figure 14.1 we show the performance of the solutions tried through the search by each
method for a single replication of the Heart data set (for clarity in the plots we used m = 5 and
I = 50 for this experiment). We show the CV and test BER for every model tried through the
search. It can be seen that the CV-BER of PATSMS is lower than that of PSMS, showing an
apparent better convergence behavior (left plot in Figure 14.1). However, by looking the test
BER of the models tried, it becomes evident that PATSMS is trapped into a local minimum since
the very first iterations (right plot in Figure 14.1). PSMS, on the other hand, obtains a higher
CV-BER through the search, though it is less prone to follow a local minimum. This is because
with PSMS the search is guided by one global and m local solutions, which prevents PSMS from
performing a pure local search; the latter in turn prevents PSMS of overfitting the data. This
result gives evidence of the better convergence behavior of PSMS.

10 20 30 40 50

10

15

20

25

30

35

40

Iterations

BE
R

CV−BER

PATSMSPSMS
10 20 30 40 50

10

15

20

25

30

35

40

45

50

Iterations

BE
R

Test−BER

PATSMSPSMS

Figure 14.1: Performance of PATSMS (circles) and PSMS (triangles) as a function of number
of iterations for an experiment with one replication of the Heart data set. For
PSMS we show the performance of each particle with a different color. Left:
Cross-validation Balanced Error Rate (BER). Right: Test set BER. In both plots
we indicate with an arrow the model selected by each search strategy.

The model selected with PSMS obtained a lower test-BER than that selected with PATSMS
(see right plot in Figure 14.1). In fact all of the solutions in the final swarm outperformed
the solution obtained with PATSMS in test-BER. With PSMS the model of lowest test BER
was obtained after 3 iterations of PSMS, giving evidence of the fast convergence of PSO. One
should note that the test-BER of the worst PSMS solutions is higher than that of the best PATSMS

323

ESCALANTE MONTES SUCAR

solution. However, near the end of the search, the possibilities that PSMS can select a worse
solution than PATSMS are small.

We have seen that PATSMS is prone to get trapped into a local minimum because it performs
a fine grained search over a small area. This causes that only a few methods are considered
through the search with this method. PSMS, on the other hand, tries a wide variety of classi-
fiers and feature selection methods, exploring a larger search space and being able to escape
from local minima. In order to analyze the diversity of the methods considered by PSMS, in
Figure 14.2 we show the normalized frequency of methods preferred by PSMS6 through the
search. The results shown in this figure are normalized over the 90,900 models tried for ob-
taining the results from Table 14.4. From this figure, we can see that most of the classifiers and
feature selection methods were considered for creating solutions. No classifier, feature selection
method or combination of preprocessing methods was used for more than 27% of the models.
This reflects the fact that different methods are required for different data sets and that some are
equivalent. There were, however, some methods that were slightly more used than others.

The preferred classifier was the zarbi CLOP-object, that was used for about 23% of the
models. This is a surprising result because zarbi is a very simple linear classifier that separates
the classes by using information from the mean and variance of training examples (Golub et al.,
1999). However, in 97.35% of the times that zarbi was used it was combined with a feature
selection method. Gkridge, svc, neural and logitboost were all equally selected after zarbi.
Ftest was the most used feature selection method, though most of the feature selection strategies
were used. Note that Pearson, Zfilter, gs and s2n were considered only for a small number of
models. The combination standardize + shift-scale was mostly used for preprocessing, although
the combination normalize + standardize + shift-scale was also highly used. Interestingly, in
70.1% of the time preprocessing was performed before feature selection. These plots illustrate
the diversity of classifiers considered by PSMS through the search process, showing that PSMS
is not biased towards models that tend to perform very well individually (e.g. logitboost, rf or
gkridge). Instead, PSMS attempts to find the best full model for each data set.

14.4.2. Parameter selection for PSMS

In this section we analyze the performance of PSMS under different settings. The goal is to
identify mechanisms in PSMS that allow us obtaining competitive models and, to some extent,
avoiding overfitting. For the experiments described in this section we consider a single repli-
cation for each data set. As before, we show the average CV error of the solutions considered
during the search as well as the error of the selected model in the test set. We also show the
average test set error of all solutions tried through the search test-BER∗ (averaging performed
over all particles and all iterations), providing information about the generalization performance
of the models considered throughout the search.

VALUE OF K IN K-FOLD CV

First we analyze the behavior of PSMS for different values of k in the CV for computing the
fitness function. We consider the values k = [2,5,10]. Average results of this experiment are
shown in Table 14.5.

6. We do not show those preferred by PATSMS because the methods selected with this strategy are, most of the times,
those considered in the initial solution. In our experiments we found that for each replication PATSMS used the
same classifier and feature selection method for about 95% of the search iterations. The selection of these methods
depended on the initial solution instead of the way the search space is explored or the individual performance
of the methods. Therefore, no useful information can be obtained about why some methods are preferred over
others, even when in average (over the 90,900 solutions tried) the histograms may look similar to those shown in
Figure 14.2.

324

14. PARTICLE SWARM MODEL SELECTION

Figure 14.2: Normalized frequency of classifiers (left), feature selection method (middle) and
combination of preprocessing methods (right) preferred by PSMS through the
search process. In the right plot, the abbreviations shift, stand and norm stand
for shift-scale, standardization and normalization, respectively. Results are nor-
malized over the 90,900 models tried for obtaining the results from Table 14.4.

Table 14.5: Average CV-BER (average CV result over all particles and iterations), test-BER
(test result corresponding to the best CV result), test-BER* (average test result over
all particles and iterations) and processing time (in seconds) for different values of
k in the k−fold CV. Results are averaged over a single replication of each data set
described in Table 14.3.

k CV-BER test-BER test-BER* Time
2 25.36+−0.56 22.99+−1.18 25.79+−0.59 4166.85
5 25.18+−0.59 20.50+−1.53 26.30+−0.46 6062.56
10 24.54+−0.63 20.82+−1.74 26.03+−0.51 7737.11

325

ESCALANTE MONTES SUCAR

From this table, we can see that the performance is similar for the different values of k
considered. The best results at the end of the search are obtained with k = 5 (column 3 in
Table 14.5), while the best generalization performance is obtained with k = 2 (column 4 in
Table 14.5). However, these differences are not statistically significant. Therefore, the null
hypothesis that models selected with k = [2,5,10] perform equally in test-BER and test-BER*
cannot be rejected. The latter is an important result because by using k = 2 the processing time
of PSMS is considerably reduced. Note that for models of quadratic (or higher order) complex-
ity, computing the fitness function with 2−fold CV is even more efficient than computing the
fitness function using the full training set. It is not surprising that processing time increases as
we increase k (column 5 in Table 14.5). Although it is worth mentioning that the variance in
processing time was very large (e.g. for k = 2 it took 7 minutes applying PSMS to the titanic
data set and about five hours for the image data set).

NUMBER I OF ITERATIONS

Next we performed experiments varying the number of iterations (I), using 2− f old CV for
computing the fitness function and a swarm size of m = 10. We considered the values I =
[10,25,50,100]. Averaged results for this experiment are shown in Table 14.6 (rows 2–5).

Table 14.6: Average CV-BER, test-BER and test-BER* for different settings of m, I and W.
The best results are shown in bold. Results are averaged over a single replication
of each data set described in Table 14.3.

Setting CV-BER test-BER test-BER*
I=10 25.33+−0.33 22.17+−1.81 27.64+−0.52
I=25 25.29+−0.33 21.88+−1.68 27.59+−0.49
I=50 24.02+−0.38 21.12+−1.74 26.72+−0.65

I=100 24.57+−0.37 22.81+−1.44 27.27+−0.48
m=5 24.27+−0.49 20.81+−1.50 25.01+−0.85
m=10 25.07+−0.34 21.64+−2.04 25.99+−0.74
m=20 25.09+−0.34 21.76+−1.84 26.00+−0.64
m=40 24.82+−0.43 21.45+−2.13 25.96+−0.78
m=50 25.32+−0.44 22.54+−1.65 26.11+−0.77

W=(0,0,0) 23.86+−0.71 20.40+−1.71 22.46+−1.32
W=(1.2,0.5,0.5) 24.22+−0.76 19.41+−1.37 23.38+−1.34

W=(1,1,1) 27.62+−0.30 21.88+−1.68 27.13+−0.53

As we can see the best results were obtained by running PSMS for 50 iterations. Interest-
ingly, models selected by running PSMS for 10 iterations outperformed those selected after 100
iterations in test-BER, though the difference was not statistically significant. The difference in
performance between models selected after 50 and 100 iterations was statistically significant.
This result shows the fast convergence property of PSMS and that early stopping could be an
useful mechanism to avoid overfitting, see Section 14.5.

SWARM SIZE M

In the next experiment we fixed the number of iterations to I = 50 and varied the swarm size
as follows, m = [5,10,20,40,50]. Results of this experiment are shown in rows 6–10 in Ta-
ble 14.6. This time the best result was obtained by using a swarm size of 5, however there is a

326

14. PARTICLE SWARM MODEL SELECTION

statistically-significant difference only between m = 5 and m = 50. Therefore, models of com-
parable performance can be obtained by using m = [5,10,20,40]. This is another interesting
result because using a small swarm size reduces the number of fitness function evaluations for
PSMS and therefore makes it more practical. An interesting result is that by using 50 iterations
with any swarm size the test-BER is very close to the CV-BER estimate. Again, this provides
evidence that early stopping can improve the average generalization performance of the models.

Figure 14.3: Algorithm performance as a function of number of iterations for different con-
figurations of W. CV-BER (circles) and test-BER* (crosses) for the Heart data
set. We are displaying the test and CV BER values for each particle at every time
step. Since each time step involves m=5 particles, then for each iteration are dis-
played m=5 crosses and m=5 circles. We consider the following configurations:
W = (0,0,0) (left), W = (1.2,0.5,0.4) (middle) and W = (1,0,1) (right). The
CV-BER and test-BER of the best solution found by PSMS are enclosed within a
bold circle.

INERTIA WEIGHT W

We also performed experiments with different configurations for W, the adaptive inertia weight.
Each configuration is defined by a triplet W = (wstart ,w f ,wend), whose elements indicate the
starting value for W , the proportion of iterations to vary it and its final value, respectively, see
Section 14.2. Three configurations were tried with the goal of evaluating the advantages of us-

327

ESCALANTE MONTES SUCAR

ing an adaptive inertia weight instead of constant values. Results of this experiment are shown
in rows 11–13 in Table 14.6. It can be seen that the best results in CV-BER and Test-BER∗ were
obtained with W = (0,0,0); the differences with the other results are statistically-significant.
Under this configuration PSMS is not taking into account information from past velocities for
updating solutions; which causes PSMS to converge quickly into a local minimum and refining
the search around this point. The best result at the end of the search (column 3 in Table 14.6) was
obtained with W= (1.2,0.5,0.4), the difference with the other results is statistically-significant.
Under this configuration both global and local search is performed during the PSMS iterations;
which caused higher CV-BER and test-BER∗ than that of the first configuration, however, the
generalization performance of the final model was better. The configuration W = (1,0,1) ob-
tained the worst results in all of the measures; this is because under this configuration the search
is never refined, since PSMS always takes into account the past velocity for updating solutions.
The latter configuration could be a better choice for FMS because this way PSMS does not over-
search around any solution; however, local search is also an important component of any search
algorithm. In Figure 14.3 we show the CV and test BER of solutions tried during the search for
the Heart data set under the different configurations tried. From this figure we can appreciate
the fact that using constant values for W results in more local (when W = (0,0,0)) or global
search (when W = (1,0,1)). An adaptive inertia weight, on the other hand, aims to control
the tradeoff between global and local search, which results in a model with lower variance for
this example. Therefore, an adaptive inertia weight seems to be a better option for FMS; this
is because it prevents, to some extend, PSMS to overfit the data. However, further experiments
need to be performed in order to select the best configuration for W.

INDIVIDUAL (c1) AND GLOBAL (c2) WEIGHTS

We now analyze the performance of PSMS under different settings of the individual (c1) and
global (c2) weights. We considered three configurations for c1 and c2; in the first one both
weights have the same influence in the search (i.e. c1 = 2;c2 = 2), this was the setting used for
all of the experiments reported in Section 14.4. In the second setting the local weight has no
influence in the search (i.e. c1 = 0;c2 = 2), while in the third configuration the global weight
is not considered in the search (i.e. c1 = 2;c2 = 0). We ran PSMS for I = 50 iterations with a
swarm size of m = 5, using a single replication for each data set described in Table 14.3; for the
three configurations considered it was used the same adaptive inertia weight W= (1.2,0.5,0.4);
averaged results of this experiment are shown in Table 14.7.

Table 14.7: Average CV-BER, test-BER and test-BER* for different settings of c1 and c2 in
Equation (14.1). The best results are shown in bold. Results are averaged over a
single replication of each data set described in Table 14.3.

ID Setting CV-BER test-BER test-BER*
1 c1 = 2;c2 = 2 23.69+−0.68 19.72+−1.45 23.92+−1.16
2 c1 = 0;c2 = 2 26.87+−0.43 22.42+−1.32 27.13+−0.55
3 c1 = 2;c2 = 0 24.99+−0.41 21.73+−1.42 25.59+−0.66

From this table we can see that the best performance is obtained by assigning equal weights
to both factors. The difference in performance is statistically-significant over all measures with
respect to the other two configurations. Therefore, by using the first configuration we can
obtain solutions of better performance through and at the end of the search. More importantly,

328

14. PARTICLE SWARM MODEL SELECTION

solutions of better generalization performance can be obtained with this configuration as well.
The difference in performance is higher with the second configuration, where the individual-
best solutions have no influence in the search; therefore, PSMS is searching locally around the
global best solution. In the third configuration the global-best solution has no influence in the
search; in consequence, the search is guided according the m−individual-best solutions. For
illustration in Figures 14.4 and 14.5 we show the performance of PSMS as a function of the
number of iterations for a single replication of the Heart data set. In Figure 14.4 we show the
performance of PSMS for I = 25 iterations and in Figure 14.5 for I = 100 iterations.

Figure 14.4: Performance of PSMS as a function of number of iterations using different settings
for c1 and c2, see Table 14.7. We show the CV-BER (left) and Test-BER (right) for
a single replication of the Heart data set. PSMS was ran for I = 25 iterations in
this experiment. The models selected with each configuration are indicated with
arrows.

Figure 14.5: Performance of PSMS as a function of number of iterations using different settings
for c1 and c2, see Table 14.7. We show the CV-BER (left) and Test-BER (right) for
a single replication of the Heart data set. PSMS was ran for I = 100 iterations in
this experiment. The models selected with each configuration are indicated with
arrows.

329

ESCALANTE MONTES SUCAR

From these figures we can see that the CV estimate is very similar for the different settings
we considered (left plots in Figures 14.4 and 14.5). However, by looking at the performance
of the solutions in the test set (right plots in Figures 14.4 and 14.5), we can appreciate that
configurations 2 and 3 overfit the data (red circles and green squares). With c1 = 0 we have
that the m = 5 particles converge to single local minima, performing a fine grained search over
this solution (red circles). With c2 = 0 each of the m−particles converge to different local
minima, overdoing the search over each of the m solutions (green squares). On the other hand,
with the configuration c1 = 2, c2 = 2 PSMS is not trapped into a local minimum (blue triangles);
searching around promising solutions, but without doing a fine grained search over any of them.

Better models (indicated by arrows) are selected by PSMS with the first configuration, even
when their CV is higher than that of the models selected with the other configurations. This
result confirms that PSMS is overfitting the data with the configurations 2 and 3. Note that with
I = 25 iterations (Figure 14.4) the first configuration is not converging to a local minimum yet;
while with I = 100 iterations (Figure 14.5) it looks like PSMS starts searching locally at the last
iterations. This result illustrates why early stopping can be useful for obtaining better models
with PSMS.

In order to better appreciate the generalization performance for the different configurations,
in Figure 14.6 we plot the CV-BER as a function of test-BER for the run of PSMS with I = 25,
we plot each particle with a different color.

From this figure we can see that the best model is obtained with the first configuration;
for the configurations 2 and 3 the particles obtain the same test-BER for different solutions
(middle and right plots in Figure 14.6). Despite the CV estimate is being minimized for these
configurations, the test-BER performance of models does not improve. It is clear from the
right plot in Figure 14.6 that with c2 = 0 each particle is trapped in different local minima,
doing a fine grained search over them that causes PSMS to overfit the data. It also can be seen
from the middle plot that with c1 = 0 the search is biased towards a single global-best solution
(magenta circle), again, causing PSMS to overfit the data. On the other hand, results with the
first configuration (left plot in Figure 14.6) show that particles do not oversearch at any solution.

14.4.3. Results on the model selection challenge

In this section we describe experimental results of PSMS in the framework of a model selection
competition called agnostic learning vs. prior knowledge challenge (ALvsPK) (Guyon et al.,
2007, 2008). The goal of these experiments is to compare the performance of PSMS against
other model selection strategies that work for a single algorithm or that use domain knowledge
for this task. Through its different stages, the ALvsPK competition evaluated novel strategies for
model selection as well as the added value of using prior knowledge for improving classification
accuracy (Guyon et al., 2008). This sort of competitions are very useful because through them
the real effectiveness of methods can be evaluated; motivating further research in the field and
collaborations among participants.

CHALLENGE PROTOCOL AND CLOP

The rules of the challenge were quite simple, the organizers provided five data sets for binary
classification together with the CLOP toolbox (Saffari and Guyon, 2006). The task was to
obtain the model with the lowest BER over the five data sets on unseen data. Participants
were free to elect using CLOP or their own learning machine implementations. The challenge
is over now, although the challenge website7 still remains open, allowing the evaluation of

7. http://www.agnostic.inf.ethz.ch/

330

http://www.agnostic.inf.ethz.ch/

14. PARTICLE SWARM MODEL SELECTION

Figure 14.6: Test-BER as a function of CV-BER for a run of PSMS for I = 25 iterations in
the Heart data set. Results with different configurations for c1 and c2 are shown.
Left: c1 = 2, c2 = 2. Middle: c1 = 0, c2 = 2. Right: c1 = 2, c2 = 0. In each
plot each particle is shown with a different color. The selected model with each
configuration is indicated with an arrow.

331

ESCALANTE MONTES SUCAR

learning techniques and model selection methods. A complete description of the challenge and
a comprehensive analysis of the results are described by Guyon et al. (Guyon et al., 2006c,
2007, 2008).

The competition was divided into two stages. The first stage, called the model selection
game (Guyon et al., 2006c), was focused on the evaluation of pure model selection strategies.
In the second stage, the goal was to evaluate the gain we can have by introducing prior knowl-
edge into the model selection process (Guyon et al., 2007, 2008). In the latter stage participants
could introduce knowledge of the data domain into the model selection process (prior knowl-
edge track). Also, participants could use agnostic methods in which no domain knowledge is
considered in the selection process (agnostic track).

The data sets used in the agnostic track of the ALvsPK challenge are described in Table 14.8,
these data sets come from real domains. Data sets used for the agnostic and prior knowledge
tracks were different. For the agnostic track the data were preprocessed and dummy features
were introduced, while for the prior knowledge track raw data were used, together with a de-
scription of the domain. We should emphasize that, although all of the approaches evaluated
in the ALvsPK competition faced the same problem (that of choosing a model that obtains the
lowest classification error for the data), such methods did not adopt the FMS interpretation.
Most of the proposed approaches focused on a fixed machine learning technique like tree-based
classifiers (Lutz, 2006), or kernel-based methods (Cawley, 2006; Pranckeviciene et al., 2007;
Guyon et al., 2008), and did not take into account feature selection methods. Participants in the
prior knowledge track could introduce domain knowledge. Furthermore, most of participants
used their own implementations, instead of the CLOP toolbox.

After the challenge, the CLOP toolkit was augmented with methods, which performed well
in the challenge (Cawley, 2006; Cawley and Talbot, 2007a; Lutz, 2006). These include Log-
itboost (Friedman et al., 2000), LSSVM (Suykens and Vandewalle, 1999), and kernel ridge
regression (Saunders et al., 1998; Hastie et al., 2001).

COMPETITIVENESS OF PSMS

In both stages of the competition we evaluated models obtained with PSMS under different
settings. Models obtained by PSMS were ranked high in the participants list, showing the
competitiveness of PSMS for model selection (Guyon et al., 2006c, 2007, 2008; Escalante et al.,
2007). Furthermore, the difference with methods that used prior knowledge was relatively
small, showing that FMS can be a viable solution for the model selection problem without the
need of investing time in introducing domain knowledge, and by considering a wide variety of
methods.

The results of PSMS in the ALvsPK challenge have been partially analyzed and discussed
elsewhere (Escalante et al., 2007; Guyon et al., 2007, 2008). During the challenge, our best
entry (called Corrida-final) was ranked8 8th over all ranked participants, 5th among the methods
that did not use domain knowledge and 2nd among the methods that used the software provided
by the organizers (Guyon et al., 2006c, 2007, 2008). For Corrida-final we used k = 5 and the
full training set for computing the fitness function; we ran PSMS for 500 iterations for the Ada
data set and 100 iterations for Hiva, Gina and Sylva. We did not applied PSMS to the Nova data
set in that entry, instead we selected a model for Nova by trial and error. For such entry we used
a version of CLOP where only there were available the following classifiers zarbi, naive, neural
and svc (Escalante et al., 2007); also, only four feature selection methods were considered.

8. http://www.clopinet.com/isabelle/Projects/agnostic/Results.html

332

http://www.clopinet.com/isabelle/Projects/agnostic/Results.html

14. PARTICLE SWARM MODEL SELECTION

POST-CHALLENGE EXPERIMENTS

In the rest of this section we present results of PSMS using the augmented toolkit, including
all methods described in Tables 14.1 and 14.2. In these tables we consider implementations of
logitboost, lssvm and gkridge, which are the classifiers that won the ALvsPK challenge (Cawley,
2006; Cawley and Talbot, 2007a; Lutz, 2006) and were added to CLOP after the end of the
challenge.

Table 14.8: Benchmark data sets used for the model selection challenges (Guyon et al., 2006c,
2007, 2008).

Data set Domain Type Features Training Validation Testing
Ada Marketing Dense 48 4174 415 41471
Gina Digits Dense 970 3153 315 31532
Hiva Drug discovery Dense 1617 3845 384 38449
Nova Text classification Sparse binary 16969 1754 175 17537
Sylva Ecology Dense 216 13086 1309 130857

In order to efficiently apply PSMS to the challenge data sets we adopted a subsample strategy
in which, instead of using the full training set, small subsamples of the training data were used to
compute the fitness function. Each time the fitness function is computed we obtain a different
random sample of size Ssub = N

SF , where N is the number of instances and SF is a constant
that specifies the proportion of samples to be used. Subsamples are only used for the search
process. At the end of the search the selected model is trained using the full training set (for
the experiments reported in this paper we considered as training set the union of the training
and validation data sets, see Table 14.8). Due to the dimensionality of the Nova data set we
applied principal component analysis to this data set. Then we used the first 400 components
for applying PSMS. We fixed k = 2, I = 50 and m = 5 for our experiments based on the results
from previous sections. Then we ran PSMS for all of the data sets under the above described
settings using different values for SF. The predictions of the resultant models were uploaded to
the challenge website in order to evaluate them. Our best ranked entry in the ALvsPK challenge
website (called psmsx_jmlr_run_I) is described in Table 14.9, and a comparison of it with the
currently best-ranked entries is shown in Table 14.10.

Table 14.9: Models selected with PSMS for the data sets of the ALvsPK challenge. For each
data set we show the subsampling factor used (SF), the selected model (Model,
some hyperparameters are omitted for clarity), the processing Time in minutes and
the test-BER obtained. sns is for shift-scale, std is for standardize and norm is
for normalize. See Tables 14.1 and 14.2 for a description of methods and their
hyperparameters.

Data SF Model Time (m) Test-BER
Ada 1 chain({logitboost(units=469,shrinkage=0.4,depth=1),bias} 368.12 16.86
Gina 2 chain({sns(1),relief(fmax=487),gkridge,bias} 482.23 2.41
Hiva 3 chain({norm(1),rffs(fmax=1001),lssvm(gamma=0.096),bias} 124.54 28.01
Nova 1 chain({rffs(fmax=338),norm(1),std(1),sns(1),gkridge,bias} 82.12 5.27
Sylva 10 chain({sns(1),odds-ratio(fmax=60),gkridge,bias} 787.58 0.62

333

ESCALANTE MONTES SUCAR

We can see from Table 14.9 that very different models were selected by PSMS for each
data set. This is the main advantage the FMS because it allows us selecting an ad-hoc model
for each data set by considering different model types and a wide diversity of methods. With
exception of Ada, the selected models included a feature selection method; this result shows
the importance of feature selection methods and that some of them are more compatible than
others with some classifiers; note that different numbers of features were selected for each data
set. In all but the Nova data set preprocessing was performed before feature selection. This can
be due to the fact that for Nova we used principal components instead of the original features.
For Ada it was selected a logitboost classifier, while for Hiva it was selected a lssvm classifier
with gaussian kernel. For Gina, Nova and Sylva it was selected the gkridge classifier; this
classifier performs virtual leave-one out model selection each time it is trained (Cawley et al.,
2007). Note that both gkridge and logitboost were the classifiers that best performed during the
challenge (Guyon et al., 2007, 2008); this result gives evidence that PSMS can obtain similar
and even better models, without spending time on ad-hoc modifications for each data set and
without using domain knowledge.

The use of the subsampling strategy allowed to efficiently apply PSMS to all of the data sets.
About six hours were required to obtain a competitive model for Ada, while about only two for
the Hiva data set. Note that applying PSMS for Hiva using the entire training set (Corrida-final)
took about 80 hours in the same machine (Escalante et al., 2007). During our experiments we
found that the larger the subsamples the better the performance of the selected model. However,
the selection of SF also depends on the available computer resources and time restrictions. One
should note that we can increase speed of PSMS by caching intermediate results that can be
reused (e.g. preprocessing the data sets off-line).

Despite the use of the subsampling technique the models selected with PSMS resulted very
competitive as shown in Table 14.10. Currently, the PSMS run is the top-ranked agnostic entry
in the challenge website; furthermore, the performance of this entry is superior than all but one
prior-knowledge entry: Interim-all-prior; which is the best ranked entry overall, using “prior
knowledge" or “domain knowledge". Note that the latter entry is formed of models that were
designed ad-hoc for each data set, requiring much more time, effort and knowledge than PSMS.
In average PSMS outperforms the best results presented in the ALvsPK challenge: IJCNN07AL,
row 4 in Table 14.10 (Guyon et al., 2007); and the best-ranked agnostic entry (after PSMS):
Logitboost-with-trees, row 5 in Table 14.10 (Lutz, 2006).

The performance of PSMS is very close to that of IJCNN07AL, tieing in Sylva and outper-
forming one to the other in two data sets. PSMS outperforms Logitboost-with-trees in three out
of the five data sets and achieves very close performance for the other two data sets. The latter
entry is ranked 10th in the challenge website. It is very interesting that for the Ada data set the
best model so far is a logitboost classifier with about 1000 trees (Lutz, 2006); while with PSMS
we were able to achieve almost the same performance by using a half that number of trees, see
row 2 in Table 14.9. This is important because simpler models of similar performance can be
obtained with PSMS.

PSMS clearly outperformed our best-ranked entry during the challenge (row 6 in Table 14.10);
this result gives evidence that we obtained better results by using more and better classifiers;
also, the use of subsamples instead of the entire training set (when computing the fitness func-
tion), does not damage the performance of PSMS, although the reduction in processing time is
very important. Note that for Nova the PSMS entry obtained a slightly worse result than that
of Corrida-final; however, the model for Nova in Corrida-final was selected by trial and error
which required of much more effort and time.

Results reported in this section show the efficacy of PSMS for model selection. Despite
its simplicity it has shown comparable and even superior performance to those obtained by

334

14. PARTICLE SWARM MODEL SELECTION

Table 14.10: Comparison of models selected with PSMS and the best entries in the ALvsPK
challenge data sets. We show, for reference, the best prior-knowledge entry
(Interim-all-prior); the entry formed by the models described in Table 14.9
(psmx_jmlr_run_I); the best individual entries for each data set in the ALvsPK
challenge (IJCNN07AL) (Guyon et al., 2007, 2008); the second-best entry of the
agnostic track (Logitboost-with-trees) and our best ranked entry evaluated during
the challenge Corrida-final. The best results in the agnostic track are shown in
bold.

Entry Description Ada Gina Hiva Nova Sylva Overall Rank
Interim-all-prior Best-PK 17.0 2.33 27.1 4.71 0.59 10.35 1th

psmsx_jmlr_run_I PSMS 16.86 2.41 28.01 5.27 0.62 10.63 2nd

IJCNN07AL Best-AL 16.60 3.39 28.27 4.56 0.62 10.68 4th

Logitboost-with-trees Best-AL 16.60 3.53 30.18 4.69 0.78 11.15 10th

Corrida-final Best-PSMS-ALvsPK 18.27 6.14 28.54 5.11 1.22 11.86 42th

other model selection strategies that focused on a single learning algorithm and to methods that
used prior domain knowledge for guiding the model selection process (Lutz, 2006; Reunanen,
2007; Boullé, 2007; Pranckeviciene et al., 2007; Wichard, 2007). Models selected with PSMS
are simple and yet very competitive; furthermore, with PSMS no knowledge is needed on the
methods to choose from, nor on the domain. In consequence, it is very easy to obtain classifiers
that can achieve state-of-the-art performance without spending time on designing, developing
and optimizing an ad-hoc model. Even though PSMS can be applied to any binary classification
problem, we are not claiming it will obtain satisfactory results in every domain; however, it can
be considered as a first option when dealing with binary classification tasks. It is expected that
this will further improve the performance of models selected with PSMS if domain knowledge
is used.

14.5. Discussion
In this section, we discuss the advantages and disadvantages of PSMS and perform a synthesis
of our experiments aiming at better understanding how PSMS performs intensive search in
hyperparameter space without overfitting the data.

14.5.1. Robust and computationally tractable intensive search

In Section 14.4 we reported experimental results that give evidence of the validity of the PSMS
approach, demonstrating in particular that PSMS can outperform PATSMS through and at the
end of the search, showing better convergence behavior and generalization performance. This
is obtained at the expense of moderate additional computational complexity. This claim is sup-
ported by the theoretical analysis of the computational complexity (Section 14.3.4), indicating
that computations are dominated by the number of learning machine trainings, and by the exper-
iments (Section 14.4.2), indicating as few as 5 particles (learning machines) and 10 iterations
(i.e., 50 trainings) are needed to attain the best performance. The efficiency of PSMS can be
improved, for instance by preferably exploring learning machines, which have a lower com-
putational cost of training. We explored successfully other heuristics, including subsampling
training data, which reduced computations, at the expense of no performance degradation.

An analysis of the diversity of models tried by PSMS shows that this method is not biased
towards models that tend to perform well individually. Investigating the operation of PSMS

335

ESCALANTE MONTES SUCAR

under different settings we found that the performance of PSMS is not significantly affected
by modifying its hyperparameters. However, experimental results indicate that the use of an
adaptive inertia weight may be helpful to explore the search space better.We also observed
that certain parameter configurations allow the selection of competitive models, while reducing
processing time. Section 14.5.4 provides a final set of practical recommendations.

Results of international competitions suggest that PSMS is competitive with model selection
strategies specific to single algorithms and to strategies using prior domain knowledge. The
latter is an important result because it shows that we can obtain competitive models without
the need of an expert on the domain, a careful analysis to the data, or even machine learning
knowledge.

14.5.2. Intensive search without overfitting

The findings summarized above provide empirical evidence suggesting PSMS is a reliable strat-
egy for agnostic model selection. However, it is not obvious why PSMS succeeds in selecting
competitive models without significantly overfitting data. Our hypothesis is that PSMS is able
to avoid overfitting because of the way the search is guided: PSMS performs a broad search
around promising solutions without focusing on reaching local minima. Solutions in PSMS are
updated by taking into account information from both: the global-best solution (pg, weighted
by c2) and the individual-best solutions of each particle (p1,...,m, weighted by c1), see Equa-
tions (14.1) and (14.2)). The latter combined with an adaptive inertia weight and early stopping
cause do not exaggerate the search at any local minima. Methods like PATSMS, on the contrary,
update solutions by moving the pattern towards the local minimum nearest the initial solution,
see Algorithm 14.2. Reaching exactly a local minimum causes PATSMS to learn peculiarities
in the data set and does not necessarily result in obtaining a better predictive model.

The experiments we performed in Section 14.4.2 support the above conjecture. The results
from Table 14.7 and Figures 14.4, 14.5 and 14.6 indicate that PSMS is able to avoid overfit-
ting (to some extend) because of the way the search is guided. PSMS searches around good
solutions without overdoing in terms of really fine-grained optimization. This sort of search
can be considered as suboptimal in Dietterich’s sense: “In machine learning it is optimal to
be suboptimal!” (Dietterich, 1995). The latter statement makes reference to the well known
fact that oversearching (i.e. trying to be optimal) in model selection can lead to select models
that fit very well the peculiarities of the considered data set without deriving a general predic-
tive rule (Dietterich, 1995; Jensen and Cohen, 2000; Quinlan and Cameron-Jones, 1995; Hastie
et al., 2001; Loughrey and Cunningham, 2005). On the contrary, PSMS is able to undercompute
because for updating solutions it considers local and global knowledge, information from past
solutions (weighted by the inertia term) and randomness; note that the latter holds when a rea-
sonable small number of iterations is performed. Furthermore, our experimental results provide
empirical evidence that agrees with recent, yet traditional, explanations about why and how
PSO works (Kennedy, 2008; Kennedy and Eberhart, 2001). Kennedy has argued the success
of PSO is due to the fact that it performs a “collaborative trial and error” search (Kennedy,
2008). That is, PSO obtains good results mainly because the search is directed according both
individual and social knowledge; the same conclusion derived from experimental results in this
section. It is not surprising that distributed and collaborative computing can improve results
of centralized (individualized) methods. For FMS, however, it is very interesting that updat-
ing solutions in a heterogeneous way allows us to avoid oversearching and, in consequence,
overfitting; even when the FMS search space is infinite and has many local minima solutions.

336

14. PARTICLE SWARM MODEL SELECTION

14.5.3. Comparison with related work

A variety of approaches have been proposed to select parameters of specific methods for regres-
sion, classification, feature selection, discretization etcetera (Hastie et al., 2001; Bishop, 2006;
Voss and Feng, 2002; Nelles, 2001; Guyon et al., 2006b; Kim et al., 2002; Hastie et al., 2001;
Cawley and Talbot, 2007b; Boullé, 2007; Hue and Boullé, 2007). However, despite the potential
advantages of FMS (namely generality, simplicity and competitiveness), this problem has been
little studied because of the huge search space involved and because intensive search methods
are prone to overfit the data (Gorissen et al., 2008; Escalante et al., 2007). Nevertheless, in
the rest of this section we outline techniques used to avoid oversearching/overfitting in search
that are applicable/related to FMS. One should note that traditional model selection techniques
just like Akaike and Bayesian information criteria, the minimum description length principle
and the VC-dimension are not directly applicable to FMS and therefore they are excluded of
analysis.

Grid search (with CV) is the widely used search-approach to model selection in practical
applications (Momma and Bennett, 2002; Hsu et al., 2003). This method consists of defining
a uniform grid over the search space where each point in the grid defines a solution; every
point in the grid is evaluated and the point of lowest error is selected. The granularity of the
grid determines both the performance of the selected solution and the efficiency of the search.
A fine-grained grid may be inefficient and can lead to oversearching; while a sparse grid will
result in low performance models. Note that the heterogeneousness of models and the variety
of ranges for the models parameters make very difficult the application of grid search to the
FMS problem; furthermore, the choice of an adequate granularity can be a serious problem.
Other methods already used for parameter optimization that can be applied to FMS include:
greedy search (Dietterich, 1995), random search (e.g. the bumping technique) (Hastie et al.,
2001), PS (Bi et al., 2003; Momma and Bennett, 2002), evolutionary computation approaches
(Engelbrecht, 2006; Gorissen et al., 2008; Angeline, 1998), and other swarm-optimization tech-
niques (Kennedy and Eberhart, 2001; Engelbrecht, 2006). Note that despite one may think that
exhaustive search is the best search option in model selection, this approach is impractical for
most real world problems and when applicable it suffers from the oversearching phenomenon
(Dietterich, 1995).

Early stopping has been widely used to prevent overfitting in search methods (Hastie et al.,
2001; Engelbrecht, 2006; Loughrey and Cunningham, 2005). The goal of this heuristic is to stop
searching/learning when the model starts overfitting the data. There are several variants to stop
the search: after a small number of iterations, when no improvement is found after a number
of iterations, when a solution of acceptable performance has been found, etcetera. A problem
with early stopping is that premature stopping the algorithm would lead to selecting a solution
that has not converged yet, while a late stopping of the search will cause severely overfitting
the data because of oversearching. For PSMS we found that a small number of iterations can
be enough to obtain satisfactory results in benchmark data, although the number of iterations is
problem dependant; therefore, we can adopt other stopping criteria for FMS in the future.

Randomness has bring into play in machine learning in order avoid overfitting and to es-
cape from local minima in search (Hastie et al., 2001; Bishop, 2006; Kirkpatrick et al., 1983;
Kennedy and Eberhart, 2001). In learning algorithms, it has been successfully used to pre-
vent overfitting and to obtain better predictors; learning methods that use randomness include
bagging classifiers (Hastie et al., 2001), neural and deep belief networks (Hastie et al., 2001;
Hinton et al., 2006) and randomized decision-tree algorithms (Breiman, 2001; Geurts et al.,
2006). Bootstrapping is a technique (used in bagging and random forest classifiers) based on
random sampling that has been widely used to estimate the generalization performance of meth-
ods as an alternative to CV (Hastie et al., 2001). In PSMS randomness played an important role

337

ESCALANTE MONTES SUCAR

because it introduces diversity into the search process and allows PSMS to avoid local min-
ima. Furthermore, the subsampling strategy we used to increase the speed of PSMS is related
to bootstrapping; in future work on PSMS we will explicitly consider different subsampling
estimations for the selection of the final model.

As the adaptive inertia weight in PSO, see Section 14.2, there are parameters in other al-
gorithms that aim to avoid overfitting by exploring the search space both globally and locally;
examples are the temperature parameter in simulated annealing (Kirkpatrick et al., 1983) and
the momentum term in on-line gradient descend and backpropagation (Qian, 1999). The ridge
in ridge-regression and weight decay in neural networks training are also related to the inertia
weight. Model averaging and the use of ensembles have proved to be helpful to improve predic-
tions and avoid overfitting; this is because different models have different biases that in average
result in improved performance (Hastie et al., 2001; Bishop, 2006). Future work includes in
PSMS consists of combining particles in order to improve the performance of the swarm strat-
egy. Finally, adding noise to the training data is another overfitting avoidance mechanism in
model selection that also can be used with PSMS.

14.5.4. A practical guide to PSMS

In this section we describe the way PSMS can be put in practice in any binary classification
problem. Due to the simplicity and generality of the approach below we describe a practical
guide to use the Matlab® implementation of PSMS (included in the CLOP toolbox). It is as-
sumed that the user has available a data set (in Matlab® format) with N samples for binary
classification: a matrix XN×d contains the N training samples of dimensionality d and a vector
YN×1 their respective labels (yi ∈ [−1,1]). After downloading and installing CLOP (Saffari and
Guyon, 2006), PSMS can be applied to any data set by typing the following Matlab® code:

%% load your data into the Matlab® workspace
1: >> load train_data.mat;
%% Create A Clop Data-Object
2: >> D = data(X ,Y);
%% Create A CLOP PSMS-Object with default parameters
3: >> P = psmsx;
%% Perform PSMS
4: >> [Dat, Res] = train(P, D);
%% Train the selected model with the full training set
5: >> [Odat, TrM] = train(Res.Best_Model,D);
%% Create a test data set, note that Yt can be empty
6: >> load test_data; Dt = data(Xt ,Yt);
%% Test the selected and trained model on unseen data Dt
7: >> [Pred] = test(TrM, Dt);
%% Estimate the model’s performance on unseen data Dt, if Yt is available
8: >> [BER] = balanced_errate(Pred.X, Pred.Y);
%% Analyze the ROC performance of the selected model
9: >> roc(Pred);

Note that steps 1–2 and 5–9 are associated with loading the data and the evaluation of the
selected model, respectively; which are operations not attained to PSMS. Steps 3 and 4 will
create the PSMS object and will start the search, respectively. Besides the selected model, the
output of the search (Res, line 4), is a structure with useful information about the search process,
see the PSMS documentation (Escalante, In preparation, 2009).

In Section 14.4.2 were presented experimental results that suggest that there is not signif-
icant difference in performance by modifying most of the PSMS hyperparameters. Therefore,
one can choose parameter settings for PSMS that make practical its application without a signif-
icant decrement of performance. Below are shown recommended values for the PSMS hyper-
parameters. These parameters and other options of the current implementation can be modified
very simply (Escalante, In preparation, 2009).

338

14. PARTICLE SWARM MODEL SELECTION

Recommended PSMS parameters:

Weight for individual best solution c1 = 2
Weight for global best solution c2 = 2
Adaptive inertia weight W = (1.2,0.5,0.4)
Number of iterations I = 50
Swarm size m = 5
Folds in CV k = 2
Subsampling factor SF = 1 (as small as possible in large data sets)

14.6. Conclusions
In this paper we proposed Particle Swarm Model Selection (PSMS), that is, the application of
Particle Swarm Optimization (PSO) to the problem of Full Model Selection (FMS). Given a
data set, the FMS problem consists of selecting the combination of preprocessing, feature se-
lection and learning methods that obtains the lowest classification error. FMS also includes
hyperparameter optimization for the selected methods. This approach to the model selection
problem has the following advantages. First, the generality of the approach allows us to con-
sider different model types (for preprocessing, feature selection and learning) and a variety of
methods. Second, PSMS can be applied to any data set, since neither domain knowledge nor
machine learning knowledge is required, therefore it can be considered a black-box model selec-
tion method. Third, and most importantly, competitive and yet simple models can be obtained
with PSMS. We provide empirical evidence that shows that PSMS can be applied efficiently,
without a significant loss of accuracy, by using a subsampling heuristic and parameter settings
that reduce the computational cost.

The simplicity of PSO and its proven performance, comparable to that of evolutionary algo-
rithms, make this search algorithm well suited for FMS. However, the application of any other
stochastic optimization strategy is also possible. The main advantage of PSO is that a single
equation for updating solutions is needed, as opposed to evolutionary algorithms where methods
for representation, mutation, cross-over, speciation and selection have to be considered. Inter-
estingly, the way the search is guided in PSMS allows it obtaining competitive models without
significantly overfitting. Experimental results in benchmark data show superior performance of
PSMS when compared to Pattern Search Model Selection (PATSMS), a direct search method
that constitutes a competitive baseline.

Results obtained by models selected with PSMS in the framework of a model selection
challenge show that it is a very competitive model selection method, despite its simplicity and
generality. In such competitions, models selected with PSMS were always among the top rank-
ing models, together with methods performing solely hyperparameter selection in a given model
family and methods relying on prior knowledge. This demonstrates that, via the use of PSO,
FMS is a viable strategy for model selection. This is remarkable because we noted in previous
competitions (Guyon et al., 2005; Guyon et al., 2006b) that each data set had a different best
performing method, yet researchers performing FMS (in an effort to find the model family best
suited to a given problem) were not successful. The participants, which obtained the best re-
sults on average over all data sets restricted themselves to hyperparameter selection in one given
model family. In contrast, in this paper we demonstrated the viability of FMS using the PSO
search strategy. Our work paves the way to the use of intensive search techniques to perform
FMS in the entire model space of machine learning toolkits. With the increasing availability of

339

ESCALANTE MONTES SUCAR

diverse and sophisticated machine learning toolkits and the improvements in computing power,
we foresee that FMS will become an effective methodology.

Current work includes the use of PSMS for the selection of model-members for ensem-
bles and the hierarchical application of PSO for FMS and hyperparameter optimization. PSMS
is currently being applied to different tasks, including galaxy classification, automatic image
annotation, object recognition and text classification. Future work includes the introduction
of a penalty-term into the fitness function; such that (computationally) inexpensive models be
favored by PSMS. The extension of PSMS to the multi-class classification and regression prob-
lems is another future work direction.

Acknowledgments
We would like to thank the organizers and participants of the NIPS multi-level inference work-
shop and model selection game, and of the IJCNN ALvsPK challenge. The first author thanks
the UNIPEN foundation and the US National Science Foundation for travel support. We also
thank editors and anonymous reviewers for their useful comments that have help us to improve
this paper. We thank Dr. Eduardo Morales for his useful suggestions about the content of the
paper. Last, but not least, we thank Dr. Aurelio López and INAOE for the provided support.

References
P. J. Angeline. Evolutionary optimization vs particle swarm optimization: Philosophy and per-

formance differences. In Proceedings of the 7th Conference on Evolutionary Programming,
volume 1447 of LNCS, pages 601–610, San Diego, CA, March 1998. Springer.

Y. Bengio and N. Chapados. Extensions to metric-based model selection. Journal of Machine
Learning Research, 3:1209–1227, 2003.

J. Bi, M. Embrechts K. P. Bennett, C. M. Breneman, and M. Song. Dimensionality reduction via
sparse support vector machines. Journal of Machine Learning Research, Mar(3):1229–1243,
Mar 2003.

C. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

M. Boullé. Report on preliminary experiments with data grid models in the agnostic learning
vs prior knowledge challgenge. In Proceedings of the 20th International Joint Conference on
Neural Networks, pages 1802–1808, 2007.

L. Breiman. Random forest. Machine Learning, 45(1):5–32, 2001.

G. Cawley. Leave-one-out cross-validation based model selection criteria for weighted LS-
SVMs. In Proceedings of the International Joint Conference on Neural Networks (IJCNN
2006), pages 2970–2977, Vancouver, Canada, July 2006.

G. Cawley and N. L. C. Talbot. Agnostic learning vs prior knowledge in the design of kernel
machines. In Proceedings of the 20th International Joint Conference on Neural Networks,
pages 1444–1450, Orlando, Florida, 2007a.

G. Cawley, G. Janacek, and N. L. C. Talbot. Generalised kernel machines. In Proceedings
of the 20th International Joint Conference on Neural Networks, pages 1439–1445, Orlando,
Florida, 2007.

340

14. PARTICLE SWARM MODEL SELECTION

G. C. Cawley and N. L. C. Talbot. Preventing over-fitting during model selection via bayesian
regularisation of the hyper-parameters. Journal of Machine Learning Research, 8:841–861,
April 2007b.

M. Clerc and J. Kennedy. The particle swarm: Explosion, stability and convergenge in a multi-
dimensional complex space. IEEE Transactions on on Evolutionary Computation, 6(1):58–
73, February 2002.

J. Demsar. Statistical comparisons of classifiers over multiple data sets. Journal of Machine
Learning Research, 7:1–30, January 2006.

J. E. Dennis and V. J. Torczon. Derivative-free pattern search methods for multidisciplinary
design problems. In Proceedings of the AIAA / USAF / NASA / ISSMO Symposium on Multi-
disciplinary Analysis and Optimizatino, pages 922–932, 1994.

T. Dietterich. Overfitting and undercomputing in machine learning. ACM Comput. Surv., 27(3):
326–327, 1995. ISSN 0360-0300.

A. P. Engelbrecht. Fundamentals of Computational Swarm Intelligence. Wiley, 2006.

H. J. Escalante. Particle swarm optimization for classifier selection: A practical guide to
PSMS. http://ccc.inaoep.mx/~hugojair/psms/psms_doc.pdf, In prepara-
tion, 2009.

H. J. Escalante, M. Montes, and E. Sucar. PSMS for neural networks on the IJCNN 2007 agnos-
tic vs prior knowledge challenge. In Proceedings of the 20th International Joint Conference
on Neural Networks, pages 1191–1197, Orlando, FL, USA., 2007.

V. Franc and V. Hlavac. The statistical pattern recognition toolbox. http://cmp.felk.
cvut.cz/cmp/software/stprtool/index.html, 2004.

J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a statistical view of
boosting. Annals of Statistics, 28(2):337–407, 2000.

P. Geurts, D. Ernst, and L. Wehenkel. Extremely randomized trees. Machine Learning, 63(1):
3–42, 2006. ISSN 0885-6125.

T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P. Mesirov, H. Coller,
M. L. Loh, J. R. Downing, M. A. Caligiuri, C. D. Bloomfield, and E. S. Lander. Molecular
classification of cancer: class discovery and class prediction by gene expression monitoring.
Science, 286:531–537, October 1999.

Dirk Gorissen. Heterogeneous evolution of surrogate models. Master’s thesis, Katholieke Uni-
versiteit Leuven, Belgium, June 2007.

Dirk Gorissen, Luciano De Tommasi, Jeroen Croon, and Tom Dhaene. Automatic model type
selection with heterogeneous evolution: An application to RF circuit block modeling. In
IEEE Proceedings of WCCI 2008, pages 989–996, 2008.

V.G. Gudise and G.K. Venayagamoorthy. Comparison of particle swarm optimization and back-
propagation as training algorithms for neural networks. In Proceedings of the 2003 IEEE
Swarm Intelligence Symposium, 2003. (SIS03), pages 110–117, 2003.

I. Guyon and A. Elisseeff. An introduction to variable and feature selection. Journal of Machine
Learning Research, 3(Mar):1157–1182, 2003.

341

http://ccc.inaoep.mx/~hugojair/psms/psms_doc.pdf
http://cmp.felk.cvut.cz/cmp/software/stprtool/index.html
http://cmp.felk.cvut.cz/cmp/software/stprtool/index.html

ESCALANTE MONTES SUCAR

I. Guyon, S. Gunn, A. Ben-Hur, and G. Dror. Result analysis of the NIPS 2003 feature selection
challenge. In Advances in Neural Information Processing Systems 17, pages 545–552. MIT
Press, Cambridge, MA, 2005.

I. Guyon, S. Gunn, M. Nikravesh, and L. Zadeh, editors. Feature Extraction, Foundations and
Applications. Series Studies in Fuzziness and Soft Computing. Springer, 2006a.

I. Guyon, A. Saffari, G. Dror, and J. M. Buhmann. Performance prediction challenge. In
Proceedings of the International Joint Conference on Neural Networks (IJCNN 2006), pages
2958–2965, Vancouver, Canada, July 2006b.

I. Guyon, A. Saffari, G. Dror, G. Cawley, and O. Guyon. Benchmark datasets and game re-
sult summary. In NIPS Workshop on Multi-level Inference and the Model Selection Game,
Whistler, Canada, December 2006c.

I. Guyon, A. Saffari, G. Dror, and G. Cawley. Agnostic learning vs prior knowledge challenge.
In Proceedings of the 20th International Joint Conference on Neural Networks, pages 1232–
1238, Orlando, Florida, 2007.

I. Guyon, A. Saffari, G. Dror, and Gavin Cawley. Analysis of the IJCNN 2007 competition
agnostic learning vs. prior knowledge. Neural Networks, 21(2–3):544–550, 2008.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data Mining,
Inference, and Prediction. Springer Verlag, New York, 2001.

E. Hernández, C. Coello, and A. Hernández. On the use of a population-based particle swarm
optimizer to design combinational logic circuits. In Evolvable Hardware, pages 183–190,
2004.

G. Hinton, S. Osindero, and Y. Teh. A fast learning algorithm for deep belief nets. Neural
Computation, 18(7):1527–1554, 2006. ISSN 0899-7667.

C. W. Hsu, C. C. Chang, and C. J. Lin. A practical guide to support vector classification. Techni-
cal report, Taipei, 2003. URL http://www.csie.ntu.edu.tw/~cjlin/papers/
guide/guide.pdf.

C. Hue and M. Boullé. A new probabilistic approach in rank regression with optimal bayesian
partitioning. Journal of Machine Learning Research, 8:2727–2754, December 2007.

D. Jensen and P Cohen. Multiple comparisons in induction algorithms. Machine Learning, 38
(3):309–338, 2000. ISSN 0885-6125.

J. Kennedy. How it works: Collaborative trial and error. International Journal of Computational
Intelligence Research, 4(2):71–78, 2008.

J. Kennedy and R. Eberhart. Particle swarm optimization. In Proceedings of the International
Conference on Neural Networks, volume IV, pages 1942–1948. IEEE, 1995.

J. Kennedy and R. Eberhart. Swarm Intelligence. Morgan Kaufmann, 2001.

J. Kennedy and R. Mendes. Population structure and particle swarm performance. In Pro-
ceedings of the IEEE Congress on Evolutionary Computation (CEC 2002), volume 2, pages
1671–1676, 2002.

342

http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf

14. PARTICLE SWARM MODEL SELECTION

Y. Kim, N. Street, and F. Menczer. Evolutionary model selection in unsupervised learning.
Intelligent Data Analysis, 6:531–556, 2002.

S. Kirkpatrick, C. Gelatt, and M. Vecchi. Optimization by simulated annealing. Science, 220
(4598):671–680, 1983.

J. Loughrey and P. Cunningham. Overfitting in wrapper-based feature subset selection: The
harder you try the worse it gets. In F. Coenen M. Bramer and T. Allen, editors, Proceed-
ings of AI-2004, the Twenty-fourth SGAI International Conference on Innovative Techniques
and Applications of Artificial Intelligence, Research and Development in Intelligent Systems
XXI, pages 33–43, 2005.

R. Lutz. Logitboost with trees applied to the WCCI 2006 performance prediction challenge
datasets. In Proceedings of the International Joint Conference on Neural Networks (IJCNN
2006), pages 1657– 1660, Vancouver, Canada, July 2006.

S. Mika, G. Rätsch, J. Weston, B. Schölkopf, A. J. Smola, and K.-R. Müller. Invariant feature
extraction and classification in kernel spaces. In S. A. Solla, T. K. Leen, and K.-R. Müller,
editors, Advances in Neural Information Processing Systems 12, pages 526–532, Cambridge,
MA, 2000. MIT Press.

M. Momma and K. Bennett. A pattern search method for model selection of support vector
regression. In Proceedings of SIAM Conference on Data Mining, 2002.

O. Nelles. Nonlinear System Identification: From Classical Approaches to Neural Networks
and Fuzzy Models. Springer, 2001.

E. Ozcan and C. K. Mohan. Analysis of a simple particle swarm optimization system. In
Intelligent Engineering Systems Through Artificial Neural Networks, pages 253–258, 1998.

E. Pranckeviciene, R. Somorjai, and M. N. Tran. Feature/model selection by the linear pro-
gramming SVM combined with state-of-art classifiers: What can we learn about the data.
In Proceedings of the 20th International Joint Conference on Neural Networks, pages 1422–
1428, 2007.

N. Qian. On the momentum term in gradient descent learning algorithms. Neural Netw., 12(1):
145–151, 1999. ISSN 0893-6080. doi: http://dx.doi.org/10.1016/S0893-6080(98)00116-6.

J. R. Quinlan and R. M. Cameron-Jones. Oversearching and layered search in empirical learn-
ing. In Proceedings of the 14th International Joint Conference on Artificial Intelligence,
pages 1019–1024, 1995.

G. Rätsch, T. Onoda, and K.-R. Müller. Soft margins for adaboost. Mach. Learn., 42(3):287–
320, 2001. ISSN 0885-6125. doi: http://dx.doi.org/10.1023/A:1007618119488.

J. Reunanen. Model selection and assessment using cross-indexing. In Proceedings of the 20th
International Joint Conference on Neural Networks, pages 1674–1679, 2007.

M. Reyes and C. Coello. Multi-objective particle swarm optimizers: A survey of the state-of-
the-art. International Journal of Computational Intelligence Research, 3(2):287–308, 2006.

Y. Robinson, J. Rahmat-Samii. Particle swarm optimization in electromagnetics. IEEE Trans-
actions on Antennas and Propagation, 52(2):397– 407, February 2004.

343

ESCALANTE MONTES SUCAR

A. Saffari and I. Guyon. Quickstart guide for clop. Technical report, Graz University of
Technology and Clopinet, May 2006. http://www.ymer.org/research/files/
clop/QuickStartV1.0.pdf.

J. Salerno. Using the particle swarm optimization technique to train a recurrent neural model.
In Proceedings of the Ninth International Conference on Tools with Artificial Intelligence,
pages 45–49, 1997.

C. Saunders, A. Gammerman, and V. Vovk. Ridge regression learning algorithm in dual vari-
ables. In Jude W. Shavlik, editor, Proceedings of the 15th International Conference on Ma-
chine Learning, pages 515–521, Madison, WI, USA, 1998.

Y. Shi and R. C. Eberhart. Parameter selection in particle swarm optimization. In Evolutionary
Programming VII, pages 591–600, New York, 1998. Springer-Verlag.

Y. Shi and R. C. Eberhart. Emprirical study of particle swarm optimization. In Proceedings of
the Congress on Evolutionary Computation, pages 1945–1949, Piscataway, NJ, USA, 1999.
IEEE.

S. Sonnenburg. NIPS workshop on machine learning open source software. http://www2.
fml.tuebingen.mpg.de/raetsch/workshops/MLOSS06/, December 2006.

J.A.K. Suykens and J. Vandewalle. Least squares support vector machine classifiers. Neural
Processing Letters, 9(1):293–300, 1999.

F. van den Bergh. An Analysis of Particle Swarm Optimizers. PhD thesis, University of Pretoria,
Sudafrica, November 2001.

F. van der Heijden, R. P.W. Duin, D. de Ridder, and D. M.J. Tax. PRTools: a Matlab based
toolbox for pattern recognition. http://www.prtools.org/, 2004.

M. Voss and X. Feng. Arma model selection using particle swarm optimization and aic criteria.
In Proceedings of the 15th IFAC World Congress on Automatic Control, 2002.

J. Weston, A. Elisseeff, G. BakIr, and F. Sinz. The spider machine learning toolbox. http:
//www.kyb.tuebingen.mpg.de/bs/people/spider/, 2005.

J. Wichard. Agnostic learning with ensembles of classifiers. In Proceedings of the 20th Inter-
national Joint Conference on Neural Networks, pages 1753–1759, 2007.

J. Wichard and C. Merkwirth. ENTOOL – a Matlab toolbox for ensemble modeling. http:
//www.j-wichard.de/entool/, 2007.

I. H. Witten and E. Frank. Data Mining: Practical machine learning tools and techniques.
Morgan Kaufmann, San Francisco, 2nd edition, 2005.

D. H. Wolpert and W. G. Macready. No free lunch theorems for optimization. IEEE Transac-
tions on Evolutionary Computation, 4:67–82, 1997.

H. Xiaohui, R. Eberhart, and Y. Shi. Engineering optimization with particle swarm. In Proceed-
ings of the 2003 IEEE Swarm Intelligence Symposium, 2003. (SIS03), pages 53–57, 2003.

H. Yoshida, K. Kawata, Y. Fukuyama, S. Takayama, and Y. Nakanishi. A particle swarm op-
timization for reactive power and voltage control considering voltage security assessment.
IEEE Transactions on Power Systems, 15(4):1232–1239, Jan 2001.

344

http://www.ymer.org/research/files/clop/QuickStartV1.0.pdf
http://www.ymer.org/research/files/clop/QuickStartV1.0.pdf
http://www2.fml.tuebingen.mpg.de/raetsch/workshops/MLOSS06/
http://www2.fml.tuebingen.mpg.de/raetsch/workshops/MLOSS06/
http://www.prtools.org/
http://www.kyb.tuebingen.mpg.de/bs/people/spider/
http://www.kyb.tuebingen.mpg.de/bs/people/spider/
http://www.j-wichard.de/entool/
http://www.j-wichard.de/entool/

Chapter 15

Bilevel Cross-validation-based Model Selection
Gautam Kunapuli1 KUNAPG@RPI.EDU

Jong-Shi Pang2 JSPANG@UIUC.EDU

Kristin P. Bennett1 BENNEK@RPI.EDU
1 Department of Mathematical Sciences,
Rensselaer Polytechnic Institute, 110 8th Street, Troy NY 12180
2 Department of Industrial and Enterprise Systems Engineering,
University of Illinois, Urbana-Champaign, 104 S. Mathews Avenue, Urbana IL 61801

Editor: Isabelle Guyon, Gavin Cawley, Gideon Dror and Amir Saffari

Abstract
A key step in many statistical learning methods is solving a convex optimization problem con-
taining one or more user-selected hyper-parameters. While cross validation is widely employed
for selecting these parameters, its discretized grid-search implementation in parameter space
effectively limits the number of hyper-parameters that can be handled, due to the combinatorial
explosion of grid points. Instead, cross validation is formulated as a continuous bilevel pro-
gram which is a mathematical program whose constraints are functions of optimal solutions of
another mathematical program. The resultant bilevel cross validation problem is transformed to
an equivalent mathematical program with equilibrium constraints (MPEC). Two approaches are
considered to optimize the MPEC and provide for a systematic search of the hyper-parameters.
In the first approach, the equilibrium constraints of the MPEC are relaxed to form a nonlinear
program (NLP) with linear objective and non-convex quadratic inequality constraints, which
is then solved using a general-purpose NLP solver. In the second approach, the equilibrium
constraints are moved to the objective via a quadratic penalty and the resulting non-convex
objective with linear constraints is solved using a successive linearization algorithm. While the
focus of this paper is cross validation for support vector regression, the proposed methods are
readily extended to other model selection problems.

15.1. Introduction
Many supervised machine learning tasks such as classification and regression are usually for-
mulated as convex machine learning problems. This is possible because the loss functions
and regularizers considered for the purposes of modeling are generally continuous and either
(piecewise) linear or quadratic. One well-studied and widely used example of such problems are
support vector machines (SVM) (Boser et al., 1992; Cortes and Vapnik, 1995; Vapnik, 2000).
SVMs are based on statistical- learning-based approaches and have been applied with great suc-
cess owing to their generalizability, modularity and extensibility into nonlinear domains via the
kernel trick (Shawe-Taylor and Cristianini, 2004).

However, the use of these methods entails solving several other related problems—such as
parameter and feature selection—in conjunction with the central machine learning problem. For
instance, consider the case of linear support vector regression where the problem is to construct
a linear function that minimizes an L2-regularized ε-insensitive loss (Smola and Schölkopf,
1998). The formulation contains two parameters: the regularization parameter C, that controls

© G. Kunapuli, J.-S. Pang & K.P. Bennett.

KUNAPULI PANG BENNETT

the trade-off between complexity and loss and the tube parameter ε , that determines, via the
width of the insensitivity tube, the amount of loss tolerated and ultimately the sparsity of the
resulting support vector machine. This problem is commonly viewed as a convex, quadratic
minimization problem and indeed it is, if the hyper- parameters C and ε are fixed.

Far from being fixed, these parameters are, in fact, continuous variables whose “optimal”
values need to be determined judiciously as they affect the generalization behavior of the SVM.
In fact, parameter selection is a crucial step in order to obtain learners that generalize well.
Conventional approaches tend to either gloss over the issue or treat parameter selection as a
separate problem when it is clear that it is inextricably linked to the learning task at hand. When
viewed from this perspective: that the hyper-parameters are also variables in the model, the
machine learning task becomes non-convex. This view can also be extended to the nonlinear
case where, in addition to the model hyper-parameters, the kernel parameters for a class of
kernels also needs to be selected, further complicating the problem.

Another step that is usually performed prior to solving the learning problem is dimensional-
ity reduction. This task, also known as feature selection, is also an integral part of the learning
process. Conventional approaches treat this too as a stand-alone pre-processing step that is per-
formed on the data prior to learning. This suggests that the conventional approach to solving
machine learning problems involves a multi-step, sequential parameter and feature selection
(collectively known as model selection) process that is necessitated by the myth of convexity in
machine learning.

In this chapter, we examine a new paradigm, based on bilevel optimization, which provides
a unified framework within which the non-convex model selection problem can be formulated,
studied and solved. Recent algorithmic advances in bilevel programming allow for the system-
atic treatment of model hyper-parameters as continuous variables in the learning problem. This
is achieved by embedding cross validation into the bilevel setting in order to perform model
selection. The flexibility of the approach is such that tasks such as regression, classification,
semi-supervised learning, learning from missing data, and multitask learning among others can
be formulated under this paradigm.

15.1.1. Challenges in Model Selection

As mentioned before, we are interested in solving the non-convex model selection problem
in order to simultaneously determine the hyper-parameters and possibly relevant features. We
focus initially on parameter selection. While there have been many interesting attempts to use
bounds or other techniques to pick these hyper-parameters (Chapelle et al., 2002; Duan et al.,
2003), the most commonly used and widely accepted method is cross validation (CV) (Kohavi,
1995). In cross validation, the hyper-parameters are selected to minimize some estimate of
the out-of-sample generalization error. As test data are not available during training, cross
validation trains on subsets of data called the training sets and simulates out-of-sample testing
on other subsets of the training data called validation sets.

Typically, a grid is defined over the hyper-parameters of interest and k-fold cross validation
is performed at each grid point (Stone, 1974), that is k training problems are solved and vali-
dated at each grid point (see Figure 15.1). The inefficiencies and expense of such a grid-search
effectively limit the number of hyper-parameters in a model due to the combinatorial explosion
of grid points in a high dimensional hyper-parameter space. Problems with many parameters
are ubiquitous in data analysis; they arise frequently in feature selection (Bi et al., 2003; Guyon
et al., 2002), kernel construction (Lanckriet et al., 2004; Ong et al., 2005), and multitask learn-
ing (Caruana, 1997; Evgeniou and Pontil, 2004). For such high-dimensional problems, such as
in feature selection, greedy strategies such as stepwise regression, backward elimination, filter

346

15. BILEVEL CROSS VALIDATION

Figure 15.1: Schematic of T -fold cross validation for support vector regression via a classi-
cal grid search procedure. A base-10 logarithmic grid is defined over the hyper-
parameters, C and ε and T problems are solved and validated for each grid point.
The pair (C∗, ε∗) that gives the smallest averaged validation error is selected as
the “optimal” set of parameters.

347

KUNAPULI PANG BENNETT

methods, or genetic algorithms have been used. Yet, these heuristic methods, including grid
search, have a fundamental deficiency in addition to their practical inefficiency; namely, they
are incapable of assuring the overall quality of the produced “solution”.

Another drawback in grid search is that its discretization of the hyper-parameter space fails
to take into account the fact that the model parameters are continuous. Recent work on de-
termining the full regularization path of support vector machines underscores the fact that the
regularization parameter is continuous. In particular, the paper by Hastie et al. (2004) argues
that the choice of the single regularization parameter C is critical and shows that it is quite
tractable to compute the SVM solution for all possible values of the regularization parameter
C. However, this parametric programming approach for a single parameter is not extendable to
models with multiple parameters and certainly is not possible for models with a large number
of parameters. Bayesian methods can treat model parameters as random variables but then the
challenge becomes the choice of appropriate priors.

In the end, out-of-sample testing is still the gold standard for selecting parameters values.
From the standpoint of “optimizing model selection” using out-of-sample estimates, there is
an urgent need for improved methodologies that combine sound theoretical foundation and
robust computational efficiency. This paper proposes one such methodology that is based on
the methods of bilevel optimization.

15.1.2. A New Methodology

Since bilevel optimization is a relatively novel tool in the machine learning community, we
introduce this methodology by way of a brief historical perspective. In a nutshell, bilevel opti-
mization problems are a class of constrained optimization problems whose constraints contain a
inner-level optimization problem that is parameterized by a multi-dimensional design variable.
Thus, in a bilevel program the goal is to optimize the outer-level objective subject to constraints
which themselves are functions of stationarity points of other mathematical programs called
inner-level programs.

In operations research literature, the class of bilevel optimization problems was introduced
in the early 1970s by Bracken and McGill (1973). Problem (15.1) below, is a general bilevel
formulation:

max
x∈X ,y

F(x,y) outer level

s.t. G(x,y)≤ 0,

y ∈
�

arg max
y∈Y

f (x,y)

s.t. g(x,y)≤ 0

�
. inner level

(15.1)

These problems are closely related to the economic problem of the Stackelberg game, whose
origin predates the work of Bracken and McGill. In a Stackelberg game, T players called
followers try to chose an optimal market strategy based only on knowledge of the leader’s
strategy. The leader, on the other hand, is one level up in the hierarchy and is aware of the
strategies of the followers.

The contribution of this research is to directly tackle model selection using cross-validation-
based out-of-sample testing as a bilevel program. As in done in cross validation, the data is par-
titioned or bootstrapped into training and validation sets. The idea is that the cross-validation
estimate is optimized in the outer level subject to some optimal choice of hyper-parameters
which become outer-level variables. While validation takes place in the outer level, training
takes place, for T -fold cross-validation, in T inner levels such that when the optimal training
problem is solved for each training set, the loss over the validation sets is minimized (Fig-
ure 15.2).

348

15. BILEVEL CROSS VALIDATION

Figure 15.2: The Stackelberg game (left), showing the hierarchy between the leader and the
follower; Cross validation modeled as a bilevel program (right), showing the in-
teraction between the parameters, which are optimized in the outer level and the
models which are trained in the inner level.

Prior bilevel approaches have been developed and successfully used for inner-level problems
with closed form solutions and a single parameter, e.g. the generalized cross validation method
for selecting the ridge parameter in ridge regression (Golub et al., 1979). Again, however, these
approaches are limited to a single hyper-parameter and lower-level function with a closed-form
solution. Path-following methods such as by Hastie et al. (2004) and Wang et al. (2006) are
quite efficient for optimizing one or two hyper-parameters trained on a single training set and
evaluated on a single validation set, but they are not applicable for cross-validation and models
with many hyper-parameters.

The proposed method, bilevel model selection, is motivated by the need to search a con-
tinuous, high-dimensional hyper-parameter space for “optimal” model parameters. In addition,
this methodology offers several fundamental advantages over prior approaches. First, recent
advances in bilevel programming in the optimization community permit the systematic treat-
ment of models based on popular loss functions used for SVM and kernel methods with many
hyper-parameters. Our proposed bilevel programming approach places this parameter selec-
tion problem on well-studied ground, enabling the employment of the state-of-the-art nonlinear
programming (NLP) methodology, including many highly effective algorithmic solvers that are
freely available on the NEOS website1. In addition to the ability to simultaneously optimize
many hyper-parameters, the bilevel programming approach offers a broad framework in which
novel regularization methods can be developed, valid bounds on the test set errors can be ob-
tained, and most significantly, improved model selection can be performed.

In the late 1980s, bilevel programming was given renewed study in the extended framework
of a mathematical program with equilibrium constraints (MPEC) (Luo et al., 1996), which is an
extension of a bilevel program with the optimization constraint replaced by a finite-dimensional
variational inequality (Facchinei and Pang, 2003). The systematic study of the bilevel optimiza-
tion problem and its MPEC extension attracted the intense attention of mathematical program-
mers about a decade ago with the publication of a focused monograph by Luo et al. (1996),
which was followed by two related monographs by Outrata et al. (1998) and Dempe (2002).
During the past decade, there has been an explosion of research on these optimization problems.

1. http://www-neos.mcs.anl.gov/neos/solvers/

349

http://www-neos.mcs.anl.gov/neos/solvers/

KUNAPULI PANG BENNETT

See the annotated bibliography by Dempe (2003), which contains many references. In general,
bilevel programs/MPECs provide a novel paradigm and a powerful computational framework
for dealing with parameter identification problems in an optimization setting. Instead of de-
scribing a bilevel optimization problem in its full generality, we focus our discussion on its
application to CV for model selection.

15.2. Model Selection as a Bilevel Program
We consider the machine learning problem of finding optimal model parameters, λ ∈ Λ, that
pick the best hypothesis function f � : X → R. Here, X ⊂ Rn ×R is the labeled training set
and f � ∈ F , the class of candidate hypothesis functions. The best hypothesis function will be
the one that has the least generalization error. A general machine learning problem, with λ fixed
is

f � ∈ arg min
f∈F




P(f ; λ)+ ∑
(x j ,y j)∈X

L
�
y j, f (x j); λ

�



 , (15.2)

where P is the regularization operator and L is the loss function. It is immediately apparent
that this generalized formulation admits many common loss functions and regularizers, and con-
sequently many well-known machine learning problems such as misclassification minimization,
ridge regression, one- and two-norm SVMs for classification and regression, elastic-net SVMs
and many more. When the parameters, λ, are fixed, the general machine learning problem is
usually convex. However, we wish to determine the optimal parameters, λ� that will yield a
model that generalizes best; now, λ is no longer fixed in the general problem making it non-
convex.

We will solve this parameter selection problem within the general framework of cross val-
idation formulated as a continuous bilevel program. Let Ω := {(x1,y1), . . . ,(x�,y�)} in the
Euclidean space X , for some positive integers � and n, denote the given labeled data set. As
in classical cross validation, we partition the � data points into T disjoint partitions, Ωt for
t = 1, . . . ,T , such that

�T
t=1 Ωt = Ω. Let Ωt ≡ Ω\Ωt be the subset of the data other than those

in group Ωt . The sets Ωt are called training sets while the sets Ωt are called the validation sets.
The index sets for the validation and training sets are Nt and N t respectively. The loss func-
tions, Lval and Ltrn, are functions of f (typically convex for fixed λ) that quantify the the error
between the desired and predicted function values for each point. With these definitions, T -
fold cross validation for some general machine learning program can be formulated as a bilevel
program:

minimize
λ

1
T

T

∑
t=1

1
|Ωt | ∑

(x j ,y j)∈Ωt

Lval
�
y j, f (x j); λ

�
(outer-level problem)

subject to λ ∈ Λ,
and for t = 1, . . . ,T,

f t ∈ arg min
f∈F




P(f ; λ)+ ∑
(x j ,y j)∈Ωt

Ltrn
�
y j, f (x j); λ

�



 . (inner-level problems)

(15.3)
In the problem above, there are T inner-level problems where, for an optimal choice of λ, T
problems are solved on the training sets Ωt to find models, f t . There is one outer-level problem
where the model parameters λ are determined such that the generalization error, which we

350

15. BILEVEL CROSS VALIDATION

denote Θ(f 1, . . . , f T ; λ), is minimized for the models f t evaluated over the validation sets Ωt
using loss Lval .This is the generalized bilevel cross validation model.

The general definition (15.3) admits as many variations and well-known machine learning
problems as does the formulation (15.2). We will apply the general model to the well-known
problem of statistical learning theory of finding a function f � : X →R among a given class F
that minimizes the regularized risk functional

R[f] ≡ P[f]+λ
�

∑
i=1

L (yi, f (xi)),

where C is the regularization parameter. Considering the class of linear functions: f (x) =
w �x− b = ∑n

i=1 wixi − b, where w ∈ Rn. The following are some examples of the types of
machine learning problems that can be cast into this framework:

• ridge regression: P[f]≡ 1
2�w�2

2; squared loss, L (y, f (x)) = (y− f (x))2

• SV classification: P[f]≡ 1
2�w�2

2; hinge loss, L (y, f (x)) = max(1− y f (x),0)

• SV regression: P[f]≡ 1
2�w�2

2; ε-insensitive loss, Lε(y, f (x)) = max(|y− f (x)|− ε,0)

• elastic net SVMs: P[f]≡ λ1�w�1 +λ2�w�2
2; squared loss, L (y, f (x)) = (y− f (x))2

• other regularization functions: P[f]≡ �w�1, P[f]≡ �w�∞

The outer-level cross validation error function, Lval can be chosen appropriate to the machine
learning task being cross-validated. For example, classical cross validation uses the misclas-
sification loss, Lval(y, f (x)) = step(−y f (x)), for classification; and mean average deviation,
Lval(y, f (x)) = 1

� ∑ |y− f (x)| or mean squared error, Lval =
1
� ∑(y− f (x))2 for regression.

The work presented in this chapter non-trivially extends the initial proof-of-concept ideas
presented in Bennett et al. (2006) for support vector regression. The method has also been
applied to SV classification; for a detailed discussion of bilevel model selection for support
vector classification solved using off-the-shelf NLP solvers such as FILTER and SNOPT on NEOS,
see Kunapuli et al. (2008b). The work has also been extended to learning with missing values
in data for support vector regression; for more information see (Kunapuli, 2008). In addition
to the above models, the methodology can be extended to other machine learning problems
including semi-supervised learning for classification and regression, kernel methods and multi-
task learning; see Kunapuli et al. (2008a). The models presented above are restricted to linear
function spaces. However, we show that (see Section 15.3.2) the “kernel trick” can be applied
to bilevel cross validation in order to enable it to handle nonlinear data sets. We now continue
this discussion while focussed solely on applying bilevel cross validation to perform model
selection for SV regression.

15.3. Bilevel Cross Validation for Support Vector Regression
We will apply the general model to the well-known problem of support vector regression of
finding a function f � : X → R among a given class F that minimizes the regularized risk
functional

R[f] ≡ 1
2
�w�2

2 +C
�

∑
i=1

max{|y− f (x)|− ε,0},

where C is the regularization parameter. Usually the ε-insensitive loss is used in SVR, where
ε > 0 is the tube parameter, which could be difficult to select as one does not know beforehand

351

KUNAPULI PANG BENNETT

how accurately the function will fit the data. We consider linear functions: f (x) = w �x− b =
∑n

i=1 wixi −b.
The classic SVR approach has two hyper-parameters, the regularization constant C and the

tube width ε , that are typically selected by cross validation based on (generalization) estimates
of the mean square error (MSE) or mean absolute deviation (MAD) measured on the out-of-
sample data. In what follows, we focus on the latter and introduce additional parameters for
feature selection and improved regularization. The bilevel model can be formulated to find
hyper-parameters such that the mean average deviation of the validation sets (generalization
estimate) is minimized:

minimize
C,ε,wt ,w,w

1
T

T

∑
t=1

1
|Nt | ∑

i∈Nt

|xi �wt −bt − yi |

subject to ε,C,≥ 0, w ≤ w,

and for t = 1, . . . ,T,

(wt , bt) ∈ arg min
w≤w≤w

b∈R





1
2
�w�2

2 +C ∑
j∈N t

max(|x j �w−bt − y j|− ε,0)




 ,

(15.4)

The parameters, w and w, are related to feature selection and regularization. The bound con-
straints w ≤ w ≤ w enforce the fact that the weights on each descriptor must fall in a range for
all of the cross-validated solutions. This effectively constrains the capacity of each of the func-
tions, leading to an increased likelihood of improving the generalization performance. It also
forces all the subsets to use the same descriptors, a form of variable selection. This effect can
be enhanced by adopting the one-norm, which forces w to be sparse. The box constraints will
ensure that consistent but not necessarily identical sets will be used across the folds. This rep-
resents a fundamentally new way to do feature selection, embedding it within cross validation
for model selection.

Note that the loss functions used in the first level and second level—to measure errors—need
not match. For the inner-level optimization, we adopt the ε-insensitive loss function because
it produces robust solutions that are sparse in the dual space. But typically, ε-insensitive loss
functions are not employed in the outer cross-validation objective; so here we use mean absolute
deviation (as an example). Also, to facilitate comparison with grid search, we restrict C and ε
to be within prescribed upper bounds in our implementation.

15.3.1. Bilevel Problems as MPECs

To solve (15.4), we rewrite the t-th inner-level optimization problem by introducing additional
slack variables, ξt ≥ 0, within the t-th fold as follows: for given ε , C, w (=−w), and w,

minimize
wt ,ξt

1
2
�wt �2

2 +C ∑
j∈N t

ξ t
j

subject to −w ≤ wt ≤ w,

ξ t
j ≥ x j �wt −bt − y j − ε

ξ t
j ≥ y j −x j �wt +bt − ε

ξ t
j ≥ 0





j ∈ N t ,

(15.5)

which is easily seen to be a convex quadratic program in the variables wt , bt and ξt . By letting
γt,± be the multipliers of the bound constraints, −w ≤ w ≤ w, respectively, and αt,±

j be the

352

15. BILEVEL CROSS VALIDATION

multipliers of the constraints ξ t
j ≥ x j �wt −bt −y j −ε and ξ t

j ≥ y j −x j �wt +bt −ε , respectively,
we obtain the Karush-Kuhn-Tucker optimality conditions of (15.5) as the following linear com-
plementarity problem in the variables wt , bt , γt,±, αt,±

j , and ξt
j:

0 ≤ γt,− ⊥ w+wt ≥ 0,

0 ≤ γt,+ ⊥ w−wt ≥ 0,

0 ≤ α t,−
j ⊥ x j �wt −bt − y j + ε +ξ t

j ≥ 0

0 ≤ α t,+
j ⊥ y j −x j �wt +bt + ε +ξ t

j ≥ 0

0 ≤ ξ t
j ⊥C−α t,+

j −α t,−
j ≥ 0





∀ j ∈ N t ,

0 = wt + ∑
j∈N t

(α t,+
j −α t,−

j)x j +γt,+−γt,−,

∑
j∈N t

(α t,+
j −α t,−

j) = 0,

(15.6)

where a ⊥ b means a�b = 0. The orthogonality conditions in (15.6) express the well-known
complementary slackness properties in the optimality conditions of the inner-level (parametric)
quadratic program. If we consider linear models with no bias term, bt , then the last equality
constraint, ∑ j∈N t

(α t,+
j −α t,−

j) = 0, drops out. Each of the inner-level problems in (15.4) can
be replaced by their corresponding KKT conditions, (15.6).

The outer-level objective, Θ, is not differentiable due to the presence of the absolute value
function. This can be fixed by the standard linear programming trick of introducing additional
slack variables zt similar to the variables ξt introduced in (15.5). The overall two-level regres-
sion problem is therefore

minimize
1
T

T

∑
t=1

1
|Nt | ∑

i∈Nt

zt
i

subject to ε,C,w ≥ 0,

and for all t = 1, . . . ,T

−zt
i ≤ xi �wt −bt − yi ≤ zt

i, ∀ i ∈ Nt ,

0 ≤ α t,−
j ⊥ x j �wt −bt − y j + ε +ξ t

j ≥ 0

0 ≤ α t,+
j ⊥ y j −x j �wt +bt + ε +ξ t

j ≥ 0

0 ≤ ξ t
j ⊥C−α t,+

j −α t,−
j ≥ 0





∀ j ∈ N t ,

0 ≤ γt,− ⊥ w+wt ≥ 0,

0 ≤ γt,+ ⊥ w−wt ≥ 0,

0 = wt + ∑
j∈N t

(α t,+
j −α t,−

j)x j +γt,+−γt,−,

∑
j∈N t

(α t,+
j −α t,−

j) = 0.

(15.7)

The most noteworthy feature of the above optimization problem is the complementarity con-
ditions in the constraints, making the problem an instance of a Linear Program with (linear)
Equilibrium Constraints (LPEC).

353

KUNAPULI PANG BENNETT

15.3.2. Kernel Bilevel Cross Validation

The LPEC (15.7) is unable to handle non-linear data sets effectively as it is restricted to a linear
class of functions. One of the most powerful features of SVMs is their ability to deal with high-
dimensional, highly nonlinear data and this is achieved via the kernel trick. We show that this
can be incorporated into the bilevel model as well.

The model (15.4) can perform simultaneous parameter and feature selection as the bilevel
framework can handle multiple hyper-parameters. A glance at the first-order conditions, (15.6),
shows that wt depends, not only on the training data, but also on the multipliers of the box
constraints, γt,±. In order to apply the kernel trick the hyperplane, wt , needs to be expressed
solely as a linear combination of the training data. To enable this, we set aside feature selection
for a moment and drop the box constraints. and the variables γt,± from 15.7. The first order
conditions within each fold now include the constraints:

wt = ∑
k∈N t

(α t,−
k −α t,+

k)xk, ∀ t = 1, . . . ,T. (15.8)

We can eliminate wt within each fold of (15.7) using (15.8) and then apply the kernel trick, i.e.,
the resulting linear inner-product terms, xi �x j, are replaced with known, symmetric, positive
semi-definite kernel functions, κ(xi, x j). We have:

minimize
1
T

T

∑
t=1

1
|Nt | ∑

i∈Nt

zt
i

subject to ε,C,≥ 0,

and for all t = 1, . . . ,T

−zt
i ≤



 ∑
k∈N t

(α t,−
k −α t,+

k)κ(xi, xk)−bt



− yi ≤ zt
i, ∀ i ∈ Nt ,

0 ≤ α t,−
j ⊥



 ∑
k∈N t

(α t,−
k −α t,+

k)κ(x j, xk)−bt



− y j + ε +ξ t
j ≥ 0

0 ≤ α t,+
j ⊥



bt − ∑
k∈N t

(α t,−
k −α t,+

k)κ(x j, xk)



+ y j + ε +ξ t
j ≥ 0

0 ≤ ξ t
j ⊥C−α t,+

j −α t,−
j ≥ 0






∀ j ∈ N t ,

∑
j∈N t

(α t,+
j −α t,−

j) = 0.

(15.9)
While it may not appear so at first glance, when the kernel is known in advance and hence
fixed, the optimization problem above is still an instance of an LPEC. Unfortunately, the kernel
parameter is also usually one of the hyper-parameters that needs to be selected during model
selection and is usually included in the cross-validation procedure. One further drawback is
that in order to derive (15.9), we jettisoned feature selection which the model above is unable
to perform.

These issues of parameter selection (for regularization and the kernel) and feature selection
can be addressed together as in the linear model. This is achieved through the use of a pa-
rameterized kernel, κ(xi, xk; p,q). The nonnegative vector, p ∈ Rn

+, is the feature selection or

354

15. BILEVEL CROSS VALIDATION

scaling vector and q ≥ 0 is a vector of kernel parameters. The parameterized versions of some
commonly used kernels are shown below, with P = diag(p):

Linear kernel κ(xi, xk; p) = xi �Pxk,

d − th order Polynomial kernel κ(xi, xk; p,c) = (xi �Pxk + c)d ,

Gaussian kernel κ(xi, xk; p) = exp
�
−(xi −xk) �P(xi −xk)

�
.

(15.10)

Other kernels can be similarly extended and used in the model. Consequently, the new kernel
parameters, p and q, enter the outer level of the kernel model as variables in the problem. The
introduction of the parameterized kernel is a very powerful extension to the linear model (15.7)
as it is capable of picking the regularization parameters, kernel parameters and features leaving
only the choice of kernel family to the user. However, the optimization problem, (15.9), is an
MPEC with nonlinear complementarity constraints and, in general, is a very difficult problem
to solve. For the remainder of the discussion, we will restrict ourselves to the linear case (15.7).

15.4. Alternative Bilevel Optimization Methods
The bilevel cross-validation model described above searches the continuous domain of hyper-
parameters as opposed to classical cross validation, which relies on the discretization of the
domain. In this section, we describe two alternative methods for solving the model. We also
describe the details of the classical grid search approach.

The difficulty in solving the LPEC reformulation (15.7) of the bilevel optimization problem
(15.4) stems from the linear complementarity constraints formed from the optimality conditions
of the inner problem (15.6); all of the other constraints and the objective are linear. It is well
recognized that a straightforward solution using the LPEC formulation is not appropriate be-
cause of the complementarity constraints, which give rise to both theoretical and computational
anomalies that require special attention. Among various proposals to deal with these constraints,
two are particularly effective for finding a local solution: one is to relax the complementarity
constraints and retain the relaxations in the constraints. The other proposal is via a penalty
approach that allows the violation of these constraints but penalizes the violation by adding a
penalty term in the objective function of (15.7). There are extensive studies of both treatments,
including detailed convergence analyses and numerical experiments on realistic applications
and random problems (Ralph and Wright, 2004; Mangasarian, 1994; Bennett and Mangasarian,
1993; Outrata et al., 1998; Luo et al., 1996). In this work, we experiment with both approaches.

15.4.1. A Relaxed NLP Reformulation

The first solution method we consider for solving (15.7) employs a relaxation of the comple-
mentarity constraints. In this relaxed complementarity formulation, we let tol > 0 be a pre-
scribed tolerance of the complementarity conditions. This method simply involves replacing all
instances of “hard” complementarity constraints of the form

0 ≤ a ⊥ b ≥ 0 ≡ a ≥ 0, b ≥ 0, a �b = 0

with relaxed, “soft” complementarity constraints of the form

0 ≤ a ⊥tol b ≥ 0 ≡ a ≥ 0, b ≥ 0, a �b ≤ tol (15.11)

If we apply the relaxation (15.11) to the bilevel problem (15.7), we obtain the relaxed bilevel
support-vector regression problem that we employ to determine the hyper-parameters C, ε and

355

KUNAPULI PANG BENNETT

w; the computed parameters are then used to define the desired support-vector model for data
analysis.

The relaxed complementary slackness is a novel feature that aims at enlarging the search
region of the desired regression model; the relaxation corresponds to inexact cross validation
whose accuracy is dictated by the prescribed scalar, tol. This reaffirms an advantage of the
bilevel approach mentioned earlier, namely, it adds flexibility to the model selection process by
allowing early termination of cross validation, and yet not sacrificing the quality of the out-of-
sample errors.

The above NLP remains a non-convex optimization problem; thus, finding a global optimal
solution is hard, but the state-of-the-art general-purpose NLP solvers such as FILTER (Fletcher
and Leyffer, 1999, 2002) and SNOPT (Gill et al., 2002) that are available on the NEOS server.
To solve a given problem, the user first specifies the problem in an algebraic language, such as
AMPL or GAMS, and submits the code as a job to NEOS. Upon receipt, NEOS assigns a number
and password to the job, and places it in a queue. The remote solver unpacks, processes the
problem, and sends the results back to the user.

The nonlinear programming solver, FILTER, was chosen to solve our problems. We also
experimented with SNOPT but as reported in Bennett et al. (2006), we found FILTER to work
better overall. FILTER is a sequential quadratic programming (SQP) based method, which is a
Newton-type method for solving problems with nonlinear objectives and nonlinear constraints.
The method solves a sequence of approximate convex quadratic programming subproblems.
FILTER implements a SQP algorithm using a trust-region approach with a “filter” to enforce
global convergence. It terminates either when a Karush-Kuhn-Tucker point is found within a
specified tolerance or no further step can be processed (possibly due to the infeasibility of a
subproblem).

15.4.2. Penalty Reformulation

Another approach to solving the problem (15.7) is the penalty reformulation. Penalty and
augmented Lagrangian methods have been widely applied to solving LPECs and MPECs, for
instance, by Huang et al. (2006). These methods typically require solving an unconstrained
optimization problem. In contrast, exact penalty methods penalize only the complementarity
constraints in the objective by means of a penalty function.

Consider the LPEC, (15.7), resulting from the reformulation of the bilevel regression prob-
lem. Define St , for t = 1, . . . ,T , to be the constraint set within the t-th fold, without the comple-

356

15. BILEVEL CROSS VALIDATION

mentarity constraints:

St :=






zt ,αt,±,ξt ,
γt,±,rt ,st ,ut

�����������������������������

−zt
i ≤ xi �wt − yi ≤ zt

i, ∀ i ∈ Nt ,

x j �wt − y j + ε +ξ t
j ≥ 0

y j −x j �wt + ε +ξ t
j ≥ 0

C−α t,+
j −α t,−

j ≥ 0





∀ j ∈ N t ,

−w ≤ wt ≤ w,

0 = wt + ∑
j∈N t

(α t,+
j −α t,−

j)x j +γt,+−γt,−,

∑
j∈N t

(α t,+
j −α t,−

j) = 0,

wt = rt − ut , bt = st −ut ,

zt ,αt,±,ξt ,γt,±,rt ,st ,ut ≥ 0.






, (15.12)

where we rewrite (wt , bt) within each fold as wt = rt − ut and bt = st −ut with rt , st , ut ≥ 0,
and denotes a vector of ones of appropriate dimension. Also, let S0 be defined as

S0 :=
�

C,ε,w
�� C,ε,w ≥ 0

�
, (15.13)

Then, the overall constraint set for the LPEC (15.7), without the complementarity constraints
is defined as SLP :=

�T
t=0 St . Let all the variables in (15.12) and (15.13) be collected into the

vector ζ ≥ 0.
In the penalty reformulation, all the complementarity constraints of the form a ⊥ b in (15.7)

are moved into the objective via the penalty function, φ(a, b). This effectively converts the
LPEC (15.7) into a penalty problem of minimizing some, possibly non-smooth, objective func-
tion on a polyhedral set. Typical penalty functions include the differentiable quadratic penalty
term, φ(a, b) = a�b, and the non-smooth piecewise-linear penalty term, φ(a, b) = min(a, b).
In this paper, we consider the quadratic penalty. The penalty term, which is a product of the
complementarity terms is

φ(ζ) =
T

∑
t=1





Θt
p� �� �

1
2
�wt �2

2 +C ∑
j∈N t

ξ t
j +

1
2 ∑

i∈N t

∑
j∈N t

(α t,+
i −α t,−

i)(α t,+
j −α t,−

j)xi�x j

+ε ∑
j∈N t

(α t,+
j +α t,−

j)+ ∑
j∈N t

y j (α t,+
j −α t,−

j)

−w�γt,++ w�γt,−

� �� �
−Θt

d




.

(15.14)
The first two terms in the quadratic penalty constitute the primal objective, Θt

p, while the last
five terms constitute the negative of the dual objective, Θt

d , for support vector regression in the
t-th fold, with fixed parameter values. Consequently, the penalty function is a combination of
T differences between the primal and dual objectives of the regression problem in each fold.
Thus,

φ(ζ) =
T

∑
t=1

�
Θt

p(ζ
t
p) − Θt

d(ζ
t
d)
�
,

357

KUNAPULI PANG BENNETT

where ζt
p ≡ (wt ,bt ,ξt), the vector of primal variables in the t-th primal problem and ζt

d ≡
(αt,±,γt,±), the vector of dual variables in the t-th dual problem. However, the penalty func-
tion also contains the hyper-parameters, C, ε and w as variables, rendering φ(ζ) non-convex.
Recalling that the linear cross-validation objective was denoted by Θ, we define the penalized
objective: P(ζ; µ) = Θ(ζ)+µ φ(ζ), and the penalized problem, PF(µ), is

min
ζ

P(ζ; µ)

subject to ζ ∈ SLP.
(15.15)

This general penalty formulation can be applied to bilevel programs for cross-validation
model selection for many types machine learning problems beyond regression. The penalty
formulation results and algorithms in the remainder of this section are directly valid in general
for learning linear functions with convex choices of the upper and lower loss functions, regular-
ization with 2-norm, 1-norm, or infinity-norm and other parameters λ as long as the resulting
bilevel program can be reduced to an LPEC. In Kunapuli (2008), the penalty approach and suc-
cessive linearization algorithm are expanded to missing value model selection problems that do
not reduce to LPECs.

It should be noted that, in general, KKT points do not exist for LPECs. An alternative local
optimality condition, strong stationarity or S-stationarity, is defined for LPECs. A point ζ∗ is
strongly stationary to an LPEC if it solves an LP formed by fixing the LPEC complementarity
conditions appropriately. See (Ralph and Wright, 2004, Definition 2.2) for precise details on
strong stationarity. Keeping the definitions of S-stationarity in mind, the penalized problem
(15.15) has very useful properties that have been extensively studied. The following results
show that finite values of µ can be used and the penalty formulation PF(µ) is exact i.e., local
solutions, (S-stationary points) of the LPEC, correspond to stationarity points of PF(µ).

Theorem 15.1 (Finite penalty parameter) [(Ralph and Wright, 2004), Theorem 5.1a] Sup-
pose that ζ∗ is a strongly stationary point of (15.7), then for all µ sufficiently large, there exists
a Lagrangian multiplier vector ρ∗, such that (ζ∗, ρ∗) is a KKT point of PF(µ), (15.15).

Finiteness ensures that the penalty parameter can be set to reasonable values, contrasting
with other approaches in which the penalty problem only solve the original problem in the
limit. It is perhaps not surprising to note that the zero penalty corresponds to a point where the
primal and dual objectives are equal in (15.4.2). These strongly stationary solutions correspond
to solutions of (15.15) with φ(ζ) = 0, i.e., a zero penalty.

The quadratic program, PF(µ), is non-convex, since the penalty term is not positive defi-
nite. Continuous optimization algorithms will not necessarily find a global solution of PF(µ).
However, we do know know that local solutions of PF(µ) that are feasible for the LPEC are
also local optimal for the LPEC. This leads us to the following partial converse of Theorem
15.1.

Theorem 15.2 (Complementary PF(µ) solution solves LPEC) [(Ralph and Wright, 2004),
Theorem 5.2] Suppose ζ∗ is a stationary point of PF(µ) (15.15) and φ(ζ∗) = 0. Then ζ∗ is
strongly stationary for (15.7).

One approach to solving exact penalty formulations like (15.15) is the successive lineariza-
tion algorithm, where a sequence of problems with a linearized objective, (∇Θ(ζk)+µ ∇φ(ζk))�(ζ−
ζk), is solved to generate the next iterate. This approach is called the Successive Linearization
Algorithm for Model Selection (SLAMS), which we describe below.

358

15. BILEVEL CROSS VALIDATION

15.4.3. Successive Linearization Algorithm for Model Selection

The successive linearization algorithm (SLA), which is based on the finite Frank-Wolfe algo-
rithm, is used to solve the QP, (15.15). This simply involves solving a sequence of LPs until
either a global minimum or some locally stationary solution of (15.7) is reached. The conver-
gence properties of SLA are well-studied and it has been extensively applied to solving several
mathematical programs that arise in the study of various machine learning methods. This in-
cludes bilinear programming based separation of two sets (Bennett and Mangasarian, 1993),
SVM feature selection via smooth approximations (Bradley and Mangasarian, 1998), semi-
supervised SVMs via concave minimization (Fung and Mangasarian, 2001) and LPECs from
misclassification minimization problems (Mangasarian, 1994). In addition, one other motiva-
tion for adopting this approach is that there is a definite structure in the LPECs that are studied
here that can be exploited and makes this approach a target for decomposition approaches. This
issue is currently under investigation and the results will be reported elsewhere.

One concern while using SLA might be the introduction of yet another parameter into the
methodology. However, in practice, a sufficiently large value of µ will lead to the penalty term
vanishing from the penalized objective, P(ζ∗; µ). In such cases, the locally optimal solution to
(15.15) will also be feasible and locally optimal to the LPEC (15.7).

Algorithm 15.1: Successive linearization algorithm for model selection.
Fix µ > 0.

1. Initialization:
Start with an initial point, ζ0 ∈ SLP.

2. Solve Linearized Problem:
Generate a vertex, ζ̄k, from the previous iterate, ζk, by solving the linearized penalty
problem, ζ̄k ∈ arg vertex min

ζ∈SLP

∇ζP(ζk; µ)� (ζ−ζk).

3. Termination Condition:
Stop if the minimum principle holds, i.e., if ∇ζP(ζk; µ)� (ζ̄k −ζk) = 0.

4. Compute Step Size:
Compute step length λ ∈ arg min

0≤λ≤1
P
�
(1−λ)ζk +λ ζ̄k; µ

�
, and get the next iterate,

ζk+1 = (1−λ)ζk +λ ζ̄k. Go to Step 2.

Algorithm 15.1 gives the details of SLAMS. In Step 2, the notation arg vertex min indicates
that ζ̄k is a vertex solution of the LP in Step 2. The step size in Step 4 has a simple closed form
solution since a quadratic objective subject to bounds constraints is minimized. The objective
has the form f (λ) = aλ 2 +bλ , so the optimal solution is either 0, 1 or −b

2a , depending on which
value yields the smallest objective. SLAMS is a special case of the Frank-Wolfe algorithm and
a convergence proof of the Frank-Wolfe algorithm with no assumptions on the convexity of
P(ζ; µ) can be found in Bennett and Mangasarian (1993). Convergence results of this type are
fairly standard and we offer them without proof.

Theorem 15.3 (Convergence of SLAMS) [Bennett and Mangasarian (1993)] Algorithm 15.1
terminates at ζk that satisfies the minimum principle necessary optimality condition of PF(µ):
∇ζP(ζk; µ)�(ζ−ζk)≥ 0 for all ζ ∈ SLP, or each accumulation ζ̄ of the sequence {ζk} satisfies
the minimum principle.

359

KUNAPULI PANG BENNETT

Furthermore, for the case where SLAMS generates a complementary solution, SLAMS finds a
strongly stationary solution of the LPEC.

Theorem 15.4 (SLAMS solves LPEC) Let ζk be the sequence generated by SLAMS that ac-
cumulates to ζ̄. If φ(ζ̄) = 0, then ζ̄ is strongly stationary for LPEC (15.7).

Proof For notational convenience let the set SLP = {ζ |Aζ ≥ b}, with an appropriate matrix,
A, and vector, b. We first show that ζ̄ is a KKT point of the problem

min
ζ

∇ζP(ζ; µ)

s.t. Aζ ≥ b.

We know that ζ̄ satisfies Aζ̄ ≥ b since ζk is feasible at the k-th iteration. By Theorem 15.3
above, ζ̄ satisfies the minimum principle; thus, we know the systems of equations

∇ζP(ζ̄; µ)�(ζ−ζk)< 0, ζ ∈ SLP,

has no solution for any ζ ∈ SLP. Equivalently, if I = {i|Aiζ = bi}, then

∇ζP(ζ̄; µ)�(ζ− ζ̄)< 0, Aiζ ≥ 0, i ∈ I,

has no solution. By Farkas’ Lemma, there exists ū such that

∇ζP(ζ̄; µ)−∑
i∈I

ūiAi = 0, ū ≥ 0.

Thus (ζ̄, ū) is a KKT point of PF(µ) and ζ̄ is a stationary point of PF(µ). By Theorem 15.2,
ζ̄ is also a strongly stationary point of LPEC (15.7).

15.4.4. Early Stopping

Typically, in many machine learning applications, emphasis is placed on generalization and
scalability. Consequently, inexact solutions are preferred to globally optimal solutions as they
can be obtained cheaply and tend to perform reasonably well. Noting that, at each iteration, the
algorithm is working to minimize the LPEC objective as well as the complementarity penalty,
one alternative to speeding up termination at the expense of the objective is to stop as soon as
complementarity is reached. Thus, as soon as an iterate produces a solution that is feasible to
the LPEC, (15.7), the algorithm is terminated. We call this approach Successive Linearization
Algorithm for Model Selection with Early Stopping (EZ-SLAMS). This is similar to the well-
known machine learning concept of early stopping, except that the criterion used for termination
is based on the status of the complementarity constraints i.e., feasibility to the LPEC. We adapt
the finite termination result in Bennett and Mangasarian (1993) to prove that EZ-SLAMS termi-
nates finitely for the case when complementary solutions exist, which is precisely the case of
interest here. Note that the proof relies upon the fact that SLP is polyhedral with no straight lines
going to infinity in both directions.

Theorem 15.5 (Finite termination of EZ-SLAMS) Let ζk be the sequence generated by
SLAMS that accumulates to ζ̄. If φ(ζ̄) = 0, then EZ-SLAMS terminates at an LPEC (15.7)
feasible solution ζk in finitely many iterations.

360

15. BILEVEL CROSS VALIDATION

Proof Let V be the finite subset of vertices of SLP that constitutes the vertices {v̄k} generated
by SLAMS. Then,

{ζk} ∈ convex hull{ζ0 ∪V },
ζ̄ ∈ convex hull{ζ0 ∪V }.

If ζ̄ ∈ V , we are done. If not, then for some ζ ∈ SLP, v ∈ V and λ ∈ (0,1),

ζ̄ = (1−λ)ζ+λv.

For notational convenience define an appropriate matrix M and vector b such that 0 = φ(ζ̄) =
ζ̄ �(Mζ̄+q). We know ζ̄ ≥ 0 and Mζ̄+q ≥ 0. Hence,

vi = 0, or Miv+qi = 0.

Thus, v is feasible for LPEC (15.7).

The results comparing SLAMS to EZ-SLAMS are reported in Sections 15.6.1 and 15.6.2. It is
interesting to note that there is always a significant decrease in running time with no significant
degradation in validation or generalization performance when early stopping is employed.

15.4.5. Grid Search

In classical cross-validation, parameter selection is performed by discretizing the parameter
space into a grid and searching for the combination of parameters that minimizes the validation
error (which corresponds to the upper level objective in the bilevel problem). This is typically
followed by a local search for fine-tuning the parameters. Typical discretizations are logarithmic
grids of base 2 or 10 on the parameters. In the case of the classic SVR, cross validation is simply
a search on a two-dimensional grid of C and ε .

This approach, however, is not directly applicable to the current problem formulation be-
cause, in addition to C and ε , we also have to determine w, and this poses a significant combi-
natorial problem. In the case of k-fold cross validation of n-dimensional data, if each parameter
takes d discrete values, cross validation would involve solving roughly O(kdn+2) problems, a
number that grows to intractability very quickly. To counter the combinatorial difficulty, we
implement the following heuristic procedures:

• Perform a two-dimensional grid search on the unconstrained (classic) SVR problem to
determine C and ε . We call this the unconstrained grid search (Unc. Grid). A coarse grid
with values of 0.1, 1 and 10 for C, and 0.01, 0.1 and 1 for ε was chosen.

• Perform an n-dimensional grid search to determine the features of w using C and ε ob-
tained from the previous step. Only two distinct choices for each feature of w are consid-
ered: 0, to test if the feature is redundant, and some large value that would not impede the
choice of an appropriate feature weight, otherwise. Cross validation under these settings
would involve solving roughly O(3.2N) problems; this number is already impractical and
necessitates the heuristic. We label this step the constrained grid search (Con. Grid).

• For the synthetic data sets (see Section 15.5.1) recursive feature elimination is used
Guyon et al. (2002). For real data sets (which have 25 features, see Section 15.5.2),
features are eliminated aggressively ie., recursive feature elimination is used to rank the
features and only the 10 best features are chosen.

361

KUNAPULI PANG BENNETT

15.5. Experimental Design
Our experiments aim to address several issues. The experiments were designed to compare
the successive linearization approaches (with and without early stopping) to the classical grid
search method with regard to generalization and running time. The data sets used for these
experiments consist of randomly generated synthetic data sets and real world chemoinformatics
(QSAR) data.

15.5.1. Synthetic Data

A 16-d data set was generated of which, for the purposes of feature selection, only nr = 10
features were relevant. We trained on sets of � = 30, 60, 90, 120 and 150 points using 5-fold
cross validation and tested on a hold-out set of a further 1,000 points. For each combination of
training set size, 10 trials were conducted and the test errors were averaged. In this subsection,
we assume the following notation: U(a,b) represents the uniform distribution on [a,b], N(µ,σ)
represents the normal distribution with probability density function 1√

2πσ exp
�
−(x−µ)2/2σ2�.

For each data set, the data, (wreal, breal) and labels were generated as follows. For each
point, 25% of the features were drawn from U(−1,1), 25% from U(−2.5,2.5), another 25%
from U(−5,5), and the last 25% from U(−10,10). Each feature of the regression hyperplane
(wreal, breal) was drawn from U(−1,1) and the smallest n−nr features were set to 0 and consid-
ered irrelevant. The noise-free regression labels were computed as yi = xi�wreal −breal. Note that
these labels now depend only on the relevant features. Gaussian noise drawn from N(0,0.25)
was added to the labels.

15.5.2. Real-world QSAR Data

We examined four real-world regression chemoinformatics data sets: Aquasol, Blood/Brain
Barrier (BBB), Cancer, and Cholecystokinin (CCK), previously studied in Demiriz et al. (2001).
The goal is to create Quantitative Structure Activity Relationship (QSAR) models to predict
bioactivities typically using the supplied descriptors as part of a drug design process.

Table 15.1: The Chemoinformatics (QSAR) data sets

Vars. # Vars.
Data set # Obs. # Train # Test # Vars. (stdized) (postPCA)
AQUASOL 197 100 97 640 149 25
B/B BARRIER (BBB) 62 60 2 694 569 25
CANCER 46 40 6 769 362 25
CHOLECYSTOKININ (CCK) 66 60 6 626 350 25

The data is scaled and preprocessed to reduce the dimensionality. As was done in Dem-
iriz et al. (2001), we standardize the data at each dimension and eliminate the uninformative
variables that have values outside of ±4 standard deviations range. Next, we perform principle
components analysis (PCA), and use the top 25 principal components as descriptors. The train-
ing and hold out set sizes and the dimensionalities of the final data sets are shown in Table 15.1.
For each of the training sets, 5-fold cross validation is optimized using bilevel programming.
The results are averaged over 10 runs.

The LPs within each iterate in both SLA approaches were solved with CPLEX. The penalty
parameter was uniformly set to µ = 103 and never resulted in complementarity failure at ter-
mination. The hyper-parameters were bounded as 0.1 ≤ C ≤ 10 and 0.01 ≤ ε ≤ 1 so as to be
consistent with the hyper-parameter ranges used in grid search.

362

15. BILEVEL CROSS VALIDATION

15.5.3. Post-processing

The outputs from the bilevel approach and grid search yield the bound w and the parameters C
and ε . With these, we solve a constrained support vector problem on all the data points:

minimize C
�

∑
i=1

max(|x �
i w− yi |− ε,0)+ 1

2
�w�2

2

subject to −w ≤ w ≤ w

to obtain the vector of model weights �w, which is used in computing the generalization error on
the hold-out data:

MAD ≡ 1
1000 ∑

(x,y) hold-out
|x ��w− y |.

15.6. Computational Results
In the following sections, constrained (abbreviated con.) methods refer to the bilevel models
that have the box constraint −w≤w≤w, while unconstrained (abbreviated unc.) methods refer
to the bilevel models without the box constraint. In this section, we compare the performance
of several different methods on synthetic data sets.

Four methods are compared are compared to unconstrained grid search (Unc. Grid): con-
strained grid search (Con. Grid), constrained SLAMS (Con. SLAMS), constrained SLAMS with
early stopping (Con. EZ-SLAMS) and FILTER based sequential quadratic programming (Filter
SQP). We compare based on CV objective (training error), generalization (test error), computa-
tion time and efficacy of feature selection (i.e., the number of features selected).

15.6.1. Synthetic Results

For each set of problems, 5 methods (as described above) were employed. For each method,
10 random instances of the same problem are solved and the averaged results are shown in Ta-
ble 15.2 respectively. For MAD, the results in bold refer to those that are significantly different
than those of the unconstrained grid as measured by a two-sided t-test with significance of 0.1.
The results that are significantly better and worse are tagged with a check (✓) or a cross (✗)
respectively.

From an optimization perspective, the bilevel programming methods consistently tend to
outperform the grid search approaches. The objective values found by the bilevel methods,
especially FILTER, are much smaller than those found by their grid-search counterparts espe-
cially as data set size increases. Of all the methods, FILTER finds a lower objective most often.
The coarse grid size and feature elimination heuristics used in the grid search cause it to find
relatively poor objective values.

The reported times provide a rough idea of the computational effort of each algorithm. As
noted above, the computation times for the NEOS solver, FILTER, includes transmission, and
waiting times as well as solve times. For grid search methods, smart restart techniques were
used to gain a considerable increase in speed. It is interesting to note that for smaller data sets
Con. Grid is highly inefficient as the underlying recursive feature elimination cannot eliminate
too many variables to enable a more efficient grid search. However, the running times for
Con. Grid decrease steadily until and it is most efficient at 120 pts which represents an optimal
tradeoff between RFE efficiency and running time. However, as the number of points increases
again, Con. Grid does worse.

363

KUNAPULI PANG BENNETT

Table 15.2: 16-d synthetic data with Gaussian noise under 5-fold cross validation.

Solution CV Objective Generalization Time �w�0
Method (Training Error) (Test Error) (sec.) (# feat. selected)
30 pts
UNC. GRID 0.294±0.07 0.316±0.05 1.1 16.0
CON. GRID 0.236±0.06 ✓ 0.300±0.05 ✓ 2065.0 11.3
FILTER 0.166±0.05 ✓ 0.311±0.04 61.5 9.0
CON. SLAMS 0.164±0.06 ✓ 0.320±0.09 7.3 9.2
CON. EZ-SLAMS 0.293±0.10 0.301±0.07 0.8 8.9
60 pts
UNC. GRID 0.241±0.04 0.238±0.01 1.5 16.0
CON. GRID 0.223±0.04 ✓ 0.234±0.01 ✓ 1442.7 9.9
FILTER 0.195±0.03 ✓ 0.254±0.02 ✗ 96.5 9.0
CON. SLAMS 0.197±0.02 ✓ 0.243±0.04 20.4 9.5
CON. EZ-SLAMS 0.242±0.04 0.257±0.05 1.8 9.3
90 pts
UNC. GRID 0.222±0.03 0.229±0.01 2.1 16.0
CON. GRID 0.213±0.03 ✓ 0.226±0.01 1013.5 10.1
FILTER 0.191±0.02 ✓ 0.241±0.03 173.7 9.1
CON. SLAMS 0.199±0.02 ✓ 0.223±0.01 ✓ 37.9 9.3
CON. EZ-SLAMS 0.224±0.02 0.236±0.04 4.1 9.4
120 pts
UNC. GRID 0.214±0.02 0.222±0.01 3.1 16.0
CON. GRID 0.212±0.01 0.219±0.01 201.6 9.3
FILTER 0.199±0.01 ✓ 0.230±0.01 307.6 9.2
CON. SLAMS 0.202±0.01 ✓ 0.230±0.04 65.9 9.3
CON. EZ-SLAMS 0.215±0.01 0.231±0.04 8.7 9.2
150 pts
UNC. GRID 0.209±0.01 0.219±0.01 4.6 16.0
CON. GRID 0.211±0.01 0.217±0.01 293.0 9.3
FILTER 0.171±0.01 ✓ 0.233±0.02 ✗ 366.9 8.9
CON. SLAMS 0.203±0.01 ✓ 0.227±0.04 83.7 9.4
CON. EZ-SLAMS 0.210±0.01 0.227±0.04 14.3 9.2

364

15. BILEVEL CROSS VALIDATION

While the computation times of FILTER are less than that of Con. Grid, it is the SLA
approaches that really dominate. The efficiency of the SLA approaches is vastly superior to
both grid search and FILTER, especially for smaller problems. However, as problem size grows,
Unc. SLAMS and Con. SLAMS become more expensive as bigger LPs have to be solved at each
iteration while the algorithm converges. However, the early stopping methods, Unc. EZ-SLAMS
and Con. EZ-SLAMS are very competitive, even as the problem size grows.

The bilevel approach is much more computationally efficient than grid search on the fully
parameterized problems. The results, for FILTER, are relatively efficient and acceptable. It
is reasonable to expect that a FILTER implementation on a local machine (instead of over the
internet) would require significantly less computation times, which could bring it even closer to
the times of Unc. Grid or the SLA methods. The FILTER approach does have a drawback, in
that is that it tends to struggle as the problem size increases as is evidenced by its performance
on the 150 point data set.

With regard to generalization error, compared to classic SVR optimized with Unc. Grid,
FILTER and the SLA approaches yield solutions that are better or comparable to the test prob-
lems and never significantly worse especially as the data set size increases. Of particular interest
is the fact that SLA approaches that employ early stopping tend to generalize identically to the
SLA approaches that do not stop early. This is a very important discovery because it suggests
that allowing the SLA approaches to iterate to termination is expensive and is usually without
corresponding improvement in the cross-validation objective or the generalization performance.

15.6.2. Computational Results: QSAR Data

Table 15.3: QSAR data under 5-fold cross validation.

Solution CV Objective Generalization Time �w̄�0
Method (Val. Error) (Test Error) (sec.) (# feat. selected)
Aquasol
UNC. GRID 0.719±0.10 0.644±0.07 17.1 25.0
CON. GRID 0.778±0.09 ✗ 0.849±0.18 ✗ 1395.9 8.7
FILTER (SQP) 0.551±0.07 ✓ 0.702±0.04 ✗ 678.8 13.3
CON. SLAMS 0.670±0.09 ✓ 0.647±0.06 137.8 12.7
CON. EZ-SLAMS 0.710±0.09 0.643±0.06 19.1 14.0
Blood/Brain Barrier
UNC. GRID 0.364±0.05 0.314±0.29 13.4 25.0
CON. GRID 0.463±0.08 ✗ 0.733±0.44 ✗ 1285.7 6.8
FILTER (SQP) 0.176±0.01 ✓ 0.332±0.15 121.3 11.9
CON. SLAMS 0.363±0.04 0.312±0.30 17.1 15.4
CON. EZ-SLAMS 0.370±0.04 0.315±0.30 8.0 15.6
Cancer
UNC. GRID 0.489±0.03 0.502±0.21 10.3 25.0
CON. GRID 0.477±0.06 0.611±0.20 ✗ 1035.3 6.6
FILTER (SQP) 0.210±0.02 ✓ 0.395±0.08 ✓ 100.2 11.8
CON. SLAMS 0.476±0.09 0.481±0.12 25.5 14.0
CON. EZ-SLAMS 0.567±0.10 ✗ 0.483±0.13 5.2 13.9
Cholecystokinin
UNC. GRID 0.798±0.06 1.006±0.34 12.0 25.0
CON. GRID 0.783±0.07 1.280±0.43 ✗ 1157.6 7.6
FILTER (SQP) 0.499±0.03 ✓ 1.022±0.25 189.8 12.9
CON. SLAMS 0.881±0.11 ✗ 1.235±0.28 ✗ 35.1 14.7
CON. EZ-SLAMS 0.941±0.09 ✗ 1.217±0.26 ✗ 9.1 14.7

365

KUNAPULI PANG BENNETT

Table 15.3 shows the average results for the QSAR data. After the data is preprocessed, we
randomly partition the data into 20 different training and testing sets. For each of the training
sets, 5-fold cross validation is optimized using bilevel programming. The results are averaged
over the 20 runs. We report results for the same 5 methods used for synthetic data.

Again, as with the synthetic data, FILTER finds solutions with the smallest validation errors.
However, computation times for FILTER are not competitive with the SLA methods and not
even with Unc. Grid. Unsurprisingly, constrained grid search has the worst computation time.
The difficulty of the underlying bilevel optimization problem is underscored by the fact that
the greedy Con. Grid search in Section 15.4.5 sometimes fails to find a better solution than
the unconstrained grid search. The constrained search drops important variables that cause it to
have bad generalization.

In terms of test set error, FILTER and the constrained SLA approaches outperform the un-
constrained approaches on the cancer data and do as well on the remaining three data sets.
However, on the remaining data sets, the SLA approaches generalize very well and tend to be
competitive with Unc. Grid with regard to execution time. The best running times, however,
are produced by the early stopping based SLA approaches, which SLAM the door on all other
approaches while maintaining good generalization performance.

With regard to feature selection, it is clear that the aggressive feature selection strategy
employed by Con. Grid is still inefficient and has a debilitating effect on validation and gen-
eralization error. However, FILTER tends to perform feature selection very well and produces
correspondingly good generalization suggesting that the box constraints do indeed act as addi-
tional regularization that may improve generalization.

15.7. Discussion
We showed how the widely used model selection technique of cross validation for general ma-
chine learning problems could be formulated as a bilevel programming problem; the formula-
tion is more flexible and can deal with many more hyper-parameters than the typical grid search
strategy. The proposed bilevel problem is converted to an instance of a linear program with
equilibrium constraints (LPEC) which is difficult to solve due to the non-convexity created by
the complementarity constraints introduced in the reformulation. A major outstanding question
has always been the development of efficient algorithms for LPECs and bilevel programs. To
this end, we proposed two approaches to solve the LPEC: a relaxed NLP-based approach which
was solved using the off-the-shelf, SQP-based, NLP solver, FILTER and a exact penalty-based
approach which was solved using a finite successive linearization algorithm.

Our preliminary computational results indicate that general purpose SQP solvers can tractably
find high-quality solutions that generalize well. Generalization results on random data show
that FILTER yields are comparable, if not better results than current methods. The successive
linearization algorithms for model selection (SLAMS) and their early stopping variants (EZ-
SLAMS) performed even better than FILTER. In fact, it was shown that the SLAMS algorithms
comprehensively outperform classical grid search approaches as the size of the problem grows.

This is despite the fact that neither the NLP- or the SLA-based approaches take advantage of
the structure inherent in bilevel problems arising from machine learning applications. Machine
learning problems, especially support vector machines, are highly structured, and yield elegant
and sparse solutions, a fact that several decomposition algorithms such as sequential minimal
optimization target. Despite the non-convexity of the LPECs, bilevel programs for machine
learning problems retain the structure inherent in the original machine learning problems. In
addition, the variables in these LPECs tend to decouple, for example, in cross validation, the
variables may be decoupled along the folds. This suggests that applying decomposition meth-

366

15. BILEVEL CROSS VALIDATION

ods to bilevel approaches can make them even more efficient. An avenue for future research
is developing a decomposition-based algorithm that can train on data sets containing tens of
thousands of points.

While support vector regression was chosen as the machine learning problem to demon-
strate the potency of the bilevel approach, the methodology can be extended to several machine
learning problems including classification, semi-supervised learning, multi-task learning and
novelty detection. Some of these formulations have been presented in Kunapuli et al. (2008a),
while others remain open problems. Aside from discriminative methods, bilevel programming
can also be applied to generative methods such as Bayesian techniques. Furthermore, the abil-
ity to optimize a large number of parameters allows one to consider new forms of models, loss
functions and regularization.

The most pressing question, however, arises from a serious limitation of the algorithms pre-
sented herein: the results are limited to bilevel models selection problems that can be reduced
to LPECs. Thus only linear models can be addressed. Classical machine learning addresses this
problem by means of the kernel trick. It was shown in Kunapuli et al. (2008a) that the kernel
trick can be incorporated into a generic bilevel model for cross validation. The flexibility of
the bilevel approach means that one can even incorporate input-space feature selection into the
kernelized bilevel model. This type of bilevel program can be reformulated as an instance of a
mathematical program with equilibrium constraints (MPEC). The MPECs arising from kernel-
ized bilevel machine learning problems tend to have several diverse sources of non-convexity
because they have nonlinear complementarity and inequality constraints; this leads to very chal-
lenging mathematical programs and an equally challenging opening for future pursuits in this
field.

Acknowledgments
This work was supported in part by the Office of Naval Research under grant no. N00014-06-1-
0014. The authors are grateful to Professor Olvi Mangasarian for his suggestions on the penalty
approach.

References
Kristin P. Bennett and Olvi L. Mangasarian. Bilinear separation of two sets in n-space. Com-

putational Optimization and Applications, 2(3):207–227, 1993.

Kristin P. Bennett, Jing Hu, Xiaoyun Ji, Gautam Kunapuli, and Jong-Shi Pang. Model selection
via bilevel optimization. International Joint Conference on Neural Networks, (IJCNN) ’06.,
pages 1922–1929, 2006.

Jinbo Bi, Kristin P. Bennett, Mark Embrechts, Curt Breneman, and Minghu Song. Dimension-
ality reduction via sparse support vector machines. Journal of Machine Learning Research,
3:1229–1243, 2003.

Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. A training algorithm for
optimal margin classifiers. In COLT ’92: Proceedings of the fifth annual workshop on Com-
putational learning theory, pages 144–152, New York, NY, USA, 1992. ACM Press.

Jerome Bracken and James T. McGill. Mathematical programs with optimization problems in
the constraints. Operations Research, 21(1):37–44, 1973.

367

KUNAPULI PANG BENNETT

P. S. Bradley and Olvi L. Mangasarian. Feature selection via concave minimization and support
vector machines. In Machine Learning Proceedings of the Fifteenth International Confer-
ence(ICML ’98), Jude W. Shavlik, Editor, pages 82–90, San Francisco, California, 1998.
Morgan Kaufmann.

Rich Caruana. Multitask learning. Machine Learning, 28(1):41–75, 1997.

Olivier Chapelle, Vladimir Vapnik, Olivier Bousquet, and Sayan Mukherjee. Choosing multiple
parameters for support vector machines. Machine Learning, 46(1–3):131–159, 2002.

Corrina Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning, 20(3):273–
297, 1995.

Ayhan Demiriz, Kristin P. Bennett, Curt M. Breneman, and Mark Embrechts. Support vector
regression methods in cheminformatics. Computer Science and Statistics, 33, 2001.

Stephan Dempe. Foundations of Bilevel Programming. Kluwer Academic Publishers, Dor-
drecht, 2002.

Stephan Dempe. Annotated bibliography on bilevel programming and mathematical programs
with equilibrium constraints. Optimization, 52:333–359, 2003.

Kaibo Duan, Sathiya S. Keerthi, and Aun N. Poo. Evaluation of simple performance measures
for tuning SVM hyperparameters. Neurocomputing, 51:41–59, 2003.

Theodoros Evgeniou and Massimiliano Pontil. Regularized multi–task learning. In KDD ’04:
Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 109–117, New York, NY, USA, 2004. ACM Press.

Francisco Facchinei and Jong-Shi Pang. Finite-Dimensional Variational Inequalities and Com-
plementarity Problems. Springer-Verlag, New York, 2003.

Roger Fletcher and Sven Leyffer. User manual for filtersqp. Technical Report NA/181, Depart-
ment of Mathematics, University of Dundee, 1999.

Roger Fletcher and Sven Leyffer. Nonlinear programming without a penalty function. Mathe-
matical Programming, 91:239–269, 2002.

Glenn Fung and Olvi L. Mangasarian. Semi-supervised support vector machines for unlabeled
data classification. Optimization Methods and Software, 15:29–44, 2001.

Philip E. Gill, Walter Murray, and Michael A. Saunders. User’s guide for snopt version 6: A
fortran package for large-scale nonlinear programming. Technical report, Systems Optimiza-
tion Laboratory, Stanford University, 2002. URL http://www.cam.ucsd.edu/~peg/
papers/sndoc6.pdf.

Gene H. Golub, Michael Heath, and Grace Wahba. Generalized cross-validation as a method
for choosing a good ridge parameter. Technometrics, 21:215–223, 1979.

Isabelle Guyon, Jason Weston, Stephen Barnhill, and Vladimir Vapnik. Gene selection for
cancer classification using support vector machines. Machine Learning, 46(1-3):389–422,
2002.

Trevor Hastie, Saharon Rosset, Robert Tibshirani, and Ji Zhu. The entire regularization path for
the support vector machine. Journal of Machine Learning Research, 5:1391–1415, 2004.

368

http://www.cam.ucsd.edu/~peg/papers/sndoc6.pdf
http://www.cam.ucsd.edu/~peg/papers/sndoc6.pdf

15. BILEVEL CROSS VALIDATION

X. X. Huang, X. Q. Yang, and K. L. Teo. Partial augmented lagrangian method and math-
ematical programs with complementarity constraints. Journal of Global Optimization, 35:
235–254, 2006.

Ron Kohavi. A study of cross-validation and bootstrap for accuracy estimation and model
selection. In International Joint Conference on Artificial Intelligence, pages 1137–1145,
1995.

Gautam Kunapuli. A Bilevel Optimization Approach to Machine Learning. PhD thesis, Rens-
selaer Polytechnic Institute, Troy, NY, 2008.

Gautam Kunapuli, Kristin P. Bennett, Jing Hu, and Jong-Shi Pang. Bilevel model selection for
support vector machines. In Pierre Hansen and Panos Pardalos, editors, Data Mining and
Mathematical Programming [CRM Proceedings and Lecture Notes], volume 45. American
Mathematical Society, 2008a.

Gautam Kunapuli, Kristin P. Bennett, Jing Hu, and Jong-Shi Pang. Classification model selec-
tion via bilevel programming. In Jiming Peng and Katja Scheinberg, editors, Optimization
Methods and Software: Special Issue on Mathematical Programming for Data Mining. Tay-
lor and Francis, 2008b. to appear.

Gert R. G. Lanckriet, Nello Cristianini, Peter Bartlett, Laurent El-Ghaoui, and Michael I. Jor-
dan. Learning the kernel matrix with semidefinite programming. Journal of Maching Learn-
ing Research, 5:27–72, 2004.

Zhi-Quan Luo, Jong-Shi Pang, and Daniel Ralph. Mathematical Programs With Equilibrium
Constraints. Cambridge University Press, Cambridge, 1996.

Olvi L. Mangasarian. Misclassification minimization. Journal of Global Optimization, 5:309–
323, 1994.

Cheng Soon Ong, Alexander J. Smola, and Robert C. Williamson. Learning the kernel with
hyperkernels. Journal of Machine Learning Research, 6:1043–1071, 2005.

Jiri V. Outrata, Michal Kocvara, and Jochem Zowe. Nonsmooth Approach to Optimization Prob-
lems with Equilibrium Constraints: Theory, Applications and Numerical Results. Kluwer
Academic Publishers, Dordrecht, 1998.

Daniel Ralph and Stephen J. Wright. Some properties of regularization and penalization
schemes for mpecs. Optimization Methods and Software, 19:527–556, 2004.

John Shawe-Taylor and Nello Cristianini. Kernel Methods for Pattern Analysis. Cambridge
University Press, 2004.

Alex J. Smola and Bernhard Schölkopf. A tutorial on support vector regression. NeuroCOLT2
Technical Report NC2-TR-1998-030, 1998.

M. Stone. Cross-validatory choice and assessment of statistical predictions. Journal of the
Royal Statistical Society, Series B, 36:111–147, 1974.

Vladimir Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, New York, 2000.

Gang Wang, Dit-Yan Yeung, and Frederick H. Lochovsky. Two-dimensional solution path for
support vector regression. In ICML ’06: Proceedings of the 23rd International Conference
on Machine Learning, pages 993–1000, 2006.

369

Appendix A

Dataset Description

Appendix A1

Datasets for the Agnostic Learning vs. Prior Knowledge
Competition
Isabelle Guyon ISABELLE@CLOPINET.COM

This documents provides details about the five datasets used in the “Agnostic Learning vs.
Prior Knowledge” competition organized for IJCNN 2007. We used the same 5 datasets already
used for the WCCI 2006 performance prediction challenge.1 However, the data were reshuffled.
We make available two data formats: (1) the raw data as provided from the original data source,
(2) the preprocessed data representation of the WCCI 2006 challenge. All tasks are two-class
classification problems. The goal of the challenge is to determine how much can be gained
in performance when prior/domain knowledge is available compared to using a “black-
box” method on the preprocessed data, or whether the “black box” agnostic methods match or
outperform “Gnostic” methods.

This document provides guidance to the competitors interested in the “prior knowledge”
track. The competitors entering in the “agnostic learning” track should not exploit this docu-
ment to reverse engineer the agnostic track data. The rule of the game is that they should ignore
the information made available in this document to make entries into the challenge.

The competitors have several months to build classifiers with provided (labeled) training
data. A web server is provided to submit prediction results on additional unlabeled data. Two
unlabeled datasets are used for evaluation: a small validation set used during the development
period and a very large test set to do the final evaluation and the ranking of the participants.
During a development period, the validation set performance is published immediately upon
submission of prediction results. The test set performance remains undisclosed until the end
of the competition. The labels of the validation set are published shortly before the end of the
competition.

The data sets were chosen to span a variety of domains (drug discovery, ecology, handwrit-
ten digit recognition, text classification, and marketing.) We chose data sets that had sufficiently
many examples to create a large enough test set to obtain statistically significant results. The in-
put variables are continuous or binary, sparse or dense. All problems are two-class classification
problems.

The data characteristics are summarized in Table A1.1.

A1.1. Method
Preparing the feature representation used for the agnostic track included preprocessing data to
obtain features in the same numerical range (0 to 999 for continuous data and 0/1 for binary
data) and randomizing the order of the patterns and the features to homogenize the data.

For all data representations, the data were split into the same three training, validation
and test sets. However, the data of the agnostic track and the prior knowledge track were
reshuffled in a difference way within each set. The features of the agnostic track were shuffled

1. A report on these datasets is available at http://clopinet.com/isabelle/Projects/
modelselect/Dataset.pdf.

© I. Guyon.

http://clopinet.com/isabelle/Projects/modelselect/Dataset.pdf
http://clopinet.com/isabelle/Projects/modelselect/Dataset.pdf

GUYON

Table A1.1: Datasets of the challenge. The columns “sparsity”, “type”, “Featnum” and
“Tr/FN” refer to the feature representation used for the WCCI 2006 challenge and
made available to the “agnostic learning” track.

Dataset Domain
Sparsity

(%) Type
FracPos

(%)
Tr/
FN

Feat-
Num Train Valid Test

ADA Marketing 79.4 mixed 24.8 86.4 48 4147 415 41471
GINA Handwriting 69.2 continuous 49.2 3.25 970 3153 315 31532
HIVA Drug discovery 90.9 binary 3.5 2.38 1617 3845 384 38449
NOVA Text mining 99.7 binary 28.5 0.1 16969 1754 175 17537
SYLVA Ecology 77.9 mixed 6.2 60.58 216 13086 1308 130858

differently than in the WCCI 2006 challenge. The proportions of the data split are the same as
in the WCCI 2006 challenge: the validation set is 100 times smaller than the test set to make it
10 times less accurate to compute the performances on the basis of the validation set only. The
training set is ten times larger than the validation set.

The classification performance is evaluated by the Balanced Error Rate (BER), that is the
average error rate of the two classes. Both validation and test set truth-values (labels) are with-
held during the benchmark. The validation set serves as development test set to give on-line
performance feed-back to the participants. One month before the end of the challenge, the val-
idation set labels are made available. At the end of the benchmark, the participants send their
test set results. The scores on the test set results are disclosed simultaneously to all participants
after the benchmark is over.

A1.2. Data formats
For both track, the following four files in text format are used for each dataset:

dataname.param: Parameters and statistics about the data

dataname_train.labels: Binary labels (truth values of the classes) for training examples.

dataname_valid.labels: Binary validation set labels (withheld during the benchmark).

dataname_test.labels: Binary test set labels (withheld during the benchmark).

For the prior knowledge track, multi-class labels are provided in addition to the binary
labels:

dataname_train.mlabels: Training multiclass labels.

dataname_valid.mlabels: Validation multiclass labels (withheld during the benchmark).

dataname_test.mlabels: Test multiclass labels (withheld during the benchmark).

Note: the challenge is about binary classification. Multi-class labels are provided as additional
hints/prior knowledge.

For the agnostic track, the data matrices are provided in text format:

dataname_train.data: Training set (a sparse or a regular matrix, patterns in lines, features in
columns).

374

A1. DATASETS FOR THE AGNOSTIC LEARNING VS. PRIOR KNOWLEDGE COMPETITION

dataname_valid.data: Development test set or “validation” set.

dataname_test.data: Test set.

The matrix data formats used are:

• For regular matrices: a space delimited file with a new-line character at the end of each
line.

• For sparse matrices with binary values: for each line of the matrix, a space delimited list
of indices of the non-zero values. A new-line character at the end of each line. In this
challenge there are no sparse matrices with non-binary values.

For the prior knowledge track, the datasets are provided in various formats specified in more
details in the sections devoted to the specific datasets.

The results on each dataset should be formatted in 6 ASCII files:

dataname_train.resu: ±1 classifier outputs for training set examples (mandatory for all sub-
mission.).

dataname_valid.resu: ±1 classifier outputs for validation set examples (mandatory for all sub-
mission.).

dataname_test.resu: ±1 classifier outputs for final test set examples (mandatory for final sub-
missions.)

dataname_train.conf: confidence values for training examples (optional.)

dataname_valid.conf: confidence values for validation examples (optional.)

dataname_test.conf: confidence values for test examples (optional.)

The confidence values can be the absolute discriminant values. They do not need to be normal-
ized to look like probabilities. They will be used to compute ROC curves and Area Under such
Curve (AUC).

Only entries containing results on the five datasets will qualify towards the final ranking.
You can make mixed entries (using domain knowledge for some entries and preprocessed data
for others). Mixed entries will be entered in the “prior knowledge” track.

A1.3. Model formats
There is also the possibility of submitting information about the models used. This is described
in a separate document.

A1.4. Result rating
The scoring method retained is the test set balanced error rate (test_ber): the average of the
class error rates (the class error rates are the error rates obtained with test examples of individual
classes, using the predictions provided by the participants.)

In addition to test_ber, other statistics will be computed, but not used for scoring, including
the AUC, i.e. the area under the ROC curve.

375

GUYON

A1.5. Dataset A: SYLVA
A1.5.1. Topic

The task of SYLVA is to classify forest cover types. The forest cover type for 30× 30 meter
cells is obtained from US Forest Service (USFS) Region 2 Resource Information System (RIS)
data. We brought it back to a two-class classification problem (classifying Ponderosa pine vs.
everything else). The “agnostic data” consists in 216 input variables. Each pattern is composed
of 4 records: 2 true records matching the target and 2 records picked at random. Thus 1⁄2 of the
features are distracters. The “prior knowledge data” is identical to the “agnostic data”, except
that the distracters are removed and the identity of the features is revealed.

A1.5.2. Sources

A1.5.2.1. ORIGINAL OWNERS

Remote Sensing and GIS Program
Department of Forest Sciences
College of Natural Resources
Colorado State University
Fort Collins, CO 80523

(contact Jock A. Blackard, jblackard/wo_ftcol@fs.fed.us or Dr. Denis J. Dean,
denis@cnr.colostate.edu)
Jock A. Blackard
USDA Forest Service
3825 E. Mulberry
Fort Collins, CO 80524 USA
jblackard/wo_ftcol@fs.fed.us

Dr. Denis J. Dean
Associate Professor
Department of Forest Sciences
Colorado State University
Fort Collins, CO 80523 USA
denis@cnr.colostate.edu

Dr. Charles W. Anderson
Associate Professor
Department of Computer Science
Colorado State University
Fort Collins, CO 80523 USA
anderson@cs.colostate.edu

ACKNOWLEDGEMENTS, COPYRIGHT INFORMATION, AND AVAILABILITY

Reuse of this database is unlimited with retention of copyright notice for Jock A. Blackard and
Colorado State University.

376

mailto:denis@cnr.colostate.edu
mailto:jblackard/wo_ftcol@fs.fed.us
mailto:denis@cnr.colostate.edu
mailto:anderson@cs.colostate.edu

A1. DATASETS FOR THE AGNOSTIC LEARNING VS. PRIOR KNOWLEDGE COMPETITION

A1.5.2.2. DONOR OF DATABASE

This version of the database was prepared for the WCCI 2006 performance prediction challenge
and the IJCNN 2007 agnostic learning vs. prior knowledge challenge by Isabelle Guyon, 955
Creston Road, Berkeley, CA 94708, USA (isabelle@clopinet.com).

A1.5.2.3. DATE RECEIVED

August 28, 1998, UCI Machine Learning Repository, under the name Forest Cover Type.

A1.5.2.4. DATE PREPARED FOR THE CHALLENGES

June 2005–September 2006.

A1.5.3. Past usage

Blackard, Jock A. 1998. “Comparison of Neural Networks and Discriminant Analysis in Pre-
dicting Forest Cover Types.” Ph.D. dissertation. Department of Forest Sciences. Colorado State
University. Fort Collins, Colorado.

Classification performance with first 11,340 records used for training data, next 3,780 records
used for validation data, and last 565,892 records used for testing data subset: – 70% backprop-
agation – 58% Linear Discriminant Analysis

A1.5.4. Experimental design

The original data comprises a total of 581012 instances (observations) grouped in 7 classes
(forest cover types) and having 54 attributes corresponding to 12 measures (10 quantitative vari-
ables, 4 binary wilderness areas and 40 binary soil type variables). The actual forest cover type
for a given observation (30×30 meter cell) was determined from US Forest Service (USFS) Re-
gion 2 Resource Information System (RIS) data. Independent variables were derived from data
originally obtained from US Geological Survey (USGS) and USFS data. Data is in raw form
(not scaled) and contains binary (0 or 1) columns of data for qualitative independent variables
(wilderness areas and soil types).

A1.5.4.1. VARIABLE INFORMATION

Table A1.2 gives the variable name, variable type, the measurement unit and a brief description.
The forest cover type is the classification problem. The order of this listing corresponds to the
order of numerals along the rows of the database.

A1.5.4.2. CODE DESIGNATIONS

Wilderness Areas:

1 — Rawah Wilderness Area

2 — Neota Wilderness Area

3 — Comanche Peak Wilderness Area

4 — Cache la Poudre Wilderness Area

Soil Types:

377

mailto:isabelle@clopinet.com

GUYON

Table
A

1.2:Variable
Inform

ation

N
am

e
D

ata
Type

M
easurem

ent
D

escription

Elevation
quantitative

m
eters

Elevation
in

m
eters

A
spect

quantitative
azim

uth
A

spectin
degrees

azim
uth

Slope
quantitative

degrees
Slope

in
degrees

H
orizontal_D

istance_To_H
ydrology

quantitative
m

eters
H

orz
D

istto
nearestsurface

w
aterfeatures

Vertical_D
istance_To_H

ydrology
quantitative

m
eters

VertD
istto

nearestsurface
w

aterfeatures
H

orizontal_D
istance_To_R

oadw
ays

quantitative
m

eters
H

orz
D

istto
nearestroadw

ay
H

illshade_9am
quantitative

0
to

255
index

H
illshade

index
at9am

,sum
m

ersolstice
H

illshade_N
oon

quantitative
0

to
255

index
H

illshade
index

atnoon,sum
m

ersoltice
H

illshade_3pm
quantitative

0
to

255
index

H
illshade

index
at3pm

,sum
m

ersolstice
H

orizontal_D
istance_To_Fire_Points

quantitative
m

eters
H

orz
D

istto
nearestw

ildfire
ignition

points
W

ilderness_A
rea

(4
binary

colum
ns)

qualitative
0

(absence)or1
(presence)

W
ilderness

area
designation

Soil_Type
(40

binary
colum

ns)
qualitative

0
(absence)or1

(presence)
SoilType

designation
C

over_Type
(7

types)
integer

1
to

7
ForestC

overType
designation

378

A1. DATASETS FOR THE AGNOSTIC LEARNING VS. PRIOR KNOWLEDGE COMPETITION

1 to 40 : based on the USFS Ecological Landtype Units for this study area.

Forest Cover Types:

1 — Spruce/Fir

2 — Lodgepole Pine

3 — Ponderosa Pine

4 — Cottonwood/Willow

5 — Aspen

6 — Douglas-fir

7 — Krummholz

A1.5.4.3. CLASS DISTRIBUTION

Number of records of Spruce-Fir: 211840
Number of records of Lodgepole Pine: 283301
Number of records of Ponderosa Pine: 35754
Number of records of Cottonwood/Willow: 2747
Number of records of Aspen: 9493
Number of records of Douglas-fir: 17367
Number of records of Krummholz: 20510
Total records: 581012

Data preprocessing and data split We carved a binary classification task out these data. We
decided to separate Ponderosa pine from all others. To disguise the data and render the task
more challenging for the “agnostic track”, we created patterns containing the concatenation of
4 patterns: two of the target class and two randomly chosen from either class. In this way there
are pairs of redundant features and 1⁄2 of the features are non-informative. The “prior knowledge
data” does not contain the distracters. The multi-class label information is provided with the
“prior knowledge data” as a 2-digit number representing for each pattern the combination of
2 records used. All the examples of the positive class have code “33” (two Ponderosa pine
records), others have different 2-digit numbers.

A1.5.5. Number of examples and class distribution

A1.5.6. Type of input variables and variable statistics

All variables are integer quantized on 1000 levels. There are no missing values. The data is not
very sparse, but for data compression reasons, we thresholded the values. Approximately 78%
of the variable values are zero. The data was saved as a dense matrix.

A1.5.7. Baseline results

The best entry in the “Performance prediction challenge” had a test_ber=0.53%.

379

GUYON

Table A1.3: Prior knowledge data

Positive ex. Negative ex. Total Check sum
Training set 805 12281 13086 118996108
Validation set 81 1228 1309 11904801
Test set 8052 122805 130857 1191536355
All 8938 136314 145252 1322437264

Table A1.4: Agnostic data

Positive ex. Negative ex. Total Check sum
Training set 805 12281 13086 238271607
Validation set 81 1228 1309 23817234
Test set 8052 122805 130857 2382779242
All 8938 136314 145252 2644868083

Table A1.5: Prior knowledge data

Real variables Random probes Total
108 0 108

Table A1.6: Agnostic data

Real variables Random probes Total
108 108 216

380

A1. DATASETS FOR THE AGNOSTIC LEARNING VS. PRIOR KNOWLEDGE COMPETITION

A1.6. Dataset B: GINA
A1.6.1. Topic

The task of GINA is handwritten digit recognition. We chose the problem of separating the odd
numbers from even numbers. We use 2-digit numbers. Only the unit digit is informative for
that task, therefore at least 1⁄2 of the features are distracters. This is a two-class classification
problem with sparse continuous input variables, in which each class is composed of several
clusters. It is a problems with heterogeneous classes.

A1.6.2. Sources

A1.6.2.1. ORIGINAL OWNERS

The data set was constructed from the MNIST data that is made available by Yann LeCun
of the NEC Research Institute at http://yann.lecun.com/exdb/mnist/. The digits
have been size-normalized and centered in a fixed-size image of dimension 28×28. We show
examples of digits in Figure A1.1.

Figure A1.1: Examples of digits from the MNIST database.

381

http://yann.lecun.com/exdb/mnist/

GUYON

Table A1.7: Number of examples in the original data

Digit 0 1 2 3 4 5 6 7 8 9 Total
Training 5923 6742 5958 6131 5842 5421 5918 6265 5851 5949 60000
Test 980 1135 1032 1010 982 892 958 1028 974 1009 10000
Total 6903 7877 6990 7141 6824 6313 6876 7293 6825 6958 70000

A1.6.2.2. DONOR OF DATABASE

This version of the database was prepared for the WCCI 2006 performance prediction challenge
and the IJCNN 2007 agnostic learning vs. prior knowledge challenge by Isabelle Guyon, 955
Creston Road, Berkeley, CA 94708, USA (isabelle@clopinet.com).

A1.6.2.3. DATE PREPARED FOR THE CHALLENGES

June 2005–September 2006.

A1.6.3. Past usage

Many methods have been tried on the MNIST database, in its original data split (60,000 training
examples, 10,000 test examples, 10 classes.) Table A1.8 is an abbreviated list from http:
//yann.lecun.com/exdb/mnist/.

Table A1.8: Abbreviated List

METHOD TEST ERROR RATE (%)
linear classifier (1-layer NN) 12.0
linear classifier (1-layer NN) [deskewing] 8.4
pairwise linear classifier 7.6
K-nearest-neighbors, Euclidean 5.0
K-nearest-neighbors, Euclidean, deskewed 2.4
40 PCA + quadratic classifier 3.3
1000 RBF + linear classifier 3.6
K-NN, Tangent Distance, 16x16 1.1
SVM deg 4 polynomial 1.1
Reduced Set SVM deg 5 polynomial 1.0
Virtual SVM deg 9 poly [distortions] 0.8
2-layer NN, 300 hidden units 4.7
2-layer NN, 300 HU, [distortions] 3.6
2-layer NN, 300 HU, [deskewing] 1.6
2-layer NN, 1000 hidden units 4.5
2-layer NN, 1000 HU, [distortions] 3.8
3-layer NN, 300+100 hidden units 3.05
3-layer NN, 300+100 HU [distortions] 2.5
3-layer NN, 500+150 hidden units 2.95
3-layer NN, 500+150 HU [distortions] 2.45
LeNet-1 [with 16x16 input] 1.7
LeNet-4 1.1

382

mailto:isabelle@clopinet.com
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

A1. DATASETS FOR THE AGNOSTIC LEARNING VS. PRIOR KNOWLEDGE COMPETITION

Table A1.8: Abbreviated List (continued)

METHOD TEST ERROR RATE (%)
LeNet-4 with K-NN instead of last layer 1.1
LeNet-4 with local learning instead of ll 1.1
LeNet-5, [no distortions] 0.95
LeNet-5, [huge distortions] 0.85
LeNet-5, [distortions] 0.8
Boosted LeNet-4, [distortions] 0.7
K-NN, shape context matching 0.67

A1.6.3.1. REFERENCE:

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. “Gradient-based learning applied to document
recognition.” Proceedings of the IEEE, 86(11):2278-2324, November 1998. http://yann.
lecun.com/exdb/publis/index.html#lecun-98

The dataset restricted to a selection of digits “4” and “9” was used in the NIPS 2003 feature
selection challenge http://clopinet.com/isabelle/Projects/NIPS2003/ and
http://www.nipsfsc.ecs.soton.ac.uk/, under the name GISETTE.

A1.6.4. Experimental design

To construct the “agnostic” dataset, we performed the following steps:

• We removed the pixels that were 99% of the time white. This reduced the original feature
set of 784 pixels to 485.

• The original resolution (256 gray levels) was kept.

• In spite of the fact that the data are rather sparse (about 30% of the values are non-zero),
we saved the data as a dense matrix because we found that it can be compressed better in
this way (to 19 MB.)

• The feature names are the (i, j) matrix coordinates of the pixels (in a 28×28 matrix.)

• We created 2 digit numbers by dividing the datasets into to parts and pairing the digits at
random.

• The task is to separate odd from even numbers. The digit of the tens being not informa-
tive, the features of that digit act as distracters.

To construct the “prior” dataset, we went back to the original data and fetched the “informa-
tive” digit in its original representation. Therefore, this data representation consists in a vector
of concatenating the lines of a 28×28 pixel map.

A1.6.5. Number of examples and class distribution

383

http://yann.lecun.com/exdb/publis/index.html#lecun-98
http://yann.lecun.com/exdb/publis/index.html#lecun-98
http://clopinet.com/isabelle/Projects/NIPS2003/
http://www.nipsfsc.ecs.soton.ac.uk/

GUYON

Table A1.9: Prior knowledge data

Positive ex. Negative ex. Total Check sum
Training set 1550 1603 3153 82735983
Validation set 155 160 315 8243382
Test set 15504 16028 31532 825458881
All 17209 17791 35000 916438246

Table A1.10: Agnostic data

Positive ex. Negative ex. Total Check sum
Training set 1550 1603 3153 164947945
Validation set 155 160 315 16688946
Test set 15504 16028 31532 1646492864
All 17209 17791 35000 1828129755

A1.6.6. Type of input variables and variable statistics

Table A1.11: Prior knowledge data

Real variables Random probes Total
784 0 784

Table A1.12: Agnostic data

Real variables Random probes Total
485 485 970

All variables are integer quantized on 256 levels. There are no missing values. The data is
rather sparse. Approximately 69% of the entries are zero for the agnostic data. The data was
saved as a dense matrix, because it compresses better in that format.

A1.6.7. Baseline results

The best entry of the “performance prediction challenge” obtained a test_ber=2.88%.

A1.7. Dataset C: NOVA
A1.7.1. Topic

The task of NOVA is text classification from the 20-Newsgroup data. We selected the separation
of politics and religion topics from all the other topics. This is a two-class classification prob-
lem. The raw data comes as text files for the “prior knowledge” track. The preprocessed data
for the “agnostic” track is a sparse binary representation using a bag-of-word representation
with a vocabulary of approximately 17000 words.

384

A1. DATASETS FOR THE AGNOSTIC LEARNING VS. PRIOR KNOWLEDGE COMPETITION

A1.7.2. Sources

A1.7.2.1. ORIGINAL OWNERS

Tom Mitchell
School of Computer Science
Carnegie Mellon University
tom.mitchell@cmu.edu

Available from the UCI machine learning repository. The version we are using for the ag-
nostic track was preprocessed by Ron Bekkerman http://www.cs.technion.ac.il/
~ronb/thesis.html into the “bag-of-words” representation.

A1.7.2.2. DONOR OF DATABASE

This version of the database was prepared for the WCCI 2006 performance prediction challenge
and the IJCNN 2007 agnostic learning vs. prior knowledge challenge by Isabelle Guyon, 955
Creston Road, Berkeley, CA 94708, USA (isabelle@clopinet.com).

A1.7.2.3. DATE PREPARED FOR THE CHALLENGES

June 2005 – September 2006.

A1.7.3. Past usage

T. Mitchell. Machine Learning, McGraw Hill, 1997.

T. Joachims (1996). A probabilistic analysis of the Rocchio algorithm with TFIDF for text
categorization, Computer Science Technical Report CMU-CS-96-118. Carnegie Mellon
University.

Ron Bekkerman, Ran El-Yaniv, Naftali Tishby, and Yoad Winter. Distributional Word
Clusters vs. Words for Text Categorization. JMLR 3(Mar):1183-1208, 2003.

A1.7.4. Experimental design

We selected 8 newsgroups relating to politics or religion topics as our positive class (Table A1.13)
For the “prior knowledge” data, we kept the original text, but we removed the header. The

format of the data files is as follows. Each entry corresponding to a newsgroup message is
encoded as:

• 1st line: Subject: xxx

• 2nd line: Lines: yyy

• 3rd line: Blank

• The message with yyy lines.

• $$$$

Each entry corresponds to an example.

For the “agnostic” data, the vocabulary selection includes the following filters:

385

mailto:tom.mitchell@cmu.edu
http://www.cs.technion.ac.il/~ronb/thesis.html
http://www.cs.technion.ac.il/~ronb/thesis.html
mailto:isabelle@clopinet.com

GUYON

• remove words containing digits and convert to lowercase

• remove words appearing less than twice in the whole dataset.

• remove short words with less than 3 letters.

• exclude ≈ 2000 words found frequently in all documents.

• truncate the words at a max of 7 letters.

Table A1.13: Twenty newsgroup database.

Newsgroup Number of examples
alt.atheism 1114
comp.graphics 1002
comp.os.ms-windows.misc 1000
comp.sys.ibm.pc.hardware 1028
comp.sys.mac.hardware 1002
comp.windows.x 1000
misc.forsale 1005
rec.autos 1004
rec.motorcycles 1000
rec.sport.baseball 1000
rec.sport.hockey 1000
sci.crypt 1000
sci.electronics 1000
sci.med 1001
sci.space 1000
soc.religion.christian 997
talk.politics.guns 1008
talk.politics.mideast 1000
talk.politics.misc 1163
talk.religion.misc 1023

386

A1. DATASETS FOR THE AGNOSTIC LEARNING VS. PRIOR KNOWLEDGE COMPETITION

A1.7.5. Number of examples and class distribution

Table A1.14: Prior knowledge data

Positive ex. Negative ex. Total
Training set 499 1255 1754
Validation set 50 125 175
Test set 4990 12547 17537
All 5539 13927 19466

Table A1.15: Agnostic data

Positive ex. Negative ex. Total Check sum
Training set 499 1255 1754 103583
Validation set 50 125 175 9660
Test set 4990 12547 17537 984667
All 5539 13927 19466 1097910

A1.7.6. Type of input variables and variable statistics (agnostic data only)

Real variables Random probes Total
16969 0 16969

All variables are binary. There are no missing values. The data is very sparse. Over 99% of
the entries are zero. The data was saved as a sparse-binary matrix.

A1.7.7. Baseline results

The best performance of the “Performance prediction challenge” was test_ber=4.44%.

A1.8. Dataset D: HIVA
A1.8.1. Topic

The task of HIVA is to predict which compounds are active against the AIDS HIV infection.
The original data has 3 classes (active, moderately active, and inactive). We brought it back
to a two-class classification problem (active vs. inactive). The problem is therefore to relate
structure to activity (a QSAR=quantitative structure-activity relationship problem) to screen
new compounds before actually testing them (a HTS=high-throughput screening problem.) The
molecules in the original data are described by their chemical formula. We provide additionally
the 3d structure for the “prior knowledge” track. For the “agnostic track” we represented the
data as 2000 sparse binary input variables. The variables represent properties of the molecule
inferred from its structure.

387

GUYON

A1.8.2. Sources

A1.8.2.1. ORIGINAL OWNERS

The data is made available by the National Cancer Institute (NCI), via the DTP AIDS Antiviral
Screen program at: http://dtp.nci.nih.gov/docs/aids/aids_data.html.

The DTP AIDS Antiviral Screen has checked tens of thousands of compounds for evidence
of anti-HIV activity. Available are screening results and chemical structural data on compounds
that are not covered by a confidentiality agreement.

A1.8.2.2. DONOR OF DATABASE

This version of the database was prepared for the WCCI 2006 performance prediction challenge
and the IJCNN 2007 agnostic learning vs. prior knowledge challenge by Isabelle Guyon, 955
Creston Road, Berkeley, CA 94708, USA (isabelle@clopinet.com).

A1.8.2.3. DATE PREPARED FOR THE CHALLENGES

June 2005–September 2006.

A1.8.3. Past usage

An earlier release of the database was uses in an Equbits case study: http://www.limsfinder.
com/community/articles_comments.php?id=1553_0_2_0_C75. The feature set
was obtained by a different method.

A1.8.4. Experimental design

The screening results of the May 2004 release containing the screening results for 43,850 com-
pounds were used. The results of the screening tests are evaluated and placed in one of three
categories:

• CA - Confirmed active

• CM - Confirmed moderately active

• CI - Confirmed inactive

We converted this into a two-class classification problem: Inactive (CI) vs. Active (CA or CM.)
Chemical structural data for 42,390 compounds was obtained from the web page. It was

converted to structural features by the program ChemTK version 4.1.1, Sage Informatics LLC.
Four compounds failed parsing. The 1617 features selected include:

• unbranched_fragments: 750 features

• pharmacophores: 495 features

• branched_fragments: 219 features

• internal_fingerprints: 132 features

• ring_systems: 21 features

388

http://dtp.nci.nih.gov/docs/aids/aids_data.html
mailto:isabelle@clopinet.com
http://www.limsfinder.com/community/articles_comments.php?id=1553_0_2_0_C75
http://www.limsfinder.com/community/articles_comments.php?id=1553_0_2_0_C75

A1. DATASETS FOR THE AGNOSTIC LEARNING VS. PRIOR KNOWLEDGE COMPETITION

Only binary features having a total number of ones larger than 100 (> 400 for unbranched
fragments) and at least 2% of ones in the positive class were retained. In all cases, the default
program settings were used to generate keys (except for the pharmacophores for which “max
number of pharmacophore points” was set to 4 instead of 3; the pharmacophore keys for Hacc,
Hdon, ExtRing, ExtArom, ExtAliph were generated, as well as those for Hacc, Hdon, Neg,
Pos.) The keys were then converted to attributes.

We briefly describe the attributes/features:

Branched fragments: each fragment is constructed through an “assembly” of shortest-path
unbranched fragments, where each of the latter is required to be bounded by two atoms
belonging to one or more pre-defined “terminal-atom”.

Unbranched fragments: unique non-branching fragments contained in the set of input molecules.

Ring systems: A ring system is defined as any number of single or fused rings connected by
an unbroken chain of atoms. The simplest example would be either a single ring (e.g.,
benzene) or a single fused system (e.g., naphthalene).

Pharmacophores: ChemTK uses a type of pharmacophore that measures distance via bond
connectivity rather than a typical three-dimensional distance. For instance, to describe a
hydrogen-bond acceptor and hydrogen-bond donor separated by five connecting bonds,
the corresponding key string would be “HAcc.HDon.5”. The pharmacophores were gen-
erated from the following features:

Neg. Explicit negative charge.

Pos. Explicit positive charge.

HAcc. Hydrogen-bond acceptor.

HDon. Hydrogen-bond donor.

ExtRing. Ring atom having a neighbor atom external to the ring.

ExtArom. Aromatic ring atom having a neighbor atom external to the ring.

ExtAliph. Aliphatic ring atom having a neighbor atom external to the ring.

Internal fingerprints: small, fixed catalog of pre-defined queries roughly similar to the MACCS
key set developed by MDL.

We matched the compounds in the structural description files and those in the compound activity
file, using the NSC id number. We ended up with 42678 examples.

A1.8.5. Data format, number of examples and class distribution

Table A1.16: Prior knowledge data

Positive ex. Negative ex. Total
Training set 135 3710 3845
Validation set 14 370 384
Test set 1354 37095 38449
All 1503 41175 42678

389

GUYON

The raw data is formatted in the MDL-SD format (hiva_train.sd, hiva_valid.sd, hiva_test.sd).
It represents the 3-dimensional structure of the molecule. It was produced from the chemical
formulas by the program Corina (http://www.molecular-networks.de/software/
corina/index.html). Each record is separated by $$$$. One record contains:

Header block — line 1: molecule name; line 2: molecule header; line 3: comment line.

Connection Table — count line in Fortran format 2I3; atom block: One line per atom, includ-
ing the atomic co-ordinates (X, Y, Z), symbol (SYM), mass difference for the isotope
(MASS), formal charge (CHARGE), and stereo parity indicator (STEREO); bond block:
One line per bond specifying the two atoms connected by the bond (ATOM1, ATOM2),
the bond type (TYPE), stereochemistry (BONDST), and topology (TOPOL).

Data Block — data header: Indicated by the greater than symbol >; data: may extend over
multiple lines, up to a maximum of 200 characters in total (up to 80 characters per line);
black line.

Table A1.17: Agnostic data

Positive ex. Negative ex. Total Check sum
Training set 135 3710 3845 564954
Validation set 14 370 384 56056
Test set 1354 37095 38449 5674217
All 1503 41175 42678 6295227

A1.8.6. Type of input variables and variable statistics (agnostic data only)

Real variables Random probes Total
1617 0 1617

All variables are binary. The data was saved as a non-spase matrix, even though it is 91%
sparse because dense matrices load faster in Matlab and the ASCII format compresses well.

A1.8.7. Baseline results

The best entry of the “Performance Prediction Challenge” had a test_ber=27.56%.

A1.9. Dataset E: ADA
A1.9.1. Topic

The task of ADA is to discover high revenue people from census data. This is a two-class
classification problem. The raw data from the census bureau is known as the Adult database in
the UCI machine-learning repository. It contains continuous, binary and categorical variables.
The “prior knowledge track” has access to the original features and their identity. The agnostic
track has access to a preprocessed numeric representation eliminating categorical variables.

390

http://www.molecular-networks.de/software/corina/index.html
http://www.molecular-networks.de/software/corina/index.html

A1. DATASETS FOR THE AGNOSTIC LEARNING VS. PRIOR KNOWLEDGE COMPETITION

A1.9.2. Sources

A1.9.2.1. ORIGINAL OWNERS

This data was extracted from the census bureau database found at http://www.census.
gov/ftp/pub/DES/www/welcome.html

Donor: Ronny Kohavi and Barry Becker,
Data Mining and Visualization
Silicon Graphics.
e-mail: ronnyk@sgi.com for questions.

The information below is exerpted from the UCI machine learning repository:

Extraction was done by Barry Becker from the 1994 Census database. The pre-
diction task is to determine whether a person makes over 50K a year. The attributes
are:

age: continuous.
workclass: Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, Local-gov, State-

gov, Without-pay, Never-worked. fnlwgt: continuous.
education: Bachelors, Some-college, 11th, HS-grad, Prof-school, Assoc-acdm,

Assoc-voc, 9th, 7th-8th, 12th, Masters, 1st-4th, 10th, Doctorate, 5th-6th,
Preschool.

education-num: continuous.
marital-status: Married-civ-spouse, Divorced, Never-married, Separated, Wid-

owed, Married-spouse-absent, Married-AF-spouse.
occupation: Tech-support, Craft-repair, Other-service, Sales, Exec-managerial, Prof-

specialty, Handlers-cleaners, Machine-op-inspct, Adm-clerical, Farming-fishing,
Transport-moving, Priv-house-serv, Protective-serv, Armed-Forces.

relationship Wife, Own-child, Husband, Not-in-family, Other-relative, Unmar-
ried.

race: White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black.
sex: Female, Male.
capital-gain: continuous.
capital-loss: continuous.
hours-per-week: continuous.
native-country: United-States, Cambodia, England, Puerto-Rico, Canada, Ger-

many, Outlying-US(Guam-USVI-etc), India, Japan, Greece, South, China,
Cuba, Iran, Honduras, Philippines, Italy, Poland, Jamaica, Vietnam, Mex-
ico, Portugal, Ireland, France, Dominican-Republic, Laos, Ecuador, Taiwan,
Haiti, Columbia, Hungary, Guatemala, Nicaragua, Scotland, Thailand, Yu-
goslavia, El-Salvador, Trinadad&Tobago, Peru, Hong, Holand-Netherlands.

income: > 50K, ≤ 50K.

Split into train-test using MLC++ GenCVFiles (2/3, 1/3 random).
48842 instances, mix of continuous and discrete (train=32561, test=16281)
45222 if instances with unknown values are removed (train=30162, test=15060)

391

http://www.census.gov/ftp/pub/DES/www/welcome.html
http://www.census.gov/ftp/pub/DES/www/welcome.html
mailto:ronnyk@sgi.com

GUYON

Duplicate or conflicting instances : 6
Class probabilities for adult.all file
Probability for the label “> 50K” : 23.93% / 24.78% (without unknowns)
Probability for the label “≤ 50K” : 76.07% / 75.22% (without unknowns)

Description of fnlwgt (final weight)
The weights on the CPS files are controlled to independent estimates of the civilian
noninstitutional population of the US. These are prepared monthly for us by Popu-
lation Division here at the Census Bureau. We use 3 sets of controls. People with
similar demographic characteristics should have similar weights.

A1.9.2.2. DONOR OF DATABASE

This version of the database was prepared for the WCCI 2006 performance prediction challenge
and the IJCNN 2007 agnostic learning vs. prior knowledge challenge by Isabelle Guyon, 955
Creston Road, Berkeley, CA 94708, USA (isabelle@clopinet.com).

A1.9.2.3. DATE PREPARED FOR THE CHALLENGES

June 2005–September 2006.

A1.9.3. Past usage

First cited in:

Ron Kohavi. Scaling Up the Accuracy of Naive-Bayes Classifiers: a Decision-Tree Hy-
brid. In Proceedings of the Second International Conference on Knowledge Discovery
and Data Mining, 1996.

Error Accuracy reported as follows, (after removal of unknowns from train/test sets):

C4.5 : 84.46±0.30
Naive-Bayes : 83.88±0.30
NBTree : 85.90±0.28

The following algorithms were later run with the following error rates, all after removal of
unknowns and using the original train/test split. All these numbers are straight runs using
MLC++ with default values.

392

mailto:isabelle@clopinet.com

A1. DATASETS FOR THE AGNOSTIC LEARNING VS. PRIOR KNOWLEDGE COMPETITION

Algorithm Error
1 C4.5 15.54
2 C4.5-auto 14.46
3 C4.5 rules 14.94
4 Voted ID3 (0.6) 15.64
5 Voted ID3 (0.8) 16.47
6 T2 16.84
7 1R 19.54
8 NBTree 14.10
9 CN2 16.00
10 HOODG 14.82
11 FSS Naive Bayes 14.05
12 IDTM (Decision table) 14.46
13 Naive-Bayes 16.12
14 Nearest-neighbor (1) 21.42
15 Nearest-neighbor (3) 20.35
16 OC1 15.04
17 Pebls Crashed. Unknown why (bounds WERE increased)

Note: The performances reported are error rates, not BER. We tried to reproduce these per-
formances and obtained 15.62% error with a linear ridge regression classifier. The performances
slightly degraded when we tried to group features (15.67% when we replace the country code
by a binary US/nonUS value and 16.40% with further reduction to 33 features.)

A1.9.4. Experimental design

To generate the “agnostic track” data, we performed the following steps:

• Convert the features to 14 numeric values a 1 . . .n.

• Convert the numeric values to binary codes (a vector of n zeros with value one at the ath

position. This results in 88 features. The missing values get an all zero vector.

• Downsize the number of features to 48 by replacing the country code by a binary US/nonUS
feature.

• Randomize the feature and pattern order.

• Remove the entries with missing values for workclass.

Table A1.18: Features of the ADA datasets.

Feature name min max numval comments
age 0.19 1 continuous No missing value.
workclass_Private 0 1 2 2799 missing values

(corresponding entries
removed.)

workclass_Self_emp_not_inc 0 1 2
workclass_Self_emp_inc 0 1 2
workclass_Federal_gov 0 1 2
workclass_Local_gov 0 1 2
workclass_State_gov 0 1 2
workclass_Without_pay 0 1 2
workclass_Never_worked 0 1 2

393

GUYON

Table A1.18: Features of the ADA datasets (continued).

Feature name min max numval comments
fnlwgt 0.008 1 continuous No missing value.
educationNum 0.06 1 16 Number

corresponding to 16
discrete levels of
education

maritalStatus_Married_civ_spouse 0 1 2 No missing value.maritalStatus_Divorced 0 1 2
maritalStatus_Never_married 0 1 2
maritalStatus_Separated 0 1 2
maritalStatus_Widowed 0 1 2
maritalStatus_Married_spouse_absent 0 1 2
maritalStatus_Married_AF_spouse 0 1 2
occupation_Tech_support 0 1 2

2809 missing values
(corresponding entries
removed.)

occupation_Craft_repair 0 1 2
occupation_Other_service 0 1 2
occupation_Sales 0 1 2
occupation_Exec_managerial 0 1 2
occupation_Prof_specialty 0 1 2
occupation_Handlers_cleaners 0 1 2
occupation_Machine_op_inspct 0 1 2
occupation_Adm_clerical 0 1 2
occupation_Farming_fishing 0 1 2
occupation_Transport_moving 0 1 2
occupation_Priv_house_serv 0 1 2
occupation_Protective_serv 0 1 2
occupation_Armed_Forces 0 1 2
relationship_Wife 0 1 2 No missing value.relationship_Own_child 0 1 2
relationship_Husband 0 1 2
relationship_Not_in_family 0 1 2
relationship_Other_relative 0 1 2
relationship_Unmarried 0 1 2
race_White 0 1 2 No missing value.race_Asian_Pac_Islander 0 1 2
race_Amer_Indian_Eskimo 0 1 2
race_Other 0 1 2
race_Black 0 1 2
sex 0 1 2 0=female, 1=male.

No missing value.
capitalGain 0 1 continuous No missing value.
capitalLoss 0 1 continuous No missing value.
hoursPerWeek 0.01 1 continuous No missing value.
nativeCountry 0 1 2 0=US, 1=non-US.

857 missing values
replaced by 1.

394

A1. DATASETS FOR THE AGNOSTIC LEARNING VS. PRIOR KNOWLEDGE COMPETITION

A1.9.5. Data format, number of examples and class distribution

Table A1.19: Prior knowledge dataset

Positive ex. Negative ex. Total
Training set 1029 3118 4147
Validation set 103 312 415
Test set 10290 31181 41471
All 11422 34611 46033

The data are stored in coma-separated files (ada_train.csv, ada_valid.csv, and ada_est.csv).

Table A1.20: Agnostic dataset

Positive ex. Negative ex. Total Check sum
Training set 1029 3118 4147 6798109
Validation set 103 312 415 681151
Test set 10290 31181 41471 67937286
All 11422 34611 46033 75416546

A1.9.6. Type of input variables and variable statistics

Table A1.21: Prior knowledge dataset

Real variables Random probes Total
14 0 14

Six variables are continuous, two are binary, the others are categorical. The missing values
were eliminated.

395

GUYON

Table A1.22: Agnostic dataset

Real variables Random probes Total
48 0 48

Six variables are continuous, the others are binary. There are no missing values. The data
is 80% sparse. The data was saved as a dense matrix because once compressed it makes almost
no difference and it loads much faster.

A1.9.7. Baseline results

The best entry in the Performance Prediction Challenge had a test_ber=16.96%.

396

Appendix B

Fact Sheets

Appendix B1

Performance Prediction Challenge

B1.1. LogitBoost with trees
Contact

Roman Werner Lutz, Seminar for Statistics, ETH Zurich, CH-8092 Zurich, Switzerland,
lutz@stat.math.ethz.ch

Acronym of your best entry

LB tree mix cut adapted

Reference

LogitBoost with Trees Applied to the WCCI 2006 Performance Prediction Challenge, Roman
Werner Lutz, In Proceedings IJCNN06, to appear.

Method

As preprocessing we used PCA for Nova with centered and scaled variables and took the first
400 principal components. No preprocessing was used for the other datasets. Then we applied
LogitBoost with trees of prefixed depth. The number of iterations, the tree depth (in each
iteration a tree of the same depth is fitted) and the BER guess were chosen/computed by 10-
fold cross-validation. Shrinkage was added to make LogitBoost more stable: in each iteration
only a fraction ν (0.3, 0.1 or 0.03) of the fitted learner was added. ν was chosen by visual
inspection of the cross-validated BER curve (as a function of the boosting iteration). As a
result, LogitBoost yielded probabilities of class membership for each sample. The cut point for
the final classification was the proportion of class +1 in the data.

For the second entry we used the Wilcoxon test (for continuous variables) and the Fisher
exact test (for binary variables) for variable pre-selection (variables with a p-value above 0.1
were dropped). For the third entry we averaged the predicted probabilities of LogitBoot with
and without variable pre-selection. For the fourth entry we made an intercept adaption (on the
logit scale) so that the average of the predicted probabilities on the test set equals the proportion
of class +1 in the data.

Results

In the challenge, we rank 1st as a group and our best entry (our fourth) is the 1st, according to
the average rank computed by the organizers. Our method is quite simple: no preprocessing is
needed (except for Nova) and the tuning parameters are chosen by cross-validation. Addition-
ally, LogitBoost with trees does variable selection, because in each iteration only a few variables
are chosen.

399

mailto:lutz@stat.math.ethz.ch

Dataset Our best entry The challenge best entry
Test
AUC

Test
BER

BER
guess

Guess
error

Test score
(rank)

Test
AUC

Test
BER

BER
guess

Guess
error

Test score
(rank)

ADA 0.8304 0.1696 0.1550 0.0146 0.1843 (3) 0.9149 0.1723 0.1650 0.0073 0.1793 (1)

GINA 0.9639 0.0361 0.0388 0.0027 0.0386 (5) 0.9712 0.0288 0.0305 0.0017 0.0302 (1)

HIVA 0.7129 0.2871 0.2700 0.0171 0.3029 (8) 0.7671 0.2757 0.2692 0.0065 0.2797 (1)

NOVA 0.9542 0.0458 0.0503 0.0045 0.0499 (8) 0.9914 0.0445 0.0436 0.0009 0.0448 (1)

SYLVA 0.9937 0.0063 0.0058 0.0005 0.0067 (7) 0.9991 0.0061 0.0060 0.0001 0.0062 (1)

Overall 0.8910 0.1090 0.1040 0.0079 0.1165(6.2) 0.8910 0.1090 0.1040 0.0079 0.1165(6.2)

Code

Our implementation was done in R.

Keywords

PCA, Wilcoxon test, Fisher exact test, LogitBoost, trees of fixed depth, 10-fold cross-validation,
shrinkage.

B1.2. Weighted LS-SVM + Leave-One-Out Cross-Validation + Repeated
Hold-Out

Contact

Gavin Cawley, University of East Anglia, Norwich, United Kingdom, gcc@cmp.uea.ac.uk

Acronym of your best entry

Final #2

Reference

G. C. Cawley, “Leave-one-out cross-validation based model selection criteria for weighted LS-
SVMs”, Proceedings of the International Joint Conference on Neural Networks (IJCNN-2006),
to appear.
http://theoval.cmp.uea.ac.uk/~gcc/publications/pdf/ijcnn2006a.pdf

Method

Preprocessing: All continuous features are standardised, also for ADA a log transform used on
features 1 and 3 and thresholding of features 4 and 5. For the SYLVA dataset, features 11
and 12 are never positive for positive examples; this observation was used to reduce the
number of training patterns so that the LS-SVM could be applied directly.

Feature selection: No feature selection was used, other than deleting constant features in the
NOVA benchmark. Regularisation was the only mechanism used to avoid over-fitting.

mailto:gcc@cmp.uea.ac.uk
http://theoval.cmp.uea.ac.uk/~gcc/publications/pdf/ijcnn2006a.pdf

B1. Performance Prediction Challenge 401

Classification: Least-squares support vector machines (LS-SVMs), with linear, quadratic, cu-
bic, Boolean and radial basis function (RBF) kernel functions. LS-SVMs with and with-
out a bias term were evaluated. The LS-SVMs could optionally be weighted to equalise
the importance of positive and negative patterns (as the balanced error rate is used as the
primary performance indicator). Validation set targets were used in training and model
selection.

Model selection: The optimisation of regularisation and kernel parameters was achieved by
minimising leave-one-out cross-validation based estimates of generalisation performance
via the Nelder-Mead simplex method. A variety of model selection criterion were inves-
tigated including sum-of-squares error (i.e. Allen’s PRESS statistic), hinge loss, squared
hinge loss, a smoothed approximation of the error rate and the smoothed Wilcoxon-Mann-
Whitney statistic (i.e. the area under the ROC curve). The selection criterion could op-
tionally be weighted to compensate for the disparity in class frequencies. The final choice
of model, including the choice of kernel, use of a bias term, use of weighting in training
and/or model selection and the choice of model selection criterion were all made by min-
imising the leave-one-out BER. A total of 180 experiments were conducted; this was
somewhat computationally expensive!

Performance prediction: The test BER was estimated via 100 random 90%/10% training/test
partitions of the available data, with model selection performed independently in each
trial in order to avoid selection bias.

Results

This entry is a joint winner of the competition, having the lowest average test score and finish-
ing second in terms of average rank. This entry also has the lowest overall guess error of any
submission and the second highest overall test AUC. It is interesting that the models performed
so well on the HIVA and NOVA benchmarks, given that no feature selection was used. It is
reassuring that regularisation is effective in avoiding over-fitting, given a good value for the
regularisation parameter. Also, the leave-one-out procedure is often (rightly) criticised as hav-
ing a high variance, so it is interesting that it performed so well. This is probably because there
were relatively few degrees of freedom to be optimised in model selection. If leave-one-out
cross-validation were used in feature selection, there would probably be a much higher degree
of over-fitting. Model details are as follows:

• ADA: Unweighted LS-SVM with bias, Radial Basis Function kernel, Wilcoxon-Mann-
Whitney model selection criterion.

• GINA: Unweighted LS-SVM without bias, inhomogeneous cubic kernel, unweighted
smoothed error rate model selection criterion.

• HIVA: Unweighted LS-SVM with bias, inhomogeneous quadratic kernel, Wilcoxon-
Mann-Whitney model selection criterion.

• NOVA: Weighted LS-SVM with bias, linear kernel, weighted mean-squared error model
selection.

• SYLVA: Weighted LS-SVM with bias, inhomogeneous cubic kernel, Wilcoxon-Mann-
Whitney model selection.

Dataset Our best entry The challenge best entry
Test
AUC

Test
BER

BER
guess

Guess
error

Test score
(rank)

Test
AUC

Test
BER

BER
guess

Guess
error

Test score
(rank)

ADA 0.8965 0.1845 0.1742 0.0103 0.1947 (13) 0.9149 0.1723 0.1650 0.0073 0.1793 (1)

GINA 0.9900 0.0461 0.0470 0.0009 0.0466 (13) 0.9712 0.0288 0.0305 0.0017 0.0302 (1)

HIVA 0.7464 0.2804 0.2776 0.0028 0.2814 (2) 0.7671 0.2757 0.2692 0.0065 0.2797 (1)

NOVA 0.9914 0.0445 0.0470 0.0025 0.0464 (3) 0.9914 0.0445 0.0436 0.0009 0.0448 (1)

SYLVA 0.9990 0.0067 0.0065 0.0002 0.0067 (8) 0.9991 0.0061 0.0060 0.0001 0.0062 (1)

overall 0.9246 0.1124 0.1105 0.0034 0.1152 (7.8) 0.8910 0.1090 0.1040 0.0079 0.1165 (6.2)

Code

The LS-SVM, leave-one-out model selection, Nelder-Mead simplex optimisation methods were
all implemented by the author in MATLAB. Extensive use was made of automatically generated
scripts to run the individual experiments. A demonstration of the approach used will shortly be
made available from http://theoval.cmp.uea.ac.uk/~gcc/matlab/default.
html#loo .

Keywords

standardisation, no feature selection, kernel method, least-squares support vector machine, L2
norm regularisation, leave-one-out model selection, pattern weighting, Nelder-Mead simplex,
repeated hold-out validation.

B1.3. Bayesian Neural Networks for the Performance Prediction
Challenge

Contact

Radford M. Neal, University of Toronto, radford@stat.utoronto.ca

Acronym of your best entry

Bayesian Neural Networks

References

The general methods I used are described in my book:

Neal, R. M. (1996) Bayesian Learning for Neural Networks, Lecture Notes in Statistics
No. 118, New York: Springer-Verlag.

The detailed models used are similar to those I used for two other prediction competitions,
described in :

Neal, R. M. and Zhang, J. (2006) “High Dimensional Classification with Bayesian Neu-
ral Networks and Dirichlet Diffusion Trees”, in I. Guyon, S. Gunn, M. Nikravesh, and
L. Zadeh (editors) Feature Extraction, Foundations and Applications, Physica-Verlag,
Springer

http://theoval.cmp.uea.ac.uk/~gcc/matlab/default.html#loo
http://theoval.cmp.uea.ac.uk/~gcc/matlab/default.html#loo
mailto:radford@stat.utoronto.ca

B1. Performance Prediction Challenge 403

Neal, R. M. (2006) “Classification with Bayesian Neural Networks”, in J. Quinonero-
Candela, I. Dagan, B. Magnini, and F. D’Alche-Buc (editors) Evaluating Predictive Un-
certainty, Visual Object Classification and Textual Entailment, Springer.

Method

I used Bayesian neural network models, implemented using Markov chain Monte Carlo.

Preprocessing: I transformed some features to improve correlation with the response. Specifi-
cally, for ADA, I squared feature 15 and took the square roots of features 25 and 32, and
for GINA, I took the cube roots of all features. Non-binary features were rescaled to have
standard deviation of approximately one.

Feature selection or dimensionality reduction: For all datasets except NOVA, I considered look-
ing at the first 10 or 20 principal components instead of or in addition to the original
features. I ended up using the first 20 principal components plus the original features for
GINA and HIVA. For NOVA, I did not directly use features that were non-zero in less than
four training or validation cases, though these features were incorporated into some con-
structed features, as described below. No other feature selection was done. However, in
all models, hyperparameters were present that could adjust as the model discovered how
relevant each of the features was to predicting the class (a method known as Automatic
Relevance Determination (ARD)).

Classification: I used multilayer perceptron neural networks with at least two hidden layers
of non-linear units (tanh activation function). Sometimes an additional hidden layer of
units with identity activation function was added before these two, in order to effectively
reduce dimensionality.

Model exploration and selection: Some exploration of various models was done by looking at
properties of the data by hand, by seeing how different models trained on the training set
performed on the validation set, and by looking at the models’ own assessments of their
expected performance on the test set. I also checked whether models trained only on the
training set appeared to be well calibrated in their predictions for the validation set (eg,
whether among cases that were predicted to be in class +1 with probability approximately
0.7, the fraction that were actually in class +1 was about 0.7). No calibration problems
were found with any of the models tried.

Note that hyperparameters within each model can have the effect of smoothly adjusting
various aspects of the model, such as the degree of non-linearity in the predictions. These
hyperparameters were automatically updated as part of the Markov chain Monte Carlo
procedure.

Since the focus of this competition was model selection, I submitted only one final en-
try (though the rules allowed up to five). The models for each dataset were chosen by
hand, largely on the basis of the models’ own assessments of performance. For HIVA, I
averaged the predictions of three models. This process of manual model selection might
work much better in real problems, when one would not have to guess at the meaning of
peculiar aspects of the data such as described below for HIVA and NOVA.

Models for individual datasets: The results of choosing amongst various models were as fol-
lows:

ADA: I used a network with two hidden layers, containing 25 units and 10 tanh units.

GINA: I used a network containing a layer of 20 hidden units with identity activation
function that looked at the original features. The outputs of these 20 hidden units
along with the first 20 principal component values were fed into two subsequent
hidden layers of 20 and 10 tanh units.

HIVA: I averaged the predictive probabilities produced by three models. One model
used a layer of 10 hidden units with identity activation function to reduce dimen-
sionality, with the values of these units being fed into two subsequent hidden layers
with 20 and 10 tanh units. The other two models looked at the first 20 principal
components plus a special composite input (but not the features themselves). They
both used two hidden layers of tanh units (one had 10 and 5 units, the other 20 and
10). The special composite input was obtained by first selecting only those features
that did not have a statistically significant negative correlation with the class (most
have a positive correlation). For each case, the weighted average of these features
was computed, with the weights being inversely proportional to the fraction of all
cases in which the feature was 1, raised to the power 1.75. This was done because
exploratory analysis of the data indicated that most features were positively corre-
lated with the class, more so for those that were mostly 0.

NOVA: This dataset has a large number of features that are almost always zero. I elimi-
nated those that were non-zero in less than four cases (training, validation, or test),
but also used three derived features that were intended to capture any useful infor-
mation contained in the omitted features (eg, perhaps cases with many such rare
features are more likely to be in class +1). The network had a layer of 10 hidden
units with identity activation function that looked at the common features. The out-
puts of these 10 hidden units along with the three derived features were fed into two
subsequent hidden layers of 20 and 10 tanh units.

SYLVA: I used a network with two hidden layers, containing 25 units and 10 tanh units.

Performance prediction guess: My prediction for the class of a test case was obtained by thresh-
olding the predictive probability of class +1 as produced by the model (averaging over
many networks from the posterior distribution). The threshold was set to the fraction of
cases that were in class +1. From the probabilities of class +1 for each test case, along
with the predictions made, I also computed the expected number of errors in each class,
and from this obtained an expected balanced error rate.

Results

I submitted only one entry (not counting entries before validation labels were released). This
entry was ninth overall. Only two other entrants submitted better entries, so I ranked third in
terms of entrants. My entry was the best in terms of average AUC on the test set, indicating that
the predictive probabilities produced by my Bayesian methods are a good guide to the accuracy
of predictions on individual test cases.

B1. Performance Prediction Challenge 405

Dataset My entry The challenge best entry
Test
AUC

Test
BER

BER
guess

Guess
error

Test score
(rank)

Test
AUC

Test
BER

BER
guess

Guess
error

Test score
(rank)

ADA 0.9107 0.1753 0.1656 0.0097 0.1850 (4) 0.9149 0.1723 0.1650 0.0073 0.1793 (1)

GINA 0.9915 0.0418 0.0635 0.0216 0.0635 (31) 0.9712 0.0288 0.0305 0.0017 0.0302(1)

HIVA 0.7627 0.2824 0.2937 0.0113 0.2916 (4) 0.7671 0.2757 0.2692 0.0065 0.2797 (1)

NOVA 0.9878 0.0528 0.0706 0.0178 0.0706 (29) 0.9914 0.0445 0.0436 0.0009 0.0448 (1)

SYLVA 0.9991 0.0066 0.0070 0.0005 0.0069 (11) 0.9991 0.0061 0.0060 0.0001 0.0062 (1)

Overall 0.9304 0.1118 0.1201 0.0122 0.1235 (15.8) 0.8910 0.1090 0.1040 0.0079 0.1165 (6.2)

Code

I used my Software for Flexible Bayesian Modeling, which is available from my web page, at
http://www.cs.utoronto.ca/~radford/. However, the scripts for this competition
are not available, as they use features of my current development version, which has not yet
been released. Scripts for the two other competitions referenced above are available from my
web page.

Keywords

Bayesian learning, neural networks, PCA, Automatic Relevance Determination.

B1.4. Random Forests
Contact

Corinne Dahinden, Seminar for Statistics, ETH Zurich, CH-8092 Zurich, Switzerland,
dahinden@stat.math.ethz.ch

Acronym of your best entry

RF

Reference

Classification with Tree-Based Ensembles Applied to the WCCI 2006 Performance Challenge
Datasets, Corinne Dahinden, In Proceedings IJCNN06, to appear.

Method

For the NOVA dataset, PCA with centered and scaled variables were computed and the first 400
principal components were taken. For the other datasets, no preprocessing was applied. No
variable-selection was performed for any dataset. Then Random Forests was used with 4000
trees fitted with CART. Instead of the theoretical cutoff, which is the proportion of labels with
+1 in the dataset, this cutoff is estimated by Cross-Validation, which considerably improves the
performance of Random Forests for unbalanced datasets.

The performance prediction was guessed by 10-fold Cross-Validation.

http://www.cs.utoronto.ca/~radford/
mailto:dahinden@stat.math.ethz.ch

Results

In the challenge, we rank 4th as a group and our best entry is the 11th, according to the average
rank computed by the organizers. The Random Forests algorithm can be applied to a wide
range of datasets and is not subject to the “small n — large p” problem. Plain standard Random
Forests is very simple, yet highly efficient. The cutoff-adaptation has even shown to improve
this performance, still the computational cost is kept low. The procedure requires minimal
human interaction, can be used for variable selection and internally computes unbiased estimate
of the generalization error. Random Forests achieves results which can keep up with the most
sophisticated algorithms.

Dataset Our best entry The challenge best entry
Test
AUC

Test
BER

BER
guess

Guess
error

Test score
(rank)

Test
AUC

Test
BER

BER
guess

Guess
error

Test score
(rank)

ADA 0.8200 0.1800 0.1650 0.0150 0.1950 (16) 0.9149 0.1723 0.1650 0.0073 0.1793 (1)

GINA 0.9587 0.0413 0.0490 0.0077 0.0490 (17) 0.9712 0.0288 0.0305 0.0017 0.0302(1)

HIVA 0.7009 0.2994 0.2700 0.0294 0.3284 (32) 0.7671 0.2757 0.2692 0.0065 0.2797 (1)

NOVA 0.9470 0.0530 0.0530 0.0000 0.0530 (15) 0.9914 0.0445 0.0436 0.0009 0.0448 (1)

SYLVA 0.9946 0.0054 0.0065 0.0011 0.0065 (3) 0.9991 0.0061 0.0060 0.0001 0.0062 (1)

Overall 0.8842 0.1158 0.1087 0.0106 16.6 0.8910 0.1090 0.1040 0.0079 0.1165 (6.2)

Code

The computations were done in R. Random Forests is implemented in the randomForest pack-
age available from CRAN (http://cran.r-project.org). In addition, we have also
implemented the cutoff-adaptation in R.

Keywords

PCA, embedded feature selection, RF, 10-fold cross-validation, ensemble method, CART

B1.5. Kernel Classifier
Contact

Wei Chu, Center of Computational Learning Systems, Columbia University,
chuwei@cs.columbia.edu

Acronym of your best entry

SVM/GPC

Reference

I have not written up a document on the procedure I applied. For reference or code, see http:
//www.gatsby.ucl.ac.uk/~chuwei/.

http://cran.r-project.org
mailto:chuwei@cs.columbia.edu
http://www.gatsby.ucl.ac.uk/~chuwei/
http://www.gatsby.ucl.ac.uk/~chuwei/

B1. Performance Prediction Challenge 407

Method

Classifiers with different kernels were trained on the five datasets respectively. More specif-
ically, I tried two kernel classifiers, support vector classifier and Gaussian process classifier.
Profile of my methods as follows:

Preprocessing: Training and test data, except NOVA, were jointly normalized to zero-mean
and unit variance.

Feature selection: On Gina, ranksum test was applied that reduced 970 features to 453 features;
On Hiva, hypergeometry test was applied that reduced 1617 features to 425. On other
datasets, we used all normalized features.

Classification

• A linear support vector classifier was used on Nova; Gaussian process classifier with
a Gaussian kernel was used on Sylva; while non-linear support vector classifiers
with Gaussian kernels were used on other datasets.

• Did you use ensemble methods? No.

• Did you use “transduction” or learning from the unlabeled test set? No.

Model selection/hyperparameter selection: Model evidence was used to decide optimal values
of hyperparameters, whereas 10-fold cross validation was applied for model selection in
support vector classifiers.

Performance prediction guess. (How did you compute the value in the .guess file). Validation
outputs were used for support vector classifiers to estimate predictive performance, while
leave-one-out validation outputs were used in Gaussian process classifiers.

Results

Dataset Our best entry The challenge best entry
Test
AUC

Test
BER

BER
guess

Guess
error

Test score
(rank)

Test
AUC

Test
BER

BER
guess

Guess
error

Test score
(rank)

ADA 0.8101 0.1899 0.174 0.016 0.2059

GINA 0.9619 0.0381 0.0379 0.0002 0.0381

HIVA 0.7095 0.2905 0.27 0.0205 0.31

NOVA 0.952 0.048 0.045 0.003 0.0503

SYLVA 0.99 0.01 0.0076 0.0024 0.0124

Overall 0.8847 0.1153 0.1069 0.0084 0.1233

challenge performances (group rank is fifth). qualitative advantages (Gaussian process clas-
sifiers provide predictive probability).

Code

An implementation of Gaussian process classifiers can be found http://www.gatsby.
ucl.ac.uk/~chuwei/, which is designed for more general cases of ordinal regression.
Binary classification is treated as a special case of ordinal regression.

http://www.gatsby.ucl.ac.uk/~chuwei/
http://www.gatsby.ucl.ac.uk/~chuwei/

Keywords

• Preprocessing or feature construction: standardization.

• Feature selection approach: filter.

• Feature selection engine: miscellaneous classifiers.

• Feature selection search: feature ranking.

• Feature selection criterion: K-fold cross-validation.

• Classifier: SVM, kernel-method, Gaussian processes.

• Hyper-parameter selection: grid-search, evidence, K-fold cross-validation.

• Other: No.

B1.6. Random Linear Matching Pursuit
Contact

Nicolai Meinshausen, nicolai@stat.math.ethz.ch

Acronym of your best entry

ROMA

Reference

none yet, unfortunately

Method

• Preprocessing: none, except for NOVA (PCA)

• Feature selection feature selection is achieved automatically; no preprocessing with fea-
ture selection

• Classification

– Generalized linear model (Binomial family); linear in the variables and all interac-
tion terms between variables; forward selection of variables and interactions (some-
what similar to MARS), yet not the best candidate is chosen from all variables
but the best in a randomly selected subset (in this regard being similar to Random
Forests). An ensemble of these predictors was formed; The goals was to have a
good classifier which is linear in the variables and interactions

• Model selection/hyperparameter selection

Hyperparameter selection is not very important for this method; some tuning was done
on on out-of-bag samples

• Performance prediction guess. (How did you compute the value in the guess file). Cross-
validation

mailto:nicolai@stat.math.ethz.ch

B1. Performance Prediction Challenge 409

Results

Dataset Our best entry The challenge best entry
Test
AUC

Test
BER

BER
guess

Guess
error

Test score
(rank)

Test
AUC

Test
BER

BER
guess

Guess
error

Test score
(rank)

ADA 0.8190 0.1810 0.1590 0.0220 0.2029 (15) 0.9149 0.1723 0.1650 0.0073 0.0000

GINA 0.9442 0.0558 0.0534 0.0024 0.0578 (24) 0.9712 0.0288 0.0305 0.0017 0.0000

HIVA 0.7057 0.2943 0.2698 0.0245 0.3182 (18) 0.7671 0.2757 0.2692 0.0065 0.0000

NOVA 0.9542 0.0458 0.0506 0.0048 0.0502 (9) 0.9914 0.0445 0.0436 0.0009 0.0000

SYLVA 0.9935 0.0065 0.0053 0.0012 0.0076 (19) 0.9991 0.0061 0.0060 0.0001 0.0000

Overall 0.8833 0.1167 0.1076 0.0110 0.1274 (21) 0.8910 0.1090 0.1040 0.0079 0.0000

easy interpretation of results as result is linear in variables and interactions; computationally
attractive

Code

Implementation in R; code is to be made available later

B1.7. Regularized and Averaged Selective Naïve Bayes Classifier
Contact

Marc Boullé, France Telecom R&D, 2, avenue Pierre Marzin, 22307 Lannion cedex - France
marc.boulle@francetelecom.com

Acronym of your best entry

SNB(CMA) + 10k F(3D) tv

Reference

References

M. Boullé, “Regularization and Averaging of the Selective Naïve Bayes classifier”, Inter-
national Joint Conference on Neural Networks, 2006.

M. Boullé, “MODL: a Bayes Optimal Discretization Method for Continuous Attributes”,
Machine Learning, to be published.

Method

Our method is based on the Naïve Bayes assumption.
All the input features are preprocessed using the Bayes optimal MODL discretization method.

We use a Bayesian approach to compromise between the number of selected features and the
performance of the Selective Naïve Bayes classifier: this provides a regularized feature selec-
tion criterion. The feature selection search is performed using alternate forward selection and
backward elimination searches on randomly ordered feature sets: this provides a fast search
heuristic, with super-linear time complexity with respect to the number of instances and fea-
tures. Finally, our method introduces a variant of feature selection: feature “soft” selection.

mailto:marc.boulle@francetelecom.com

Whereas feature “hard” selection gives a “Boolean” weight to the features according to whether
they selected or not, our method gives a continuous weight between 0 and 1 to each feature.
This weighing schema of the features comes from a new classifier averaging method, derived
from Bayesian Model Averaging.

The method computes the posterior probabilities of the classes, which is convenient when
the classical accuracy criterion or the area under the ROC curve is evaluated. For the challenge,
the Balanced Error Rate (BER) criterion is the main criterion. In order to improve the BER cri-
terion, we adjusted the decision threshold in a post-optimization step. We still predict the class
having the highest posterior probability, but we artificially adjust the class prior probabilities
in order to optimize the BER criterion on the train dataset. For the challenge, several trials of
feature construction have been performed in order to evaluate the computational and statistical
scalability of the method, and to naively attempt to escape the naïve Bayes assumption:

• 10k F(2D): 10 000 features constructed for each dataset, each one is the sum of two
randomly selected initial features,

• 100k F(2D): 100 000 features constructed (sums of two features),

• 10k F(3D): 10 000 features constructed (sums of three features).

The performance prediction guess is computed using a stratified tenfold cross-validation.

Results

In the challenge, we rank 7th as a group and our best entry is 26th, according to the average
rank computed by the organizers. On 2 of the 5 five datasets (ADA and SYLVA), our best entry
ranks 1st.

Our method is highly scalable and resistant to noisy or redundant features: it is able to
quickly process about 100 000 constructed features without decreasing the predictive perfor-
mance. Its main limitation comes from the Naïve Bayes assumption. However, when the con-
structed features allow to “partially” break the naïve Bayes assumption, the method succeeds
in significantly improve its performances. This is the case for example for the GINA dataset,
which does not fit well the naïve Bayes assumption: adding randomly constructed features
allows to improve the BER from 12.83% down to 7.30%.

The AUC criterion, which evaluates the ranking of the class posterior probabilities, indicates
high performances for our method.

Dataset Our best entry The challenge best entry
Test
AUC

Test
BER

BER
guess

Guess
error

Test score
(rank)

Test
AUC

Test
BER

BER
guess

Guess
error

Test score
(rank)

ADA 0.9149 0.1723 0.1650 0.0073 0.1793 (1) 0.9149 0.1723 0.1650 0.0073 0.1793

GINA 0.9772 0.0733 0.0770 0.0037 0.0767 0.9712 0.0288 0.0305 0.0017 0.0302

HIVA 0.7542 0.3080 0.3170 0.0090 0.3146 0.7671 0.2757 0.2692 0.0065 0.2797

NOVA 0.9736 0.0776 0.0860 0.0084 0.0858 0.9914 0.0445 0.0436 0.0009 0.0448

SYLVA 0.9991 0.0061 0.0060 0.0001 0.0062 (1) 0.9991 0.0061 0.0060 0.0001 0.0062

Overall 0.9242 0.1307 0.1306 0.0096 0.1399 (26.4) 0.8910 0.1090 0.1040 0.0079 0.1165 (6.2)

B1. Performance Prediction Challenge 411

Code

Our implementation was done in C++.

Keywords

Discretization, Bayesianism, Naïve Bayes, Wrapper, Regularization, Model Averaging

B1.8. Artificial Contrasts with Ensembles and Regularized Least Squares
Classifiers

Contact

Kari Torkkola and Eugene Tuv

Acronym of your best entry

ACE+RLSC

References

1. ACE: Feature Selection Using Ensemble Based Ranking Against Artificial Contrasts,
Eugene Tuv, Alexander Borisov and Kari Torkkola, IJCNN06, to appear.

2. RLSC: Ensembles of Regularized Least Squares Classifiers for High-Dimensional Prob-
lems, Kari Torkkola and Eugene Tuv, in Feature Extraction, Foundations and Applica-
tions, Isabelle Guyon, Steve Gunn, Masoud Nikravesh, and Lofti Zadeh (eds.), 2006

Method

No preprocessing was used. For feature selection, we used feature ranking against artificial con-
trasts (ACE). ACE is an embedded feature selection method using Gradient Boosting Trees as
the internal engine. For classification, we use regularized least squares classifiers with Gaussian
kernels. Hyper-parameters (kernel width, regularization coefficient) are adjusted after feature
selection, using grid search and 10-fold CV with the same training data. Our test BER predic-
tion is based also on the same 10-fold CV.

Results

In the challenge, we rank 8th as a group and our best entry is the 33rd, according to the average
rank computed by the organizers. As advantages, compact feature sets could be mentioned.

Dataset Our best entry The challenge best entry
Test
AUC

Test
BER

BER
guess

Guess
error

Test score
(rank)

Test
AUC

Test
BER

BER
guess

Guess
error

Test score
(rank)

ADA 0.8178 0.1822 0.1673 0.0149 0.197 (24) 0.9149 0.1723 0.1650 0.0073 0.1793 (1)

GINA 0.9712 0.0288 0.0305 0.0017 0.0302 (1) 0.9712 0.0288 0.0305 0.0017 0.0302(1)

HIVA 0.6986 0.3014 0.2461 0.0553 0.3567 (47) 0.7671 0.2757 0.2692 0.0065 0.2797 (1)

NOVA 0.9256 0.0744 0.0469 0.0275 0.1018 (55) 0.9914 0.0445 0.0436 0.0009 0.0448 (1)

SYLVA 0.9911 0.0089 0.0044 0.0045 0.0134 (33) 0.9991 0.0061 0.0060 0.0001 0.0062 (1)

Overall 0.8809 0.1191 0.099 0.0208 0.1398 (32) 0.8910 0.1090 0.1040 0.0079 0.1165 (6.2)

Code

ACE experiments were run using Intel’s IDEAL (not available). RLSC was written using MAT-
LAB (one-liner), and all cross-validation experimentation was done using MATLAB (code not
available).

Keywords

embedded feature selection, gradient boosting trees, artificial contrast variables, Regularized
Least Squares Classifier (RLSC) with Gaussian kernels, hyperparameter grid-search,10-fold
cross validation.

B1.9. SVM-LOO
Contact

Olivier Chapelle

Acronym of your best entry

SVM-LOO

Reference

Relevant material can be found at http://www.kyb.mpg.de/publication.html?
publ=1436

Method

• preprocessing: all components were normalized to have variance = 1.

• feature selection: none

• classifier: SVM with L2 penalization of the slacks and RBF kernel. No transduction.
Threshold adjusted afterwards to optimize an (approximate) leave-one-out BER.

• Hyperparameters (C and σ) optimized by gradient descent on eiter: leave-one-out, ra-
dius/margin bound, validation error (in that case, half of the training set is used as valida-
tion), evidence (Bayesian treatment).

http://www.kyb.mpg.de/publication.html?publ=1436
http://www.kyb.mpg.de/publication.html?publ=1436

B1. Performance Prediction Challenge 413

• Performance prediction based on an approximate leave-one-out procedure (no use of the
test set).

Code

code available at: http://www.kyb.tuebingen.mpg.de/bs/people/chapelle/
ams/ams.m

B1.10. Model Selection in an Ensemble Framework
Contact

Joerg Wichard
Institute of Molecular Pharmacology
Molecular Modelling Group
Robert Rössle Straße 10,
D-13125 Berlin-Buch, Germany.
JoergWichard@web.de

Acronym of your best entry

submission 13

Reference

Model Selection in an Ensemble Framework, J. Wichard, In Proceedings IJCNN06, to appear.

Method

Our method uses a simple normalizing and balancing of the data sets. In one experiment we
were using a SVM-based feature selection method. We build heterogeneous ensembles of clas-
sifiers, consisting of linear models (LDA, ridge), nearest neighbor models, trees, neural net-
works and SVMs. We use a cross-validation approach for model selection and hyperparameter
selection. The performance prediction guess was calculated by averaging the BER (balanced
error rate) on the validation sets in the cross-validation folds.

Results

In the challenge, we rank 38.2 in the group rank and our best entry is the 37th according to the
test score computed by the organizers.

http://www.kyb.tuebingen.mpg.de/bs/people/chapelle/ams/ams.m
http://www.kyb.tuebingen.mpg.de/bs/people/chapelle/ams/ams.m
mailto:JoergWichard@web.de

Dataset Our best entry The challenge best entry
Test
AUC

Test
BER

BER
guess

Guess
error

Test score
(rank)

Test
AUC

Test
BER

BER
guess

Guess
error

Test score
(rank)

ADA 0.8614 0.1801 0.1636 0.0165 0.1965 0.8304 0.1696 0.155 0.1046 0.1843

GINA 0.9866 0.0523 0.05 0.0023 0.0543 0.9639 0.0361 0.0388 0.0027 0.0386

HIVA 0.7172 0.3057 0.338 0.0323 0.3377 0.7129 0.2871 0.27 0.0171 0.03029

NOVA 0.9459 0.0611 0.08 0.0189 0.08 0.9542 0.0458 0.0503 0.0045 0.0499

SYLVA 0.9956 0.0267 0.007 0.0197 0.0464 0.9937 0.0063 0.0058 0.0005 0.0067

Overall 0.9013 0.1252 0.1277 0.0179 0.143 (38.2) 0.891 0.109 0.104 0.0079 0.1165 (6.2)

Code

Our method is implemented in MATLAB. We developed a toolbox for regression tasks and
a toolbox for classification problems, both are based on an ensemble approach. The code is
available at: http://chopin.zet.agh.edu.pl/~wichtel/.

Keywords

Cross-validation, Heterogeneous Ensembles, Mixed Models

B1.11. Advanced Analytical Methods, INTEL
Contact

Borisov Alexander (alexander.borisov@intel.com) and Eugene Tuv
(eugene.tuv@intel.com)

Acronym of your best entry

IDEAL

Reference

Borisov A., Eruhimov V. and Tuv, E. Tree-Based Ensembles with Dynamic Soft Feature Se-
lection, In Isabelle Guyon, Steve Gunn, Masoud Nikravesh, and Lofti Zadeh, editors, Feature
Extraction, Foundations and Applications. Springer, 2006. (in press)

Method

Gradient Tree Boosting with Dynamic Feature Selection.
No preprocessing was done. We used gradient tree boosting with dynamic feature selection.

The method builds a serial binomial logistic regression tree ensemble. Each new expert — a
shallow tree is built on the residuals from the previous iteration using a random subset of cases.
For very unbalanced datasets a stratified sampling was used to up weight the rare class. At
each node, a random small subset of variables [sqrt(total number of variables)] is selected. The
vars sampling probabilities are proportional to sum of priors (initially equal, then decreasing
influence as trees are added to the ensemble) and current variable importances computed using
split scores evaluated over the ensemble.

http://chopin.zet.agh.edu.pl/~wichtel/
mailto:alexander.borisov@intel.com
mailto:eugene.tuv@intel.com

B1. Performance Prediction Challenge 415

All hyper-parameters (tree depth, sampling scheme, regularization, importance adjustment
rate for the dynamic FS, class priors) were selected using test sample estimation (over multiple
train/test partitions). Performance prediction guess error was done using the same test sample
estimation. Learning from the unlabeled test set was not used.

Results

In the challenge, we ranked 7th as a group and our best entry is the 17.6 th, according to the
average rank computed by the organizers. Our method is accurate and fast on wide variety of
datasets with complex dependencies (for example, we ranked in top ten on NIPS2003 also with
the same method). Our method is generally more accurate and incomparably faster (on massive
in both dimensions datasets) than original Freidman’s MART and Breiman’s RF. It does not
require any data preprocessing.

Dataset Our best entry The challenge best entry
Test
AUC

Test
BER

BER
guess

Guess
error

Test score
(rank)

Test
AUC

Test
BER

BER
guess

Guess
error

Test score
(rank)

ADA 0.9110 0.1779 0.162 0.0159 0.1939(12) 0.8304 0.1696 0.155 0.0146 0.1843(3)

GINA 0.9893 0.035 0.044 0.009 0.044(7) 0.9639 0.0361 0.0388 0.0027 0.0386(5)

HIVA 0.7193 0.3085 0.285 0.0235 0.3312(3) 0.7129 0.2871 0.27 0.0171 0.3029(8)

NOVA 0.9837 0.0622 0.062 0.0002 0.0622(21) 0.9542 0.0458 0.0503 0.0045 0.0499(8)

SYLVA 0.9986 0.0132 0.0085 0.0047 0.0179(45) 0.9937 0.0063 0.0058 0.0005 0.0067(7)

Overall 0.92038 0.11936 0.1123 0.01066 0.12984(17.6) 0.891 0.109 0.104 0.0079 0.1165(6.2)

Code

Method is implemented in C++ as a part of Intel’s IDEAL ML software product. It is not
publicly available.

Keywords

Ensembles, boosting, feature selection, tree

B1.12. Learning with Mean-Variance Filtering, SVM and Gradient-based
Optimization

Contact

Vladimir Nikulin, the Australian National University, Canberra, Australia,
vladimir.nikulin@anu.edu.au

Acronym of your best entry

GbO+MVf+SVM2

mailto:vladimir.nikulin@anu.edu.au

Reference

Learning with Mean-Variance Filtering, SVM and Gradient-based Optimization, Vladimir Nikulin.
In Proceedings IJCNN06, to appear.

Method

We consider several models, which employ gradient-based method as a core optimization tool.
Experimental results were obtained in a real time environment during WCCI-2006 Performance
Prediction Challenge. None of the models were proved to be absolutely best against all five
datasets. Furthermore, we can exploit the actual difference between different models and create
an ensemble system as a complex of the base models where the balances may be regulated using
special parameters or confidence levels.

Overfitting is a usual problem in the situation when dimension is comparable with sample
size or even higher. Using mean-variance filtering we can reduce the difference between training
and test results significantly considering some features as a noise.

Results

In the challenge we rank 12th as a group and our best entry is 47th, according to the average
rank computed by the organizers.

Dataset Our best entry The challenge best entry
Test
AUC

Test
BER

BER
guess

Guess
error

Test score
(rank)

Test
AUC

Test
BER

BER
guess

Guess
error

Test score
(rank)

ADA 0.8225 0.1851 0.165 0.0201 0.8304 0.1696 0.155 0.0146

GINA 0.9403 0.0566 0.05 0.0066 0.9639 0.0361 0.0388 0.0027

HIVA 0.6588 0.3536 0.245 0.1086 0.7129 0.2871 0.27 0.0171

NOVA 0.9474 0.0507 0.05 0.0007 0.9542 0.0458 0.0503 0.0045

SYLVA 0.9644 0.0212 0.012 0.0092 0.9937 0.0063 0.0058 0.0005

Overall 0.8667 0.1334 0.1044 0.029 0.891 0.109 0.104 0.0079

Keywords

Gradient-based optimization, support vector machines, feature selection, logit model, ensemble
method

B1.13. Large margin linear classifiers with bias adjustment for skewed
two-class distributions.

Contact

Edward F. Harrington, Defence Science and Technology Organisation (DSTO) Australia,
edward.harrington@dsto.defence.gov.au

Acronym of your best entry

ba4

mailto:edward.harrington@dsto.defence.gov.au

B1. Performance Prediction Challenge 417

Reference

no specific paper as yet.

Method

The data was preprocessed with centering and scaling (standardization). In the case of the SVC
sub-sampling was also done.

No feature selection was done prior to classification.
Three linear classifiers were used: SVC, Online Bayes Point Machine (OBPM) and Ap-

proximate Large Margin Algorithm (ALMA).
Model and parameter selection was done using a simple cross-validation. To select the

model of OBPM and ALMA we considered the results for each random permutation of the
training set. To tune the bias parameter of OBPM and ALMA we used a line search to minimize
the affect of any skew between the two classes in the training set. The criteria to select the “best”
model for each classifier was simply the minimum BER from the validation set. The classifier
with the lowest validation BER amongst the three was selected as the “best” classifier.

Results

Dataset Our best entry The challenge best entry
Test
AUC

Test
BER

BER
guess

Guess
error

Test score
(rank)

Test
AUC

Test
BER

BER
guess

Guess
error

Test score
(rank)

ADA 0.8900 0.1964 0.1761 0.0203 0.2168 0.8304 0.1550 0.1550 0.0146 0.1843

GINA 0.9758 0.0750 0.0600 0.0086 0.0836 0.9639 0.0388 0.0388 0.0027 0.0386

HIVA 0.7043 0.3509 0.3500 0.0009 0.35 0.7129 0.2871 0.2700 0.0171 0.3029

NOVA 0.9369 0.0631 0.0500 0.0131 0.0762 0.9542 0.0458 0.0503 0.0045 0.0499

SYLVA 0.9886 0.0114 0.0042 0.0072 0.0187 0.9937 0.0063 0.0058 0.0005 0.0067

Overall 0.8991 0.1394 0.1294 0.01 0.1492(43.8) 0.8910 0.1090 0.1040 0.0079 0.1165(6.2)

Keywords

standardization, sub-sampling, cross-validation, permutation, bias adjustment, linear classifier,
OBPM, ALMA, SVC.

B1.14. A Study of Supervised Learning with Multivariate Analysis on
Unbalanced Datasets

Contact

Yu-Yen Ou, Department of Computer Science and Engineering, Yuan-Ze University, Chung-Li,
Taiwan, yien@csie.org

Acronym of your best entry

svm+ica

mailto:yien@csie.org

Reference

Yu-Yen Ou, Hao-Geng Hung and Yen-Jen Oyang, A Study of Supervised Learning with Multi-
variate Analysis on Unbalanced Datasets, IJCNN06.

Method

Our study aimed at providing effective solutions to these two challenges. For handling un-
balanced datasets, we proposed that a different value of the cost parameter in Support Vector
Machine (SVM) is employed for each class of samples. For handling high-dimensional datasets,
we resorted to Independent Components Analysis (ICA), which is a multivariate analysis algo-
rithm, along with the conventional univariate analysis.

Preprocessing
Independent Components Analysis (ICA)
Noise Reduction

Feature selection
Univariate Analysis

Classification
Support Vector Machine (SVM)

• RBF kernel and linear kernel

• give different cost parameter to the each class of data

Model selection/hyperparameter selection
Cross Validation

Performance prediction guess.
Cross Validation

Results

In the challenge, we rank 16th as a group and our best entry is the 46th, according to the average
rank computed by the organizers. Also, our method yields the second best results for GINA
dataset.

Dataset Our best entry The challenge best entry
Test
AUC

Test
BER

BER
guess

Guess
error

Test score
(rank)

Test
AUC

Test
BER

BER
guess

Guess
error

Test score
(rank)

ADA 0.8041 0.1959 0.151 0.0449 0.2408 0.8965 0.1845 0.1742 0.0103 0.1947

GINA 0.9672 0.0328 0.04 0.0072 0.04 0.99 0.0461 0.047 0.0009 0.0466

HIVA 0.676 0.324 0.24 0.084 0.4081 0.7464 0.2804 0.2776 0.0028 0.2814

NOVA 0.9347 0.0653 0.05 0.0153 0.0805 0.9914 0.0445 0.047 0.0025 0.0464

SYLVA 0.9812 0.0188 0.002 0.0168 0.0356 0.999 0.0067 0.0065 0.0002 0.0067

Overall 0.8727 0.1273 0.0966 0.0336 0.161 (46) 0.9246 0.1124 0.1105 0.0034 0.1152 (1)

B1. Performance Prediction Challenge 419

Keywords

centering, scaling, ICA, univeriate feature selection, Chi-square, F-score, training error, leave-
one-out, K-fold cross-validation, SVM, kernel-method, grid-search, cross-validation

B1.15. Cross-indexing
Contact

Juha Reunanen, Juha.Reunanen@iki.fi

Acronym of your best entry

CLOP-models-only-5

Reference

J. Reunanen (2006), Less Biased Measurement of Feature Selection Benefits. In C. Saunders et
al. (Eds.): SLSFS 2005, LNCS 3940, pp. 198–208. To appear.

Method

Cross-indexing is a recent approach for assessing the outcome of a model selection process.
Compared to traditional cross-validatory model selection and assessment, using cross-indexing
may in some special cases either provide less biased results in a similar amount of time, or
results of similar accuracy in significantly less time (depending on whether an outer loop of
cross-validation is used). The method has been described in the context of feature selection
in the reference mentioned above. In this challenge, it was used to select the model archi-
tecture and the corresponding parameters, and to estimate their performance when applied to-
gether. The models compared were introduced already in the sample code: Prepro+naiveBayes,
PCA+kernelRidge, GS+kernelRidge, Prepro+linearSVC, Prepro+nonlinearSVC, and Relief+neuralNet.
For each model type, a couple of parameters were subjected to optimization, but in other re-
spects the models were treated as black boxes. The final ensemble consisted of nine members
for each dataset.

In more detail, the selection took place as follows: First, the data available were split into
nine folds. Then, during each of the nine iterations, eight of these folds were pooled and used
during the search, while the remaining kth fold was utilized as a validation set, using which the
optimal model and the corresponding parameters for the kth ensemble member were chosen.
The union of the eight folds was further divided into only three folds (to save some time) in
order to facilitate standard cross-validation to guide a simple stochastic search for the optimal
parameters. The search was interleaved to give equal possibilities for all the model architec-
tures being considered: the execution scheduler basically tried to round-robin the time spent
(instead of the number of evaluations), with the exception that more time was allocated to the
optimization of those models that were able to demonstrate good performance estimates.

The performance estimate obtained for the optimal parameter set using the remaining fold
was potentially overfitted when a large number of comparisons had been performed. Thus, this
score was not used as such to assess the performance of the corresponding ensemble member
— instead, the cross-indexing approach was adopted to recall the estimated performance on the
other folds after a similar number of iterations. This score was not used to select the model, and
thus it had not been overfitted due to a multiple-selection process. The final performance guess
was obtained as the median of these nine guesses. This might have introduced a pessimistic

mailto:Juha.Reunanen@iki.fi

bias, as the ensemble can be expected to perform better than its individual members, but based
on the results, it looks like this did not really happen. However, the variance of these nine
guesses could have been used to estimate the accuracy of the BER guess, had that been the goal
of the challenge.

Results

While no competitive BER was obtained for any of the datasets, the guess error remains at an
acceptable level, and the AUC is good. Moreover, with respect to the test score, the method
beats the reference entries that were using the same CLOP models, although such a comparison
is hardly a fair one, as the reference models were probably trained without the validation labels.
Still, it can be said that the selection of the final model, and the estimation of its performance
using cross-indexing, were performed successfully.

Dataset Our best entry The challenge best entry
Test
AUC

Test
BER

BER
guess

Guess
error

Test score
(rank)

Test
AUC

Test
BER

BER
guess

Guess
error

Test score
(rank)

ADA 0.8825 0.2037 0.1884 0.0153 0.2190 0.8304 0.1696 0.1550 0.0146 0.1843

GINA 0.9631 0.0980 0.0840 0.0141 0.1121 0.9639 0.0361 0.0388 0.0027 0.0386

HIVA 0.7392 0.3088 0.3172 0.0084 0.3148 0.7129 0.2871 0.2700 0.0171 0.3029

NOVA 0.9874 0.0892 0.0917 0.0025 0.0907 0.9542 0.0458 0.0503 0.0045 0.0499

SYLVA 0.9971 0.0341 0.0320 0.0021 0.0357 0.9937 0.0063 0.0058 0.0005 0.0067

overall 0.9138 0.1468 0.1427 0.0085 0.1545 (45.8) 0.8910 0.1090 0.1040 0.0079 0.1165 (6.2)

Appendix B2

AL vs PK Challenge

B2.1. LogitBoost with trees
Contact

Roman Werner Lutz, Seminar for Statistics, ETH Zurich, CH-8092 Zurich, Switzerland,
lutz@stat.math.ethz.ch

Acronym of your best entry

LB tree mix cut adapted

Reference

LogitBoost with Trees Applied to the WCCI 2006 Performance Prediction Challenge, Roman
Werner Lutz, In Proceedings IJCNN06, to appear.

Method

As preprocessing we used PCA for Nova with centered and scaled variables and took the first
400 principal components. No preprocessing was used for the other datasets. Then we applied
LogitBoost with trees of prefixed depth. The number of iterations, the tree depth (in each
iteration a tree of the same depth is fitted) and the BER guess were chosen/computed by 10-
fold cross-validation. Shrinkage was added to make LogitBoost more stable: in each iteration
only a fraction ? (0.3, 0.1 or 0.03) of the fitted learner was added. ? was chosen by visual
inspection of the cross-validated BER curve (as a function of the boosting iteration). As a
result, LogitBoost yielded probabilities of class membership for each sample. The cut point for
the final classification was the proportion of class +1 in the data.

For the second entry we used the Wilcoxon test (for continuous variables) and the Fisher
exact test (for binary variables) for variable pre-selection (variables with a p-value above 0.1
were dropped). For the third entry we averaged the predicted probabilities of LogitBoot with
and without variable pre-selection. For the fourth entry we made an intercept adaption (on the
logit scale) so that the average of the predicted probabilities on the test set equals the proportion
of class +1 in the data.

Results

In the challenge, we rank 1st as a group and our best entry (our fourth) is the 1st, according to
the average rank computed by the organizers. Our method is quite simple: no preprocessing is
needed (except for Nova) and the tuning parameters are chosen by cross-validation. Addition-
ally, LogitBoost with trees does variable selection, because in each iteration only a few variables
are chosen.

421

mailto:lutz@stat.math.ethz.ch

Dataset Our best entry The challenge best entry
Test
AUC

Test
BER

BER
guess

Guess
error

Test score
(rank)

Test
AUC

Test
BER

BER
guess

Guess
error

Test score
(rank)

ADA 0.8304 0.1696 0.1550 0.0146 0.1843 (3) 0.9149 0.1723 0.1650 0.0073 0.1793 (1)

GINA 0.9639 0.0361 0.0388 0.0027 0.0386 (5) 0.9712 0.0288 0.0305 0.0017 0.0302 (1)

HIVA 0.7129 0.2871 0.2700 0.0171 0.3029 (8) 0.7671 0.2757 0.2692 0.0065 0.2797 (1)

NOVA 0.9542 0.0458 0.0503 0.0045 0.0499 (8) 0.9914 0.0445 0.0436 0.0009 0.0448 (1)

SYLVA 0.9937 0.0063 0.0058 0.0005 0.0067 (7) 0.9991 0.0061 0.0060 0.0001 0.0062 (1)

Overall 0.8910 0.1090 0.1040 0.0079 0.1165(6.2) 0.8910 0.1090 0.1040 0.0079 0.1165(6.2)

Code

Our implementation was done in R.

Keywords

PCA, Wilcoxon test, Fisher exact test, LogitBoost, trees of fixed depth, 10-fold cross-validation,
shrinkage.

B2.2. Feature selection with redundancy elimination + gradient boosted
trees.

Contact

ASML team, INTEL Corporation, alexander.borisov@intel.com

Acronym of your best entry

out1-fs-nored-val (Intel final 1)
out3-fs-red-valid (Intel final 2)
out5-valid-no-fs (Intel final 3)

Reference

Paper to be resubmitted to the JMLR

Method

No preprocessing was done.
The method consists of the following steps

1. Feature selection using ensemble classifiers (ACE FS). Random probes that are per-
mutation of original features are added. Importance of each variable in RF ensemble
is compared versus importance of probes using t-test over several ensembles. Variables
that are more important in statistical sense then most of probes are selected as important.
Variables are ordered according to sum of gini index reduction in tree splits.

mailto:alexander.borisov@intel.com

B2. AL vs PK Challenge 423

2. Variable masking it estimated on important variables with GBT ensemble using surrogate
splits (if a more important variable has surrogate on less important one, the second vari-
able is masked by the first). Again, statistically significant masking pairs are selected,
then subset of mutually non-masked variables with high importance is chosen

3. Effect of found variables is removed using RF ensemble.

Steps 1-3 are repeated until no more important variables remain.
Next GBT with embedded feature selection (to prevent over fitting) is built on selected

variable set. The following parameters of GBT were optimized : number of trees, tree depth,
shrinkage, number of selected features per tree node and importance adjust rate (for embedded
FS), stratified sampling 0/1 class proportions, priors. For FS, #of trees in series, importance and
masking quantile were chosen.

Optimization strategy (manual) was to set reasonable parameter values, then try to adjust
each parameter (sequentially), so that test error decreases (model was trained on 60% of training
data during parameter optimization). Several passes over all GBT parameters was done, one for
FS parameters.

Priors were selected using cross validation (FS+GBT run was done on K partitions of the
data, optimal priors were selected on remaining part).

Results

Table 23: Our Best Results

Dataset Entry name Entry ID Test BER Test AUC Score Track

ADA out1-fs-nored-val (Intel final 1) 1051 0.1737 0.8259 0.0143 Agnos

GINA out1-fs-nored-val (Intel final 1) 1051 0.0373 0.9631 0.2436 Agnos

HIVA out3-fs-red-valid (Intel final 2) 1052 0.2899 0.7123 0.1124 Agnos

NOVA out1-fs-nored-val (Intel final 1) 1051 0.0547 0.9468 0.2756 Agnos

SYLVA out1-fs-nored-val (Intel final 1) 1051 0.0135 0.9865 0.5126 Agnos

Overall out1-fs-nored-val (Intel final 1) 1051 0.1142 0.8859 0.2373 Agnos

• quantitative advantages

Method is very fast (∼a minute for one FS iteration on NOVA dataset with 16K+ vars) (20
ensembles with 70 trees) (faster than all known to us minimal subset selection methods).
Complexity is proportional to

(Fsel+Fimpvar)×N × logN ×Ntrees×Nensembles×Niter+Niter×Fimpvar2,

– Niter — #of iteration of ACE FS algorithm always < 10, usually 3–4

– Nensembles = 20 (number of ensembles for t-test)

– Ntrees = 20-100 (number of trees in RF or ensemble)

– N — number of samples,

– Fsel = number of selected important vars per tree split (sqrt(total number features)
or less)

– Fimvar — total number of selected important variable, for NOVA — 400–800 de-
pending on parameters.

Works with any variable types, mixed values, requires no preprocessing.

• qualitative advantages

This method allows to find a small subset of features with the same predictive capacity as
the original set.

Original # of features, CV-err using all features / best subset size, CV-err using best subset
Ada: 47, 0.190902 / 16, 0.185584
Gina: 970, 0.052740 / 75, 0.050629
Hiva: 1617, 0.284723 / 221, 0.255898
Nova: 12993, 0.059070 / 400, 0.051794
Sylva: 212, 0.013268 /69, 0.012852

Keywords

• Preprocessing or feature construction: —

• Feature selection approach: embedded feature selection.

• Feature selection engine:miscellaneous classifiers (RF, GBT).

• Feature selection search: variable masking estimation, redundancy elimination, statistical
test.

• Feature selection criterion: 5-fold cross-validation.

• Classifier: RF, Gradient boosting trees.

• Hyper-parameter selection: manual optimization.

• Other: —.

B2.3. Cross-indexing
Contact

Juha Reunanen, Juha.Reunanen@iki.fi

Acronym of your best entry

cross-indexing-7a (AL), cross-indexing-prior-1 (PK)

Reference

J. Reunanen (2006): Less Biased Measurement of Feature Selection Benefits. In C. Saunders
et al. (Eds.), Subspace, Latent Structure and Feature Selection: Statistical and Optimization
Perspectives Workshop (SLSFS 2005; LNCS 3940), Revised Selected Papers, pp. 198–208.

mailto:Juha.Reunanen@iki.fi

B2. AL vs PK Challenge 425

Method

Cross-indexing is a recent approach for assessing the outcome of a model selection process.
Compared to traditional cross-validatory model selection and assessment, using cross-indexing
may in some special cases either provide less biased results in a similar amount of time, or
results of similar accuracy in significantly less time (depending on whether an outer loop of
cross-validation is used). The method has been described in the context of feature selection
in the reference mentioned above. In this challenge, it was used to select the model archi-
tecture and the corresponding parameters, and to estimate their performance when applied to-
gether. The models compared were introduced already in the sample code: Prepro+naiveBayes,
PCA+kernelRidge, GS+kernelRidge, Prepro+linearSVC, Prepro+nonlinearSVC, Relief+neuralNet,
RF, and Boosting (with neuralNet, SVC and kernelRidge). For each model type, a couple of pa-
rameters were subjected to optimization, but in other respects the models were treated as black
boxes. The final ensemble consisted of three, five or nine members, depending on the dataset.

In more detail, the selection took place as follows: First, the data available were split into K
(five or nine2) folds, depending on the dataset (no magic here: just varied it depending on the
time, memory etc. available). Then, during each of the K iterations, K − 1 of these folds were
pooled and used during the search, while the remaining kth fold was utilized as a validation set,
using which the optimal model and the corresponding parameters for the kth ensemble member
were chosen. The union of the K − 1 folds was further divided into only three folds (to save
some time) in order to facilitate standard cross-validation to guide a simple stochastic search for
the optimal parameters. The search was interleaved to give equal possibilities for all the model
architectures being considered: the execution scheduler basically tried to round-robin the time
spent (instead of the number of evaluations), with the exception that more time was allocated to
the optimization of those models that were able to demonstrate good performance estimates for
the present dataset.

The performance estimate obtained for the optimal parameter set using the remaining fold
was potentially overfitted when a large number of comparisons had been performed. Therefore,
this score was not used as such to assess the performance of the corresponding ensemble mem-
ber — instead, the cross-indexing approach was adopted to recall the estimated performance on
the other folds after a similar number of iterations. These scores had not been used to select
this model, thus they had not been overfitted due to a multiple-selection process. The final per-
formance guess (which was not required in this challenge, but is always useful for development
purposes) was obtained as the median of the K guesses. This may have introduced a pessimistic
bias, as the ensemble can be expected to perform better than its individual members.

2. In some of my submissions, including cross-indexing-7a, the HIVA model only contains three ensemble members.
This is because two of the five (that were searched for) were manually removed, due to their apparently bad
performance.

Results

Table 24: Our Best Results

Dataset Entry name Entry ID Test BER Test AUC Score Track

ADA cross-indexing-prior-2 905 0.1807 0.907 0.0961 Agnos

GINA cross-indexing-prior-3 996 0.0236 0.997 0.1068 Prior

HIVA cross-indexing-7a 882 0.2863 0.7662 0.1004 Agnos

NOVA cross-indexing-prior-1 743 0.0472 0.9903 0.0769 Agnos

SYLVA cross-indexing-prior-1 743 0.0066 0.9989 0.0603 Prior

Overall cross-indexing-prior-1a 883 0.11 0.9312 0.1294 Prior

Code

CLOP models used:
Dataset Track Ensemble members
ADA AL 2*{sns,std,norm,gentleboost(neural),bias};

2*{std,norm,gentleboost(kridge),bias}; 1*{rf,bias}
GINA AL 6*{std,gs,svc(degree=1)}; 3*{std,svc(degree=2)}

PK 4*{std,svc(degree=2)}; 1*{rf}
HIVA AL 3*{norm,svc(degree=1),bias}
NOVA AL 5*{norm,gentleboost(kridge),bias}
SYLVA AL 4*{std,norm,gentleboost(neural),bias}; 4*{std,neural};

1*{rf,bias}
PK 3*{sns,std,norm,gentleboost(neural),bias}; 2*{rf,b}

(sns = shift‘n’scale, std = standardize, norm = normalize)
The ensemble members were chosen during the model selection loop according to their

estimated performance (using the cross-indexing criterion).

Keywords

• Preprocessing: centering, scaling, standardization.

• Feature selection: Gram-Schmidt (only GINA on the AL track).

• Classifier: boosting, neural networks, ridge regression, kernel method, RF.

• Hyper-parameter selection: stochastic search, cross-validation, cross-indexing.

• Other: ensemble method.

B2.4. Classification with Random Sets, Boosting and Distance-based
Clustering

Contact

Vladimir Nikulin
Airservices Australia, 25 Constitution Ave., Canberra, ACT 2601

B2. AL vs PK Challenge 427

vnikulin@digisurf.com.au,
vladimir.nikulin@airservicesaustralia.com

Acronym of your best entry

vn3

Reference

The paper of 24 pages will be resubmitted to JMLR

Method

Overfitting represents usual problem associated with classification of high-dimensional data.
According to the proposed approach we can use large number of classifiers where any single
classifier is based on the subset of relatively small number of randomly selected features or
random sets (RS) of features.

Consequently, any single RS-classifier 1) will not overfit, and 2) may be evaluated very
quickly. The property of limited overfitting is a very important. As a result, feature selection in
the final model will be made according to several best performing subsets of features.

The proposed method is an essentially different comparing with Breiman’s Random Forests
(voting system)3 where the final classifier represents a sample average of the single classifiers.
Note, also, that any single RS-classifier may be evaluated using different methods and it is not
necessarily a decision tree.

Secondly, we propose a new boosting approach, which is based on experience-innovation
principles. Assuming that overfitting is limited, it is logical to increase weights of randomly
selected mis-classified patterns (innovation) in order to improve training results. As a starting
point for any iteration we can use weights, which correspond to the best past result (experience).
Again, the proposed system is not a voting one in difference to AdaBoost or LogitBoost4.

Thirdly, using some criterion we can split data under expectation that the corresponding
clusters will be more uniform in the sense of relations between features and target variable.
The final model may be constructed as an ensemble of several models, which were evaluated
independently using particular data from the corresponding clusters.

3. L. Breiman (2001) “Random Forests”, Machine Learning, 45, 1, pp.5–32.
4. J. Friedman and T. Hastie and R. Tibshirani (2000) “Additive logistic regression: a statistical view of boosting”,

Annals of Statistics, 28, pp.337–374.

mailto:vnikulin@digisurf.com.au
mailto:vladimir.nikulin@airservicesaustralia.com

Results

Table 25: Our Best Results

Dataset Entry name Entry ID Test BER Test AUC Score Track

ADA vn5 1026 0.1751 0.8331 Agnos

ADA vn3 1024 0.1788 0.8225 Prior

GINA vn2 1023 0.0226 0.9777 Prior

GINA vn4 1025 0.0503 0.9507 Agnos

HIVA vn3 1024 0.2904 0.7343 Agnos

NOVA vn5 1026 0.0471 0.9456 Agnos

SYLVA vn3 1024 0.0071 0.9959 Prior

SYLVA vn4 1025 0.0096 0.9933 Agnos

Overall vn3 1024 0.1095 0.8949 Prior

Overall vn5 1026 0.1177 0.8891 Agnos

Keywords

random forests, gradient-based optimization, boosting, cross-validation, distance-based cluster-
ing.

We used an opportunity of the Challenge to test CLOP Version 1.1 – October, 2006. The
most basic (and sufficient) instructions may be found on the last page of Ref.5 The package
is a quite efficient and can produce competitive results in application to any dataset of the
Challenge. It is very easy to arrange suitable cross validations with required number of folds in
order to evaluate any particular model, and there is a wide range of choices. For example, we
can recommend my_model=’boosting’. All necessary details in relation to this model may be
found in the file “model_examples.m” in the directory ../CLOP/sample_code. Definitely,
Isabelle Guyon and her team have done an excellent work.

Also, it is worth to mention that ADA-prior task is a very similar to the recent task of
PAKDD-2007 Data Mining Competition6. Accordingly, we applied the same preprocessing
technique. Firstly, using standard methods we reduced categorical features to the numerical
(dummy) values. Also, we normalized continuous values to the range [0..1]. As a result of the
above transformation we created totally numerical dataset with 127 features. Then, using soft
Mean-Variance Filtering7 the number of features was reduced to 108.

Some concluding remarks

Certainly, practical experience is the best way to learn, and I am pleased with results of the
Table 25, which demonstrate significant improvement over all previous results dated July 2006.
The proper feature selection is a very essential in order reduce overfitting. The following models

5. I. Guyon and A. Alamdari and G. Dror and J. Buhmann (2006) “Performance Prediction Challenge”, IJCNN,
Vancouver, BC, Canada, July 16–21, pp.2958–2965.

6. http://lamda.nju.edu.cn/conf/pakdd07/dmc07/
7. V. Nikulin (2006) “Learning with mean-variance filtering, SVM and gradient-based optimization”, IJCNN, Van-

couver, BC, Canada, July 16–21, pp.4195–4202.

http://lamda.nju.edu.cn/conf/pakdd07/dmc07/

B2. AL vs PK Challenge 429

appears to be the most suitable: LogitBoost for ADA and SYLVA; RBF-SVM for GINA and
LinearSVM for NOVA; regularized linear model for HIVA.

Currently, the areas of my primary interests are decision trees, random forest and a variety of
boosting modifications. According to my experience, such existing packages as “randomForest”
or “ADA” (R-environment) are efficient, but there may be problems with memory allocation.
The performance of “TreeNet”, Salford Systems, is a very good in the case of regression in
difference to classification. Also, it is not easy to arrange a satisfactory cross-validation using
TreeNet. Respectively, a new package (written in C with dynamic memory allocation) is under
construction at the moment.

I was in Orlando, FL, twice in 2005 and 2006 and wish all participants of IJCNN-2007 very
pleasant and productive work during the Conference.

Figure 2: [Fact Sheet B2.4] BER vs BER where true-labels and expected-labels were replaced
with each other; (a) balanced case, . . . , (d) imbalanced case. These nice figures
illustrate non-symmetrical properties of the BER loss function.

B2.5. PSMS for Neural Networks
Contact

Hugo Jair Escalante. Luis Enrique Erro # 1, Tonantzintla, 72840, Puebla, México
hugojair@ccc.inaoep.mx

Acronym of your best entry

Corrida_Final (according the March 1st milestone results)

mailto:hugojair@ccc.inaoep.mx

Reference

H. Jair Escalante and M. Montes and L. E. Sucar, PSMS for Neural Networks on the IJCNN 2007
Agnostic vs Prior Knowledge Challenge, In INNS-IEEE Proceedings of the 20th International
Joint Conference on Neural Networks 2007 (IJCNN-2007), Orlando, FL, USA.

Method

Preprocessing The following preprocessing methods from the CLOP package were considered
for the model selection process: normalization (normalize), standardization (standardize)
and scaling (shif_n_scale).

Feature selection The feature selection methods considered for the model selection process
were: Signal-to-noise ratio (s2n), relief (relief), and Gram-Schmidt orthogonalization
(gs).

Classification Experiments were performed with a linear classifier, naïve Bayes and neural
networks, though the best ranked entries were obtained with neural networks, a non-linear
classifier.

No ensemble methods were considered for the model selection process.

No methods for learning from unlabeled data were used.

Model selection/hyperparameter selection For model and hyperparameter selection a bio- in-
spired search algorithm called: particle swarm optimization (PSO) was used. PSO is a
population-based algorithm that aims to simulate the social behavior of birds within a
flock. Candidate solutions of an optimization problem are considered particles that fly
through the search space. Each particle has a velocity that is influenced by the global best
solution and the best solution the particle has found so far. A fitness function is used to
evaluate each candidate solution.

For model and hyperparameter selection CLOP models (preprocessing method + feature
selection method + hyperparameters for the neural net) were codified as real valued vec-
tors. The BER value obtained by 5-fold cross validation was used as fitness function. A
standard PSO algorithm was implemented using default parameter values, see the refer-
ence.

The algorithm was run for 100 iterations for the HIVA, GINA and SYLVA datasets, and
for 500 iterations for the ADA dataset; though it was not applied to NOVA because of its
high dimensionality and the complexity of the learning machine. Instead, for NOVA the
model was selected empirically by trial and error.

The PSO algorithm has the same computational drawbacks that any search algorithm ap-
plied to the task of model selection, namely they depend on the complexity of the learning
machine used, which in turn depends on the size and/or dimensionality of the data. How-
ever PSO has fast convergence to minima, although it can be a local one. Therefore
strategies for avoiding local minima should be included. The simplest (and the one we
considered) is the insertion of an inertia weight into the updating velocity equation (see
reference paper) that allows the algorithm to perform global and local search, avoiding in
a sense local minima.

B2. AL vs PK Challenge 431

Results

Table 26: Our Best Results

Dataset Entry name Entry ID Test BER Test AUC Score Track

ADA Corrida_final_10CV 922 0.1804 0.9015 0.09 Agnos

GINA AdaBoost 170 0.053 0.9878 0.3846 Agnos

HIVA Corrida_final 919 0.2854 0.7551 0.0884 Agnos

NOVA AdaBoost 170 0.0504 0.9895 0.1987 Agnos

SYLVA PSMS_100_4all_NCV 987 0.0084 0.9989 0.2362 Agnos

Overall PSMS_100_4all_NCV 987 0.1178 0.925 0.2464 Agnos

quantitative advantages (e.g. compact feature subset, simplicity, computational advantages)

The PSO algorithm for model selection provides competitive models even when the avail-
able algorithms to select from are very simple. Such models are obtained by running the
algorithm only a few iterations. It can be considered a black-box method in the sense that
no experience on machine learning is required to use it.

qualitative advantages (e.g. compute posterior probabilities, theoretically motivated, has some
elements of novelty).

The PSO algorithm has been already used for training neural network (adjusting weights),
though it has not been used for model selection with hyperparameter selection, a slight
modification that allows for the selection of preprocessing and feature selection algo-
rithms as well. The algorithm can be used with any other learning algorithm and prepro-
cessing/feature selection methods.

Code
Dataset Spider command used to build the model
ADA chain({standardize({’center=0’}), normalize({’center=1’}),

shift_n_scale({’take_log=0’}), neural({’units=5’, ’shrinkage=1.4323’,
’balance=0’, ’maxiter=257’}), bias})

GINA chain({gs({’f_max=48’}), shift_n_scale({’take_log=1’}), neu-
ral({’units=16’, ’shrinkage=0.29191’, ’balance=1’, ’maxiter=456’}),
bias})

HIVA chain({standardize({’center=1’}), normalize({’center=0’}), neu-
ral({’units=5’, ’shrinkage=3.028’,’balance=0’,’maxiter=448’}), bias})

NOVA chain({normalize({’center=0’}), gentleboost(neural({’units=1’, ’shrink-
age=0.2’ , ’balance=1’, ’maxiter=50’}) , {’units=10’, ’rejNum=3’}), bias})

SYLVA chain({standardize({’center=1’}), normalize({’center=1’}), neu-
ral({’units=6’, ’shrinkage=0.02882’, ’balance=1’, ’maxiter=359’}),
bias})

Keywords

• Preprocessing or feature construction: centering, scaling, standardization.

• Feature selection approach: embedded feature selection.

• Feature selection engine: correlation coefficient, Relief.

• Feature selection search: feature ranking.

• Feature selection criterion: K-fold cross-validation.

• Classifier: neural networks.

• Hyper-parameter selection: pattern search, bio-inspired search cross-validation, K-fold.

• Other: swarm optimization.

B2.6. Hybrid approach for learning
Contact

Mehreen Saeed, FAST National University of Computer & Emerging Science, Lahore, Pakistan,
mehreen.saeed@nu.edu.pk

Acronym of your best entry

SubmitA

Reference

N/A

Method

Preprocessing : Standardize, shift-n-scale, normalize

Feature selection : Removed the sparse features whose percentage of non-zero entries was be-
low as certain number.

Classification

• Used mixture models for finding clusters within data. I wrote down my own routine
for generating the mixture parameters

• For binary data, Bernoulli mixture models were used. For continuous data Gaussian
mixture models were used

• Neural network and gentleboost from CLOP / spider was used for learning the con-
ditional class probabilities as a function of class label

• Did you use ensemble methods? No

• Did you use “transduction” or learning from the unlabeled test set? No

Model selection/hyperparameter selection : 5-fold cross-validation was used

mailto:mehreen.saeed@nu.edu.pk

B2. AL vs PK Challenge 433

Results

Table 27: Our Best Results

Dataset Entry name Entry ID Test BER Test AUC Score Track

ADA Submit D final 1037 0.181 0.8185 0.1022 Agnos

GINA Submit A final 1034 0.0495 0.9507 0.3162 Agnos

HIVA Submit D final 1037 0.305 0.6976 0.4418 Agnos

NOVA Submit E final 1038 0.0456 0.9552 0.0385 Agnos

SYLVA Submit C final 1036 0.0094 0.9906 0.2864 Agnos

Overall Submit D final 1037 0.1194 0.8812 0.2786 Agnos

quantitative advantages : Dimensionality reduction

qualitative advantages : Novel approach that combines both the advantages of a generative and
a discriminative classifier.

Code

I used spider/clop commands and added my own objects to the spider library. I implemented
my own version of the expectation maximization algorithm in C++ and called this routine from
matlab.

Keywords

• Preprocessing or feature construction: centering, scaling, standardization

• Feature selection approach: frequency count

• Feature selection engine: Very simple matlab routine

• Feature selection search: Brute force

• Feature selection criterion: data statistics

• Classifier: Neural networks, SVM, boosting, mixture model

• Hyper-parameter selection: cross-validation

• Other: post-processing, “bias” option

B2.7. Linear Programming SVM (Liknon)
Contact

Dr. Erinija Pranckeviciene. Institute for Biodiagnostics, NRC Canada, Ellice ave 435, Win-
nipeg, MB. erinija.pranckevie@nrc-cnrc.gc.ca

mailto:erinija.pranckevie@nrc-cnrc.gc.ca

Reference

E.Pranckeviciene and R.Somorjai, Liknon feature selection for Microarrays, in F.Masulli, S.Mitra,
and G.Pasi(Eds.):WILF 2007, LNAI 4578, 580–587, 2007.

Method

Linear Programming SVM (Liknon) feature selection combined with state of the art classifica-
tion rules.

Code/engine:

1. For the Matlab implementation of the LP SVM we refer to C. Bhattacharrya, LR
Grate, A Rizki and et. al, “Simultaneous relevant feature identification and classi-
fication in high-dimensional spaces:application to molecular profiling data”, Signal
Processing, vol 83(4), 729–743, 2003.

2. For the Matlab implementation of the state of the art classifiers we refer to R. Duin,
P. Juscak, P. Paclick, E.Penkalska, D. deRidder, D.Tax, PRTools4 A Matlab toolbox
for pattern recognition, February, 2004.

Implementation strategy: The dataset first is divided into 10 parts (10 fold crossvalidation).
The training set of the single fold is further subdivided into balanced training and unbal-
anced (the rest samples) monitoring sets. A number of the subdivisions is arbitrary, we
did 31. In every subdivision a number of LP SVM models/discriminants is trained on
the balanced training set and the BER -balanced error rate- of each is estimated on the
monitoring set. The number of the models depends on the set of the chosen values of reg-
ularization parameter C. The data, number of features and available computational time
determine the range of C values. The model with smallest monitoring BER is selected
in every subdivision. As a result, in the single fold, we have an ensemble of the linear
discriminants and a feature profile possibly to be investigated with the other classification
rules.

Preprocessing: none.

Feature selection: Feature selection relies on the property of LP SVM to produce sparse so-
lutions. The identities of the features, corresponding to non zero weights of the discrim-
inants, are included in the profile. Every fold reveals slightly different feature profiles.
However relevant feature identities consistently appear in many subdivisions. First it was
noticed in the experiments with synthetic data and then in the experiments with microar-
rays.

Classification:

1. ensemble of linear discriminants;

2. the rules tested on the derived feature profile included linear and nonlinear, all avail-
able in the PRTools: fisher classifier, linear logistic classifier, subspace classifier,
nearest neighbors, decision tree, neares mean classifier, quadratic classifier.

3. NO TRANSDUCTION.

B2. AL vs PK Challenge 435

Results

Table 28: Our Best Results

Dataset Entry name Entry ID Test BER Test AUC Score Track

ADA liknon feature selection + state of
art (1)

1012 0.1818 0.8702 0.135 Agnos

GINA liknon feature selection + state of
the art (3)

1014 0.0533 0.974 0.3889 Agnos

HIVA liknon feature selection+ state of
art classifiers

814 0.2939 0.7589 0.1647 Agnos

NOVA liknon feature selection + state of
art 2

713 0.0725 0.9814 0.5064 Agnos

SYLVA liknon feature selection + state of
the art (2)

1013 0.019 0.9949 0.7085 Agnos

Overall liknon feature selection + state of
art (1)

1012 0.127 0.9133 0.4358 Agnos

Quantitative advantages: Simplicity and interpretability of the results in terms of feature
identities, important for discrimination. The stability of the discovered feature identities
in different folds suggests that the feature selection via LP SVM is robust to the sample
bias. In case of high dimensional data, the discovered features provide a reduced repre-
sentation of the data for testing other classifiers. A success of the suggested approach was
apparent for GINA dataset. DISADVANTAGE- high computational burden.

Qualitative advantages: The sequence of values of the regularization parameter determines
the increasing number of features given by the increasing number of non-zero weights
of the linear discriminant. This can be considered as a feature selection structure. The
sequence of the LP SVM solutions- linear discriminants of increasing complexity- forms
a nested structure, where the principles of the structural risk minimization may apply.

Keywords

• Preprocessing or feature construction: none.

• Feature selection approach: embedded feature selection.

• Feature selection engine: SVM.

• Feature selection search: feature ranking, ordered FS (ordered feature selection) Feature
selection criterion: monitoring error

• Classifier: nearest neighbors, tree classifier, L1 norm regularization, ensemble method,
bagging.

• Hyper-parameter selection: grid-search.

• Other: sample bias.

B2.8. Agnostic Learning with Ensembles of Classifiers
Contact

Joerg Wichard. FMP - Molecular Modelling Group Robert Roessle Strasse 10 13125 Berlin,
Germany joergwichard@web.de

Reference

Agnostic Learning with Ensembles of Classifiers

Method

Ensembles of Classifiers, mainly Classification and Regression Trees (CART). Ensemble build-
ing based on a modified bagging scheme. We used a simple balancing strategy for data pre-
processing. No feature selection and no transduction method was used. Model selection and
parameter selection was combined in a modified cross-validation approach.

Results

Table 29: Our Best Results

Dataset Entry name Entry ID Test BER Test AUC Score Track

ADA Final 1039 0.181 0.906 0.1002 Agnos

GINA boosted trees 2 1008 0.0731 0.979 0.6197 Agnos

HIVA cv-trees 1010 0.295 0.7702 0.2008 Agnos

NOVA boosted trees 2 1008 0.1416 0.9344 0.8462 Agnos

SYLVA Final 1039 0.0115 0.9981 0.402 Agnos

Overall Final 1039 0.1481 0.9137 0.4811 Agnos

quantitative advantages: Ensembles of CART trees are robust, conceptually simple and fast.
The critical issue of feature selection is done by the training algorithm, if “tree pruning”
is used.

qualitative advantages: Huge ensembles (almost like random forests) are possible with this
method.

Code

Our own Matlab Ensemble Toolbox was used: http://www.j-wichard.de/entool/

B2.9. Modified multi-class SVM formulation; Efficient LOO computation
Contact

Vojtech Franc
Fraunhofer Institut FIRST IDA
Kekulestr. 7, 12489 Berlin
fravoj@first.fraunhofer.de

mailto:joergwichard@web.de
http://www.j-wichard.de/entool/
mailto:fravoj@first.fraunhofer.de

B2. AL vs PK Challenge 437

Acronym of your best entry

SVM-RBF

Reference

Unpublished.

Method

PRIOR KNOWLEDGE — GINA

Preprocessing: Each input image was normalized such that variance of pixels was one. No
feature selection was applied.

We modified multi-class SVM by Crammer et al. 2001. A decision {odd,even} is taken
based on the output of the multi-class classifier, i.e. we take decision “odd” whenever the multi-
class classifier returns 1,3,. . . 9 and the decision “even” otherwise. The standard multi-class
SVM minimizes the number misclassification. In our modified formulation, we minimize the
number of wrong decisions made on account of the output of the multi-class classifier. For
example, if the multi-class classifier returns 1 and the true label is 2 we penalizes the decision
by one. However, if the classifier returns 4 (or any even number) and the true label is 2 we pay
no penalty since the final decision is correct. This modification leads to a QP task similar to
the original multi-class SVM but the number of linear constraints is reduced. We used a cutting
plane algorithm similar to Tsochantaridis et al. 2005 to solve the underlying QP task.

We implemented a kernel version of this modified SVM and used the RBF (Gaussian) kernel
in all experiments. The optimal hyper-parameters (regularization constant and the kernel with)
were selected from a chosen finite set by minimizing the BER estimate on the validation set.

AGNOSTIC LEARNING — HIVA, NOVA, SILVA

Features were normalized such that the covariance matrix was the identity matrix. No feature
selection was applied.

We used standard binary SVM with RBF kernel in all the experiments.
The hyper-parameters were tuned using the Leave-One-Out (LOO) estimate of the BER

error. To make computation of the LOO feasible we designed a new method which allows for
early stopping of the QP optimizer. The new stopping condition guarantees that the decision
on the test example equals to the decision of the classifier with optimal (minimizing the QP
exactly) parameters, i.e. this method gives the exact LOO estimate and it is computationally
feasible. In contrast to the standard stopping conditions used in QP-SVM optimization (e.g
those based on KKT conditions or duality gap) our stopping condition is directly related to the
desired output of the optimization, i.e. we stop the optimization when the decision (label) on
the testing example can be reliably determined.

Results

Table 30: Our Best Results

Dataset Entry name Entry ID Test BER Test AUC Score Track

ADA RBF SVM 716 0.1833 0.8987 0.1984 Agnos

GINA RBF SVM 933 0.023 0.9962 0.0598 Prior

HIVA RBF SVM 734 0.2827 0.7707 0.0763 Agnos

NOVA RBF SVM 734 0.0877 0.9834 0.6795 Agnos

SYLVA RBF SVM 734 0.0205 0.997 0.7437 Agnos

Overall RBF SVM 933 0.1211 0.9289 0.408 Prior

Add GINA: In contrast to treating the problem as standard binary classification, the pro-
posed method exploits the information about the clustering of the data within the decision
classes by modeling each digit with a single normal vector. The proposed formulation is a
natural extension of the multi-class SVM when an addition information about clustering within
the classes is available.

Add Agnostic Learning: Our method allows for exact and efficient computation of the LOO
estimate for problems with thousands of examples.

Code

We implemented all the methods in Matlab. The critical time consuming parts (like QP solvers)
are written in C. In principal, we can make the code available but currently it is not in the state
ready for publication.

Keywords

• Preprocessing or feature construction: feature normalization.

• Feature selection approach: none.

• Classifier: SVM, kernel-method, L2 norm regularization.

• Hyper-parameter selection: leave-one-out.

• Other: QP optimization.

B2.10. Report on Preliminary Experiments with Data Grid Models in the
Agnostic Learning vs. Prior Knowledge Challenge

Contact

Marc Boullé
France Telecom R&D
2, avenue Pierre Marzin
22307 Lannion Cedex, France
marc.boulle@orange-ftgroup.com

mailto:marc.boulle@orange-ftgroup.com

B2. AL vs PK Challenge 439

Acronym of your best entry

Data Grid (Coclustering)

Reference

Paper published in IJCNN 2007

Method

Data grids extend the MODL discretization and value grouping methods to the multivariate
case.

They are based on a partitioning of each input variable, in intervals in the numerical case and
in groups of values in the categorical case. The cross-product of the univariate partitions forms
a multivariate partition of the input representation space into a set of cells. This multivariate
partition, called data grid, allows to evaluate the correlation between the input variables and the
output variable. The best data grid is searched owing to a Bayesian model selection approach
and to combinatorial algorithms.

Three classification techniques exploiting data grids differently are presented and evaluated
in the Agnostic Learning vs. Prior Knowledge Challenge:

• Data Grid (MAP): use the MAP data grid as a classifier

• Data Grid (CMA): use an ensemble of data grids

• Data Grid (Coclustering): apply a bivariate unsupervised data grid to learn a coclustering
on the instance*variable space, using all the unlabelled train+valid+test data. The clusters
of instances are used for prediction using the available labels (train+valid).

Summary of the method:

• Preprocessing : multivariate partition (discretization/value grouping)

• Feature selection: variables whose univariate partition contains at least two parts are
selected

• Classification

– Data Grid (MAP): the best multivariate partition forms a classifier

– Data Grid (CMA): use an ensemble method

– Data Grid (Coclustering): use learning from the unlabeled test set

• Model selection/hyperparameter selection: model are selected using a Bayesian approach
(no hyper-parameter)

Results

Table 31: Our Best Results

Dataset Entry name Entry ID Test BER Test AUC Score Track

ADA Data Grid (CMA) 920 0.1756 0.8464 0.0245 Prior

GINA Data Grid (Coclustering) 921 0.0516 0.9768 0.3718 Prior

HIVA Data Grid (Coclustering) 921 0.3127 0.7077 0.5904 Agnos

NOVA Data Grid (Coclustering) 921 0.0488 0.9813 0.141 Agnos

SYLVA Data Grid (CMA) 918 0.0158 0.9873 0.6482 Agnos

Overall Data Grid (Coclustering) 921 0.1223 0.8984 0.3813 Prior

quantitative advantages compact feature subset, works with any variable type, ease of inter-
pretation, no parameter tuning, use all the available data, computational efficiency

qualitative advantages compute posterior probabilities, model selection based on a Bayesian
approach, data grids are a new machine learning technique.

B2.11. Dimensionality Reduction Techniques
Contact

Stijn Vanderlooy & Laurens van der Maaten
MICC-IKAT, Universiteit Maastricht, P.O. Box 616,
6200 MD Maastricht, the Netherlands

Acronym of your best entry

micc-ikat

Method

Our method to the challenge was to apply dimensionality reduction techniques in order to find
a small set of discriminative features. As a preprocessing step we made the data zero mean and
unit variance. We then applied principal components analysis and linear discriminant analysis
to find a linear subspace of the original data space. In addition, the following six nonlinear
dimensionality reduction techniques were applied: isomap, kernel principal components analy-
sis with Gaussian kernel, (Hessian) locally linear embedding, Laplacian eigenmaps, and local
tangent space alignment. Algorithms are run with default settings.

For classification we tried the following five classifiers: naïve Bayes, linear discriminant
classifier, quadratic discriminant classifier, one nearest neighbour, and least squares support
vector machine with Gaussian kernel. Complexity parameter C and bandwidth h are optimized
with values C = [1 5 10 20 50 100 500] and h = 0.1 to 1.5 in steps of size 0.1 for each dataset
separately using a ten-fold cross validation procedure.

The best overall results, measured by means of error rate, were obtained using the support
vector machine on the data representation found by linear discriminant analysis.

B2. AL vs PK Challenge 441

Results

Table 32: Our Best Results

Dataset Entry name Entry ID Test BER Test AUC Score Track

ADA micc-ikat 1059 0.2805 0.7195 0.953 Agnos

GINA LDA and LSSVM 945 0.1648 0.835 0.9145 Agnos

HIVA LDA and LSSVM 945 0.3837 0.6157 0.9237 Agnos

NOVA LDA and LSSVM 945 0.4248 0.5741 0.9679 Agnos

SYLVA LDA and LSSVM 945 0.0495 0.9505 0.9397 Agnos

Overall micc-ikat 1059 0.2606 0.739 0.9398 Agnos

quantitative advantages (e.g. compact feature subset, simplicity, computational advantages)

qualitative advantages (e.g. compute posterior probabilities, theoretically motivated, has some
elements of novelty).

Keywords

• Preprocessing or feature construction: centering, scaling, standardization, PCA.

• Feature selection approach: filter, wrapper, embedded feature selection.

• Feature selection engine: correlation coefficient, Relief, single variable classifier, mutual
information, miscellaneous classifiers, including neural network, SVM, RF.

• Feature selection search: feature ranking, ordered FS (ordered feature selection), forward
selection, backward elimination, stochastic search, multiplicative updates

• Feature selection criterion: training error, leave-one-out, K-fold cross-validation.

• Classifier: neural networks, nearest neighbors, tree classifier, RF, SVM, kernel-method,
least-square, ridge regression, L1 norm regularization, L2 norm regularization, logistic
regression, ensemble method, bagging, boosting, Bayesian, transduction.

• Hyper-parameter selection: grid-search, pattern search, evidence, bound optimization,
cross-validation, K-fold.

• Other: ensemble method, transduction.

B2.12. DoubleBoost
Contact

Lutz, Roman, lutz@stat.math.ethz.ch

Acronym of your best entry

DoubleBoost

mailto:lutz@stat.math.ethz.ch

Method

DoubleBoost is a special version of LogitBoost (Lutz, WCCI 2006) that can only be used for
the prior knowledge track for Sylva. It uses the fact, that each pattern is composed of two true
records: “each pattern contains each variable twice”.

A new dataset is constructed by putting the second half of the data (variables 55 to 108)
below the first half (variables 1 to 54). The new dataset is of dimension 2n times 54 (instead of
n times 108). This new dataset is used for fitting the base learner (tree). The output of the base
learner is averaged over the two records belonging to the same pattern.

Results

Table 33: Our Best Results

Dataset Entry name Entry ID Test BER Test AUC Score Track

ADA LogitBoost with trees 13 0.166 0.9168 0.002 Agnos

GINA LogitBoost with trees 892 0.0339 0.9668 0.2308 Agnos

HIVA LogitBoost with trees 13 0.3018 0.7512 0.3414 Agnos

NOVA LogitBoost with trees 892 0.0463 0.9538 0.0449 Agnos

SYLVA Doubleboost 893 0.0043 0.9957 0.005 Prior

Overall Doubleboost 893 0.1114 0.8896 0.1381 Prior

B2.13. Boosting with SVM
Contact

Jorge Sueiras, jorge.sueiras@neo-metrics.com

Acronym of your best entry

Boost tree

Method

For NOVA

1. Parsing each record, generating a word count table. Usage of a thesaurus and a word
exclusion list.

2. Application of SVM techniques for dimensional reduction.

3. Selection of input variables: Top 50 variables from the SVM process and top 100 vari-
ables from word counting.

4. Model building through application of bootstrapping techniques to decision tree models
with no more than 8 leaves per tree. Tree splitting search criterion was based on the
Chi-square test.

mailto:jorge.sueiras@neo-metrics.com

B2. AL vs PK Challenge 443

Results

Table 34: Our Best Results

Dataset Entry name Entry ID Test BER Test AUC Score Track

ADA boost tree 906 0.1825 0.8075 0.1575 Prior

GINA Boost mix 915 0.0896 0.9655 0.6581 Prior

HIVA boost tree 906 0.3257 0.7127 0.739 Agnos

NOVA boost tree 906 0.0507 0.9869 0.2115 Agnos

SYLVA boost tree 906 0.0081 0.9996 0.2211 Prior

Overall boost tree 906 0.1314 0.8944 0.3983 Prior

B2.14. High-Throughput Screening with Two-Dimensional Kernels
Contact

Chloe-Agathe Azencott and Pierre Baldi
Institute for Genomics and Bioinformatics
236 Info & Computer Science Bldg. 2
University of California, Irvine
Irvine, California 92697-3445
cazencot@ics.uci.edu

Acronym of your best entry

SVM

Reference

None

Method

• Preprocessing

The molecules of the HIVA dataset are represented as two-dimensional graphs where
nodes are atoms and edges are bounds. The nodes are labelled by different schemes,
including atomic number or element-connectivity label (atomic number together with
number of connected atoms); the edges are labelled by bond type. Molecular graphs are
then translated into fingerprints, vectors for which each component accounts for a given
two-dimensional feature. More specifically, circular fingerprints [1] are used.

• Feature selection

No feature selection is applied.

• Classification

mailto:cazencot@ics.uci.edu

– Specific kernels, namely Tanimoto and MinMax, are used on top of the fingerprints
to derive support vector machines. Generally speaking, these kernels allow for com-
paring fingerprints by comparing the number of features they share.

– SVMTorch implementation [2] is used

– Over-sampling of the active class is used to compensate for the unbalanceness of
the dataset

• Model selection/hyperparameter selection

– Optimal labeling schemes, depth of fingerprints and kernels are chosen by 10-fold
cross-validation on the training set

– Optimal SVM parameters C and epsilon are chosen among grid values by 10-fold
cross-validation on the training set

Results

Table 35: Our Best Results

Dataset Entry name Entry ID Test BER Test AUC Score Track

ADA final svm # 1 936 0.2751 0.8084 0.9448 Agnos

GINA final svm # 1 936 0.1984 0.8915 0.9872 Agnos

HIVA SVM 992 0.2693 0.7643 0.008 Prior

NOVA final svm # 1 936 0.2005 0.9574 0.9423 Agnos

SYLVA final svm # 1 936 0.0434 0.9912 0.9246 Agnos

Overall SVM 992 0.1973 0.8826 0.7614 Prior

• quantitative advantages

1. computation of features is relatively fast

2. no feature selection is needed

• qualitative advantages

– cross-validation results are in favor of low over-fitting

– generic enough to be applied to other problems of the chemistry domain

– the method can easily be adapted to other problems where the data can be repre-
sented as graphs

Code

• Computation of the molecular graph (Python Module)
With the help of the OpenBabel library [3], we create a graph where the nodes are the
atoms and the edges the bonds between them

• Computation of the fingerprints (Python Module)

B2. AL vs PK Challenge 445

– Assign an initial label to each heavy (i.e. non hydrogen) atom. The label can be,
for instance, the atomic number of the atom (atomic number scheme), or its atomic
number paired with its number of connections to other heavy atoms (element-connectivity
scheme)

– For each iteration (typically: 2 to 4), update each atom label in the following way:
the new label is a hash of the old label with the labels of all the connected atoms

– Eventually, each atom label (across the whole dataset) is a possible feature and
feature vectors (that are very sparse) are created

• SVM implementation

– The SVMTorch module [2] is used (the MinMax kernel, that can be used on binary
vectors as the Tanimoto kernel, is added to the kernels)

– A Python wrapper is used to perform grid-search hyper-parameters optimization

Keywords

• Preprocessing or feature construction: molecular graph, circular fingerprints

• Feature selection approach: None

• Feature selection engine: None

• Feature selection search: None

• Feature selection criterion: None

• Classifier: SVM, active class over-sampling

• Hyper-parameter selection: grid-search,10-fold cross-validation.

• Other: 2D kernels for small molecules

[1] Dubois, J. E. Chemical Applications of Graph Theory; Academic Press, London: 1976
and Hassan, M., Brown, R. D., Varma-O’Brien, S., Rogers, D. Cheminformatics anal-
ysis and learning in a data pipelining environment. Molecular Diversity 2006, 10, pp
283–299.

[2] http://www.idiap.ch/machine-learning.php

[3] http://openbabel.sourceforge.net

http://www.idiap.ch/machine-learning.php
http://openbabel.sourceforge.net

Appendix C

CLOP: The challenge learning
object package

Appendix C1

Quick Start Guide for CLOP
Amir Reza Saffari Azar Alamdari AMIR@YMER.ORG

Institute for Computer Graphics and Vision
Graz University of Technology, Graz, Austria
Isabelle Guyon ISABELLE@CLOPINET.COM

Clopinet Enterprise, 955 Creston road
Berkeley, CA 94708, USA

C1.1. Introduction
The main goal of this guide is to provide the Model Selection Game participants a quick starting
point for using Challenge Learning Object Package (CLOP). This document will not cover in-
formation about the game, goals, rules, and etc, for those information please refer to the game’s
official website at http://clopinet.com/isabelle/Projects/modelselect/challenge/.

C1.1.1. What is CLOP?

CLOP is a software package, which contains several ready-to-use machine learning algorithms
to be used during the game by participants. It is based on Spider package 1 from Department of
Empirical Inference for Machine Learning and Perception, Max Planck Institute for Biological
Cybernetics, Tuebingen, Germany. CLOP has more algorithms provided by challenge orga-
nizers compared to Spider and it runs on MATLAB http://www.mathworks.com, but it
doesn’t depend on any particular toolbox of MATLAB. CLOP together with this manual can be
downloaded from http://clopinet.com/isabelle/Projects/modelselect/Clop.
zip.

Briefly, to provide a sufficient toolbox for the challenge, we did the following modifications
to the original Spider package:

• The entire spider is provided, but for the purpose of participating to the game, you are
allowed to build models only from the following list of CLOP objects:

– bias

– chain

– ensemble

– gentleboost

– gs

– kridge

– naive

– neural
1. http://www.kyb.tuebingen.mpg.de/bs/people/spider/index.html

© A.R.S.A. Alamdari & I. Guyon.

http://clopinet.com/isabelle/Projects/modelselect/challenge/
http://www.mathworks.com
http://clopinet.com/isabelle/Projects/modelselect/Clop.zip
http://clopinet.com/isabelle/Projects/modelselect/Clop.zip
http://www.kyb.tuebingen.mpg.de/bs/people/spider/index.html

ALAMDARI GUYON

– normalize

– pc_extract

– relief

– rf

– rffs

– shift_n_scale

– standardize

– subsample

– svc

– svcrfe

– s2n

This list can also be obtained by typing whoisclop at the MATLAB prompt. Please
refer to Section C1.4 for details.

• Some of the CLOP objects were not part of the original Spider; some have been modified
(methods overloaded) for several reasons, including providing a simpler hyperparameter-
ization (hiding some hyperparameters as private), returning always a discriminant value
as output, providing more efficient implementations, and providing good default values
to all hyperparameters.

For a valid challenge submission, please refrain from using other Spider learning objects,
except using cross-validation objects, which allow you searching for the best model, but do not
affect the final model. In addition, you should not modify the code of the CLOP objects, except
if you find an error (please let us know) or make a change that does not affect the end result, but
affects computational efficiency (we should be able to reproduce your results, given the model
and the same set of parameters that you used). You can verify that your object is a valid CLOP
object with the function isclop.

C1.1.2. How to install CLOP?

First of all you should obtain CLOP from the website mentioned above, and save it into any
directory that you prefer. Then you have to open and extract the zip file using any archiving
software of your convenient, into any directory that you want to install the CLOP. For the rest
of this manual we will call this destination directory, where the extracted files are stored, as
MyProjects/CLOP/ and we will refer to MyProjects/ as root directory. For your case, you have
to replace it with the path to your CLOP directory. Now you have CLOP installed on your
computer. If you are running CLOP under Linux OS, you might need to compile some of our
models, please refer to Section C1.1.5.

The followings are the directory structures of CLOP and a brief description of what is inside:

1. MyProjects/CLOP/challenge_objects/: Challenge objects provided by the organizers.

2. MyProjects/CLOP/sample_code/: Sample code and lots of different functions written for
the game.

3. MyProjects/CLOP/spider/: Original Spider is located here.

450

C1. QUICK START GUIDE FOR CLOP

C1.1.3. What I need to run CLOP?

Since CLOP runs under MATLAB, you have to have MATLAB running on your computer.
Additionally, in order to use CLOP for this game you will need to download the datasets from
DATASET’S WEBSITE LINK. For compatibility with the current settings inside the sample
code, we suggest you to have your datasets extracted into the following directory: MyPro-

jects/Data/. Of course you can choose other places, but then you have to modify manually some
parts of the main.m program which is located inside the sample_code directory, see bellow for
more information.

C1.1.4. How to run CLOP?

We will describe first how to run a sample program using CLOP. Start MATLAB. Now change
the current directory to where the sample code is located (in our case MyProjects/CLOP/sample_code/)
using:

» cd MyProjects/CLOP/sample_code/

and run main.m program:

» main

If you have the datasets in MyProjects/Data/, this probably will run the main program suc-
cessfully. You should notice from the MATLAB command window that the program displays
some license agreement terms first and then loads a specific dataset and trains some algorithms
on it, and finally tests the trained models and saves the results. If you experienced some prob-
lems check that the directory structure and path are correct.

C1.1.5. Compilation of SVC

The svc model is originally based on a C code, so depending on your machines configura-
tion, there might be a need for compilation. We have provided pre-compiled versions for Win-
dows and they usually run without problems. But for Linux, you need to compile them again.
The source code for svc is located in CLOP/challenge_objects/packages/libsvm-mat-2.8-1. For
Linux users, there are two different Makefiles: Makefile_orig is the one which was provided by
the authors of the SVM package, and Makefile_amir is what I used on my machine to compile
it. The only difference is these two files is the name of the C compiler. So you might need to go
to one of these files and change environmental variables in the beginning of the file according
your system’s settings and which version of C compiler you have installed. For Windows users,
you can run make.m to compile this object again, if needed. There is a README.TXT file which
describes installation procedure in more details.

C1.1.6. More Details on Objects and Classes

Spider and CLOP both use object oriented programming style provided in MATLAB, which
are called classes. If you do not know anything about MATLAB objects and/or object oriented
programming, don’t be scared away. You can learn how to use CLOP from examples, and in
principle you will not need to deal with objects and classes. But you may definitely benefit from
reading the (short) MATLAB help on objects. Briefly:

451

ALAMDARI GUYON

• An object is a structure (i.e. has data members), which has a number of programs (or
methods) associated to it. The methods modify eventually the data members.

• The methods of an object myObject are stored in a directory named @myObject, which
must be in your MATLAB path if you want to use the object (e.g. call addpath).

• One particular method, called constructor is named myObject. It is called (with eventu-
ally some parameters) to create a new object. For example:
» myObjectInstance = myObject(someParameters);

• Once an instance is created, you can call a particular method. For example:
» myResults = myObjectMethod(myObjectInstance, someOtherParameters);

• Note that myObjectInstance should be the first argument of myObjectMethod. Matlab
knows that because myObjectInstance is an instance of myObject, it must call the method
myObjectMethod found in the directory @myObject. This allows methods overloading
(i.e. calling methods the same name for different objects.)

• Inheritance is supported in MATLAB, so an object may be derived from another object.
A child object inherits from the methods of its parents. For example:
» myResults = myParentMethod(myObjectInstance, someOtherParameters);
In that case, the method myParentMethod is found in the parent directory @myObject-
Parent, unless of course it has been overloaded by a method of the same name found in
@myObject.

Refer to MATLAB’s help for more information about classes and objects at http://www.
mathworks.com/access/helpdesk/help/techdoc/matlab_prog/index.html.
Some useful functions for dealing with classes and objects in MATLAB are:

• isa: checks the class type

• class: returns the class

• methods: returns all the methods

• struct: lets you examine the data members

• fieldnames: returns a cell array with the field names

C1.2. Sample Program
C1.2.1. What is inside the main.m program?

The main program is written to provide participants with an easy-to-use template of how to
utilize CLOP and build their own model with it 2. Here we describe what are the different parts
of this program and how to modify them for your own preferences.

1. Initialization This part of the code specifies some initial values for different variables
which will be used through out the code:

• It starts with cleaning the variables from workspace, cleaning the command window,
and closing all figures. IF YOU DON’T WANT TO LOOSE YOUR AVAILABLE DATA
AND FIGURES, REMOVE THIS PART OF THE CODE.

2. With model, here we mean any combination of algorithms that one might define to apply to a dataset. For example
the sequence of normalizing the data, and then classifying it using a neural network can be described as a model.

452

http://www.mathworks.com/access/helpdesk/help/techdoc/matlab_prog/index.html
http://www.mathworks.com/access/helpdesk/help/techdoc/matlab_prog/index.html

C1. QUICK START GUIDE FOR CLOP

• The next section defines the directory structure of your system. It is assumed that
you want to have the following directories for your data and results, which is well
designed to keep track of different activities and results required for a valid submis-
sion:

- my_root: root directory where everything is there,
Example: MyProjects/.

- data_dir: data directory where datasets are,
Example: MyProjects/Data/.

- code_dir: code directory where CLOP is located,
Example: MyProjects/CLOP/.

- resu_dir: directory where results will be stored,
Example: MyProjects/Results/.

- zip_dir: directory where zip files will be stored,
Example: MyProjects/Zipped/.

- model_dir: directory where models will be stored,
Example: MyProjects/Models/.

- score_dir: directory where model scores will be stored,
Example: MyProjects/Scores/.

• ForceOverWrite defines if you want the system to overwrite your previous re-
sults (if they are available in results, models, and zip directories). The default value
is 1, which will not disturb you for overwriting questions, but be careful that in this
case there is always risk of loosing valuable information and results.

• DoNotLoadTestData defines if you want the system to load the test set or not.
This is used for cases where the size of test set is very large and loading it to memory
will not be efficient for training phase. The default value is 1, which will not load
the test sets.

• MergeDataSets defines if you want the system to merge training and validation
sets. This is useful when you have labels for validation sets and you want to use
them as extra training samples. The default value is 0, which will not merge the
training and validation sets.

• FoldNum defines if you want the system to do a k-fold cross-validation or not,
where k=FoldNum. The default value is 0, which will not perform cross-validation.

• The next step is to define which datasets you want to train, you can define this in
the dataset cell array. For starting it is a better idea to start with just one dataset
and check how your models are performing on it. In addition note that not always a
single model is a good choice for all datasets.

• In order to keep your models separate from your current code, by default in training
and testing section the program will call another function named model_examples.m

with a user chosen model name and the dataset. You can easily define there which
algorithms you would like to try over datasets under the chosen name, without a
need to change the code in main program. This procedure will facilitate the model
selection process too. For more information about model_examples.m, please refer
to Section C1.4. You can define your model names in the modelset cell array.

• Now that you have defined your preferences, the system tries to generate and add
the current directories (and their subsequent directories) to MATLAB’s search path.
This will finalize the initialization section.

453

ALAMDARI GUYON

2. Train/Test Here the code will start a loop for training and testing your models over dif-
ferent datasets you have specified above. Each loop consists of the following steps:

• Loading the dataset and creating data structures: Since the original datasets pro-
vided from challenge website are stored in text files, this section will load all of
them into proper data structures suitable for MATLAB. Because you will need these
variables in your later experiments again and the process of loading them from text
files usually takes longer time compared to loading variables from a MATLAB save
file (.mat format), it also saves the data structures in the same data locations. The
next time that you run the code over the same dataset, this section will automatically
check whether the .mat format is available or not, and in the case of existing file it
will load data from that .mat file, resulting in a very low loading time. Please refer
to Section C1.3 for more information about the data variables.

• Looping over different models: With the modelset array you can define several
models to be tested over different datasets. This part of the code starts a loop over
those models, which includes the following parts:

- First of all, it calls model_examples.m function with the model and dataset
names, in order to get back a valid CLOP or Spider model. Please refer to
Section C1.4 for more information on how to define valid models.

- If you have defined the algorithm to perform a cross-validation step, the system
starts this step and trains the model FoldNum times.

- Now that the program has the data and model, it is time to train the algorithms
specified within the model, and obtain the training results. This is done simply
by calling train function with model and training data.

- After training, it will calculate the balanced error rate of the trained model,
followed by computing a very tentative guess for test BER.

- Now that the model is trained over the training set, it is time for testing it
over validation and test sets, this task is accomplished easily by calling test
function with model and proper data set.

- The next step is to save the results into specified directories in appropriate of-
ficial format which can be sent directly to the challenge website. It follows by
saving the models too, which are needed for a valid final entry of the game.

3. Make Archive The finishing part of the code is to make a zip archive of all necessary
files needed for submission to the challenge website for verification.

As it can be seen from these steps, the main program contains almost everything that a par-
ticipant needs to enter the competition and produce proper results. We suggest you to make
a backup copy of this program, and then modify different parts of it according to your inter-
ests. Since this is a model selection competition, you may want to replace the simple k-fold
cross-validation provided as example by a more elaborate model selection strategy to select an
optimum model or set of hyperparameters.

C1.3. Data Structure
The data object that has been used in CLOP, consists of the following fields (let’s name the data
variable D):

1. D.train: training data is stored here.

454

C1. QUICK START GUIDE FOR CLOP

2. D.valid: validation data is stored here.

3. D.test: test data is stored here.

Each of these fields has two additional subfields, called .X and .Y. In .X field the raw
data are stored in a matrix format with example arranged in rows and features in columns. The
.Y field contains the labels for the corresponding set of examples in a one dimensional vector
format. Note that if the labels are not provided in the datasets (always for test set and just
for validation set before release of validation labels), then this field will be an empty vector.
Additionally one can get statistics about the data using function data_stats(D).

C1.4. Defining Models
For the purpose of the game, a valid model is defined as a combination of learning objects from a
predefined list (type whoisclop at the MATLAB prompt to get a list of allowed CLOP learn-
ing objects; to check that a particular object is a valid CLOP object, type isclop(object)).

A typical model usually (but not necessarily) consists of the following parts3:

1. Preprocessing

2. Feature Selection

3. Classification

4. Postprocessing

The simplest model for our challenge can be just a classifier. Defining a model is a very
simple task within CLOP framework. For example the following code makes a neural network
classifier available with its default hyperparameters:

» myClassifier = neural

and this code defines a linear support vector machine classifier with a shrinkage (regulariza-
tion) value of 0.1:

» myClassifier = svc({’shrinkage=0.1’})

Note the way that a hyperparameter value (shrinkage in this case) is passed to the object
constructor (svc in this case). This is the general method to assign different values for hyperpa-
rameters rather than their default values. If you want to know what are the hyperparameters of
each model, you can simply type » help OBJECT_NAME in MATLAB command window,
where OBJECT_NAME is the name of a model. This will bring up information available for
each model together with the list of hyperparameters used inside the model.

In general, there are two types of hyperparameters for each model: one is named as public
and the other is private. For the competition, only the public hyperparameters can be tuned.
The method to do that is via the constructor, as showed in examples. To find out which hyper-
parameters are public, use default(OBJECTNAME) in MATLAB command window. It is
also possible to set the hyperparameters directly (outside of the constructor), but do this at your
own risks since this may generate inconsistencies.

3. Note that the two first steps should not necessarily be in this order. In particular, since feature selection changes
the number of features, normalization, which is a preprocessing method, may need to be done/redone after feature
selection

455

ALAMDARI GUYON

C1.4.1. How to combine different models?

There exist two different ways to combine several models with each other. The first one is serial
combination where outputs of each model is fed to the inputs of the next model. For example
suppose that we want to normalize the data and then classify it with a neural network. This
is a serial combination of algorithms where output of normalization step is supposed to be an
input for neural network classifier. This type of combinations can be done easily using chain
object. The following is the sample code you would need for the example described above:

» myModel = chain({normalize , neural})

Now when you train or test myModel with an input data, first the normalize algorithm
will operate on the data and then it will pass the resulted data to neural object to classify it:

» [Outputs, myModelTrained] = train(myModel, D.train)

In this example it is supposed that D.train contains the training data. The myModelTrained
is the resulted model after training, while Outputs contains information about predicted la-
bels and other output variables. For more information about training and testing models, please
refer to Section C1.5.

The other way of combining different algorithms is to combine different models with each
other in a parallel style. This is usually known as ensemble methods in machine learning, and
the goal is often to combine outputs of different learning algorithms to improve the classifica-
tion performances. For example we want to have two classifiers, one neural network and one
naive Bayes, trained on the same data, and then add their outputs to create the final results. The
following code will generate the desired model and train it on D.train set:

» myNeural = chain({normalize, neural({’units=3’, ’balance=1’})})
» myNaive = naive
» myClassifier = ensemble({myNeural, myNaive})
» [Outputs, myModelTrained] = train(myClassifier, D.train)

Note that for ensemble methods there are more sophisticated algorithms to train and com-
bine outputs of different classifiers, like bagging and boosting. We consider those methods as
individual classifiers and they will be described in next sections in details.

Note that the nth model of a chain or ensemble can be easily accessed with the curly bracket
notation. For example in the following model, we want to access to the neural object, which
is the 2nd element in chain and 3rd in ensemble object:

» myChain = chain({normalize, ensemble({svc, kridge, neural}), bias})
chain

{
1:normalize center=0
2:ensemble
3:bias option=1
}

» C{2}{3}
neural units=10 shrinkage=1e-014 balance=0 maxiter=100

456

C1. QUICK START GUIDE FOR CLOP

C1.4.2. Preprocessing Methods

The following section shows different preprocessing models available within CLOP for partic-
ipants.

C1.4.2.1. STANDARDIZE

• Description: Standardization of the features (the columns of the data matrix are divided
by their standard deviation; optionally, the mean is first subtracted if center=1). Note that
a lot of methods benefit from this preprocessing, particularly neural networks.

• Hyperparameters: center ∈ {0,1}

• Default Values: center = 1

• Example:
» myModel = chain({normalize({’center=1’}) , naive})

C1.4.2.2. NORMALIZE

• Description: Normalization of the lines of the data matrix (optionally the mean of the
lines is subtracted first if center=1). Some methods benefit from this preprocessing, par-
ticularly the polynomial kernel methods. It is sometimes best to normalize after feature
selection or both before and after.

• Hyperparameters: center ∈ {0,1}

• Default Values: center = 0

• Example:
» myModel = chain({standardize({’center=1’}) , naive})

C1.4.2.3. SHIFT_N_SCALE

• Description: Performs this transformation globally on the data matrix X =(X−offset)/scale,
while offset and factor are set as hyperparameters, or subject to training. Optionally per-
forms in addition log(1+X).

• Hyperparameters: offset ∈ [−∞,∞], factor ∈ [0+,∞], take_log ∈ {0,1}

• Default Values: offset = min(X), factor = max(X −offset), take_log = 0

• Example:
» myModel = chain({shift_n_scale({’take_log=1’}) , naive})

C1.4.2.4. PC_EXTRACT

• Description: Extract f_max number of features with principal component analysis.

• Hyperparameters: f_max ∈ [0,∞]

• Default Values: f_max = ∞

• Example:
» myModel = chain({pc_extract({’f_max=50’}) , naive})

457

ALAMDARI GUYON

C1.4.2.5. SUBSAMPLE

• Description: Make a subset of p_max number of the training patterns. It is possible to
specify which patterns should be included in the resulting subset, by giving additional
input to the subsample function which contains the indexes of those patterns. With
balance hyperparameter you can specify whether the resulting subset should be a balanced
set according to the number of class members or not. Note that subsampling can be
combined with the ensemble object to implement bagging, for example4:

for k=1:100
baseModel{k}=chain({subsample({’p_max=1000’, ’balance=1’}),

kridge});
end
myModel = chain({standardize, ensemble(baseModel, ’signed_output=1’),

bias});

• Hyperparameters: p_max ∈ [0,∞], balance ∈ {0,1}

• Default Values: p_max = ∞, balance = 0

• Example:
» myModel = chain({subsample({’p_max=100’}) , naive})

C1.4.3. Feature Selection Methods

The following section shows different feature selection models available within CLOP for par-
ticipants. The following notation for hyperparameters is commonly used for all feature selection
algorithms:

• f_max defines the maximum number of features to be selected using the target model.

• w_min defines a threshold on the ranking criterion W of the target model. If W (i) <=
w_min, the feature i is eliminated. W is vector with non-negative values, so a negative
value of w_min means all the features are kept.

C1.4.3.1. S2N

• Description: Signal-to-noise ratio coefficient for feature ranking. This method ranks
features with the ratio of the absolute difference of the class means over the average class
standard deviation. This criterion is similar to the Fisher criterion, the Ttest criterion,
and the Pearson correlation coefficient. It can be thought of as a linear univariate feature
ranking method. The top ranking features are selected and the new data matrix returned.
The hyperparameters can be changed after construction of the object to allow users to
vary the number of features without retraining.

• Hyperparameters: f_max ∈ [0,∞], w_min ∈ [−∞,∞]

• Default Values: f_max = ∞, w_min =−∞

• Example:
» myModel = chain({s2n({’f_max=100’}) , naive})

4. Note that this does not take advantage of the out-of-bag examples to compute an estimate of the test error, but can
be considered as an approximation to bagging algorithm

458

C1. QUICK START GUIDE FOR CLOP

C1.4.3.2. RELIEF

• Description: This method ranks features with the Relief coefficient. Relief is a method
based on the nearest neighbors scoring features according to their relevance, in the context
of others. It is a non-linear multivariate feature ranking method. In our implementation,
it is slow for large numbers of patterns because we compute the entire distance matrix.
We chunk it if it is very large, to avoid memory problems. The top ranking features
are selected and the new data matrix returned. The hyperparameters can be changed after
construction of the object to allow users to vary the number of features without retraining.
k_num defines the number of neighbors in the Relief algorithm.

• Hyperparameters: f_max ∈ [0,∞], w_min ∈ [−∞,∞], k_num ∈ [0,∞]

• Default Values: f_max = ∞, w_min =−∞, k_num = 4

• Example:
» myModel = chain({relief({’f_max=100’, ’k_num=5’}) , naive})

C1.4.3.3. GS

• Description: Forward feature selection with Gram-Schmidt orthogonalization. This is
a forward selection method creating nested subsets of complementary features. The top
ranking features are selected and the new data matrix returned. Note that if you want to
change the value of f_max after training, it cannot be set to a larger number than the
number f_max used for training (or it will be chopped at f_max).

• Hyperparameters: f_max ∈ [0,∞]

• Default Values: f_max = ∞

• Example:
» myModel = chain({gs({’f_max=100’}) , naive})

C1.4.3.4. RFFS

• Description: Random Forest used as feature selection filter. The child argument, which
may be passed in the argument array, is an rf object, with defined hyperparameters. If
no child is provided, an rf with default values is used.

• Hyperparameters: f_max ∈ [0,∞], w_min ∈ [−∞,∞], child

• Default Values: f_max = ∞, w_min =−∞, child=rf

• Example:
» myModel = chain({rffs({’w_min=0.2’}) , naive})

C1.4.3.5. SVCRFE

• Description: Recursive Feature Elimination filter using SVC. This is a backward elim-
ination method creating nested subsets of complementary features. The child argument,
which passed in the argument array, is an svc object, with defined hyperparameters. If
no child is provided, a linear svc with default values is used.

• Hyperparameters: f_max ∈ [0,∞], child

459

ALAMDARI GUYON

• Default Values: f_max = ∞, child=svc

• Example:
» myModel = chain({svcrfe({’f_max=100’}) , naive})

C1.4.4. Classification Methods

The following section shows different classification models available within CLOP for par-
ticipants. The following notation for hyperparameters is commonly used for all classification
algorithms:

• For kernel methods, the general kernel equation is

k(x1,x2) = (coe f 0+ x1.x2)
degree exp(−gamma�x1 − x2�2)

Note that (.) is vector dot product operator. Some examples of mostly used kernels are:

1. Linear Kernel: degree = 1,coe f 0 = 0,gamma = 0, k(x1,x2) = (x1.x2)

2. Polynomial degree N Kernel: degree = N,coe f 0 = a,gamma = 0, k(x1,x2) = (a+
x1.x2)N

3. RBF Kernel: degree = 0,coe f 0 = 0,gamma = γ , k(x1,x2) = exp(−γ �x1 − x2�2)

• units usually defines the number of substructures needed for each algorithm. For ex-
ample, in the case of a neural object, it defines the number of hidden neurons, while in
boosting methods, it is the number of weak learners to be used in the algorithm.

• balance is a flag used to specify if the algorithm should balance the number of class
members before training using subsampling method.

• shrinkage defines usually the regularization parameter used in each algorithm.

C1.4.4.1. KRIDGE

• Description: Kernel ridge regression. This object trains a regression learning machine
using the least square loss and a weight-decay or ridge specified by the shrinkage param-
eter.

• Hyperparameters: coef0 ∈ [0,∞], degree ∈ [0,∞], gamma ∈ [0,∞], shrinkage ∈ [0,∞],
balance ∈ {0,1}

• Default Values: coef0 = 1, degree = 1, gamma = 0, shrinkage = 1e−14, balance = 0

• Example:
» myModel = chain({normalize , kridge({’coef0=0.1’, ’degree=2’})})

C1.4.4.2. SVC

• Description: Support vector classifier. This object trains a 2-norm SVC, i.e. the shrink-
age parameter is similar to the ridge in kridge. There is no box constraint (bound on the
alphas).

• Hyperparameters: coef0 ∈ [0,∞], degree ∈ [0,∞], gamma ∈ [0,∞], shrinkage ∈ [0,∞]

• Default Values: coef0 = 0, degree = 1, gamma = 0, shrinkage = 1e−14

460

C1. QUICK START GUIDE FOR CLOP

• Example:
» myModel = chain({normalize , svc({’degree=0’, ’gamma=0.1’,
’shrinkage=0.1’})})

C1.4.4.3. NAIVE

• Description: Naive Bayes classifier. Two separate implementations are made for binary
and continuous variables (the object switches automatically). For binary variables, the
model is based on frequency counts; for continuous variable, the model is a Gaussian
classifier.

• Hyperparameters: None

• Default Values: None

• Example:
» myModel = chain({normalize , naive})

C1.4.4.4. NEURAL

• Description: Neural networks classifier. Two layer neural network (a single layer of
hidden units). The shrinkage corresponds to a weight decay or the effect of a Bayesian
Gaussian prior. units is the number of hidden neurons, and maxiter defines the
number of training epochs.

• Hyperparameters: units ∈ [0,∞], maxiter ∈ [0,∞], shrinkage ∈ [0,∞], balance ∈ {0,1}

• Default Values: units = 10, maxiter = 100, shrinkage = 1e−14, balance = 0

• Example:
» myModel = chain({normalize , neural({’units=5’})})

C1.4.4.5. RF

• Description: Random Forest classifier. This object builds an ensemble of tree classifiers
with 2 elements of randomness: (1) each tree is trained on a randomly drawn bootstrap
subsample of the data (approximately 2/3 of the examples); (2) for each node, the feature
to split the node is selected among a random subset of all features. units is the number
of trees, and mtry defines the number of candidate feature per split.

• Hyperparameters: units ∈ [0,∞], mtry ∈ [0,∞]

• Default Values: units = 100, mtry =
√

Feat_Num

• Example:
» myModel = chain({normalize , rf({’units=200’})})

C1.4.4.6. GENTLEBOOST

• Description: This object builds an ensemble of classifiers (called weak learners) by se-
quentially adding weak learners trained on a subsample of the data. The subsamples are
biased toward the examples misclassified by the previous weak learner. Gentleboost is
a variant of the adaboost algorithm, which is less sensitive to data outliers because it
puts less weight on misclassified examples and weighs the weak learners evenly. The

461

ALAMDARI GUYON

base classifier is defined separately and can be any of the classification methods defined
above. units is the number of weak learners, subratio defines the ratio of subsam-
pling compared to the original dataset, and rejNum is the number of different trials to
get a weak learner before stopping the whole iteration, if the weighted error of a weak
learner is over 0.5.

• Hyperparameters: units∈{1,2, ...,∞}, subratio∈ [0,1], rejNum∈{1,2, ...,∞}, balance∈
{0,1}

• Default Values: units = 5, subratio = 0.9, rejNum = 3, balance = 1

• Example:
» myBase = naive
» myModel = chain({normalize , gentleboost(myBase, {’units=10’})})

C1.4.5. Postprocessing Methods

The following section shows different postprocessing models available within CLOP for partic-
ipants.

C1.4.5.1. BIAS

• Description: Bias optimization. It calculates a threshold value that will be applied to the
outputs of classifier, optimizing several factors listed bellow. The option can be one of
following items:

1. minimum of the BER.
2. break-even-point between sensitivity and specificity.
3. average of the two previous results if they do not differ a lot, otherwise zero.
4. values that gives the same fraction of positive responses on the test data than on the

training data (transduction).

• Hyperparameters: option ∈ {1,2,3,4}

• Default Values: option = 1

• Example:
» myModel = chain({normalize({’center=1’}) , naive, bias({’option=2’})})

C1.4.6. Model Selection Methods

In the main.m example script we provide, we illustrate how the Spider can be used to perform
a selection of the CLOP models. In the script, we use the Spider object cv, which implements
the traditional k-fold cross-validation algorithm. Since this is a model selection contest, we
encourage you to develop your own algorithms for this purpose. The main goal of developing
CLOP was to provide the participants with a diverse set of learning algorithms that should
be sufficient to achieve competitive results. By restricting them to the use of CLOP models,
they can focus on model selection rather than spending time tuning their own classification
algorithms. So use this opportunity and develop your ideas for better model selection systems.
This may include developing better:

• hyperparameter search strategies

462

C1. QUICK START GUIDE FOR CLOP

• model architectures (by combining CLOP modules with combinations of chains and en-
sembles)

• model assessment (e.g. cross-validation, complexity penalization, etc.)

The Spider provides a few objects implementing some of these tasks:

• param: this object allows you to specify ranges of parameter values

• cv: this object implements k-fold cross-validation

• gridsel: this object integrates the functions of param and cv to perform model selec-
tion with grid search

It is noteworthy that the model selection game is as much an ensemble method game as it is
a model selection game, since hyperparameter selection can to a large extent be circumvented
by using an ensemble of methods.

Note that objects like r2w2_sel and bayessel are specific to the Spider implementation
of SVMs, which is different from the one of CLOP. r2w2_sel concerns feature selection. Please
do not use it since we restricted the feature selection methods to the ones provided in this
manual. bayessel adjust the C hyperparameter in 1-norm SVM. This is not useful to CLOP
users, since in CLOP, we provide only a 2-norm SVM.

C1.4.7. How to use model_examples.m?

In order to keep the model creation separate from the main code that might be used by partici-
pants, we use another program which is called model_examples.m. Using this scheme, one can
easily define lots of different models without a need to modify the main.m program. This style
is not necessary but we recommend you to follow the proposed structural system.

In model_examples.m, the first section is used to checks empty calls of this function. Next,
there exist several proposed models and methods which some of them are common for all
datasets, and some has specific instructions to deal with different characteristics of different
datasets. Check this section carefully to get a general idea of how to create and write your own
models. Note that the proposed models are not optimal for this challenge, and we have created
them just to show different capabilities of CLOP. In order to be competitive in the challenge, you
would need to create your models and tune their parameters according to any model selection
strategy that you have in your mind.

C1.5. Training and Testing
After you have defined your models, you can easily train them using train command as bel-
low:

» myModel = chain({normalize({’center=1’}) , naive, bias({’option=2’})})
» [TrainOutputs, myModelTrained] = train(myModel, D.train)

In this example, we assume that there is a data object named D already available in the
workspace which contains training data and labels. The train function returns the original
model with tuned parameters in myModelTrained, while TrainOutputs will have pre-
dicted labels as .X subfield, (TrainOutputs.X) and original target training labels as .Y

463

ALAMDARI GUYON

subfield, (TrainOutputs.Y). The TrainOutput object can later be used to evaluate the
performance of training phase, like computing the BER, AUC, and etc.

After training a model, we usually are interested in testing the algorithm over unseen data
examples. This can be easily done with test function as follows:

» TestOutputs = test(myModelTrained, D.test)

Now the TestOutput has the predicted labels again in .X subfield, but since the labels
for test sets will not be provided, the .Y field will be empty. The TestOutput.X can be
passed further to other functions such as save_outputs to generate output files which are
suitable to send directly to online website.

C1.6. Results
The previous sections provided a variety of models available in CLOP, in order to successfully
create an optimal learning machine to enter the competition. In order to show you that CLOP
models are competitive algorithms compared to the ones used by the Performance Prediction
Challenge (PPC) participants, we show in Table C1.1 the results we obtained with some CLOP
objects designed without extensively searching for an optimum model (CLOP baseline mod-
els). All these objects are within the tenth best percentile of the methods submitted by the
challenge finalists. We will not reveal the structure of these models until the end of contest to
encourage people to come up with their own architecture and develop efficient hyperparameter
optimization strategies.

Table C1.1: Results comparison. We report the test BER over different datasets. The PPC
results correspond to the data split used for the Performance Prediction Challenge,
with validation labels. There is a new data split of the same data that should be used
for the game (last column), for which the validation set labels are not available.
For the PPC datasets, the performance reported correspond to training with both
training and validation data. For the game, only training labels are available during
the development period.

Entries Best PPC entries CLOP baseline CLOP baseline
Data split Original PPC split Original PPC split New game split

with valid. labels with valid. labels NO valid. labels
ADA 0.1696 ± 0.0021 0.1832 0.1808
GINA 0.0288 ± 0.0009 0.0293 0.0262
HIVA 0.2757 ± 0.0068 0.3038 0.2988
NOVA 0.0433 ± 0.0017 0.0489 0.0440
SYLVA 0.0053 ± 0.0002 0.0100 0.0108

C1.7. Credits
The organization of this competition was a team effort to which many have participated. We are
particularly grateful to Olivier Guyon (MisterP.net) who implemented the back-end of the web

464

C1. QUICK START GUIDE FOR CLOP

site. The front-end follows the design of Steve Gunn (University of Southampton), formerly
used for the NIPS 2003 feature selection challenge. We are thankful to Bernd Fischer (ETH
Zurich) for administering the computer resources. Other advisors and beta-testers are grate-
fully acknowledged: Gideon Dror, Joachim Buhmann, Yoshua Bengio (University of Montreal),
Asa Ben-Hur (Colorado State university), Lambert Schomaker (University of Groningen), and
Vladimir Vapnik (NEC, Princeton). The Challenge Learning Object Package (CLOP) is based
on code to which many people have contributed: The creators of the spider: Jason Weston, An-
dre Elisseeff, Gikhan Bakir, Fabian Sinz. The developers of the packages attached: Chih-Chung
Chang and Chih-JenLin Jun-Cheng (LIBSVM), Chen, Kuan-Jen Peng, Chih-Yuan Yan, Chih-
Huai Cheng, and Rong-En Fan (LIBSVM Matlab interface), Junshui Ma and Yi Zhao (second
LIBSVM Matlab interface), Leo Breiman and Adele Cutler (Random Forests), Ting Wang (RF
Matlab interface), Ian Nabney and Christopher Bishop (NETLAB), Thorsten Joachims (SVM-
Light), Ronan Collobert (SVM Torch II), Jez Hill, Jan Eichhorn, Rodrigo Fernandez, Holger
Froehlich, Gorden Jemwa, Kiyoung Yang, Chirag Patel, Sergio Rojas. This project is supported
by the National Science Foundation under Grant N0. ECS-0424142. Any opinions, findings,
and conclusions or recommendations expressed in this material are those of the authors and do
not necessarily reflect the views of the National Science Foundation. Predicant biosciences,
Microsoft, and Unipen provided additional support permitting to grant prizes to the winners.

465

	Series Foreword
	Foreword
	Preface
	Table of Contents
	Introduction
	1. Challenges and datasets
	Introduction
	Motivations for this series of challenges
	Datasets
	Design of the challenges
	General evaluation procedure
	Performance prediction challenge
	ALvsPK challenge on data representation
	Model selection game

	Results
	General observations
	Results of the Performance Prediction Challenge
	Results of the Model Selection Game
	Results of the ALvsPK challenge

	Conclusions
	Appendix

	2. Model Selection: Beyond the Bayesian/Frequentist Divide
	Introduction
	Notations and Conventions
	The Many Faces of Model Selection
	Is Model Selection ``Really'' a Problem?
	Bayesian Model Selection
	Frequentist Model Selection

	Multi-level Inference: A Unifying View of Model Selection
	Advances in Multi-level Inference
	Filters
	Wrappers
	Embedded Methods

	Advanced Topics and Open Problems
	Ensemble Methods
	PAC Bayes Approaches
	Open Problems

	Conclusion
	Glossary

	3. Overfitting in Model Selection and Selection Bias in Evaluation
	Introduction
	Kernel Ridge Regression
	Efficient Leave-One-Out Cross-Validation

	Data Sets used in Empirical Demonstrations
	A Synthetic Benchmark
	A Suite of Benchmarks for Robust Performance Evaluation

	Over-fitting in Model Selection
	Bias and Variance in Model Selection
	The Effects of Over-fitting in Model Selection
	Is Over-fitting in Model Selection Really a Genuine Concern in Practice?
	Avoiding Over-fitting in Model Selection

	Bias in Performance Estimation
	An Unbiased Performance Evaluation Methodology
	An Example of Biased Evaluation Methodology
	Is the Bias Solely due to Inadvertent Re-use of Test Samples?
	Is the Median Protocol Internally Consistent?

	Another Example of Biased Evaluation Methodology

	Conclusions

	Data representation
	4. Hybrid Learning Using Mixture Models and Artificial Neural Networks
	Introduction
	Mixture Models and Expectation Maximization Algorithm
	Multivariate Bernoulli Mixtures
	Multivariate Gaussian Mixtures
	Classification Using Mixture Models
	Artificial Neural Networks

	Hybrid Learning
	Transformation of Input Space and Dimensionality Reduction

	Experimental Results
	Overall Hybrid Learning Model
	Initial Attribute Elimination
	Simulations for Finding Mixture Parameters and Number of Clusters
	NOVA Dataset
	SYLVA Dataset
	GINA Dataset
	HIVA Dataset
	ADA Dataset
	Comparison With Other Methods
	Discussion of Results

	Conclusions

	5. Data Grid Models for Preparation and Modeling in Supervised Learning
	Introduction
	The MODL Supervised Discretization and Value Grouping Methods
	Discretization
	Value Grouping

	Supervised Data Grids Models for any Subset of Variables
	Interest of the joint partitioning of two input variables
	Principles of the Extension to Data Grid Models
	Evaluation Criterion for Supervised Data Grids
	Relation with Information Theory

	Data Grid Models for Coclustering of Instances and Variables
	Bivariate Value Grouping of Categorical Variables
	Presentation
	Formalization
	Interpretation

	Coclustering of Instances and Variables
	Coclustering
	Application to Semi-Supervised Learning

	Optimization Algorithm for Multivariate Data Grids
	Greedy Bottom-Up Heuristic
	Optimized Implementation of the Greedy Heuristic
	Post-Optimization
	Meta-Heuristic
	The Case of Categorical Variables
	Summary of the Optimization Algorithms

	Experiments on Artificial Datasets
	The Noise Pattern
	The Multivariate XOR Pattern
	Theoretical Detection Threshold
	Empirical Analysis of the Algorithms
	Detection of a Complex Patterns with Few Instances
	Finding a Needle in a haystack

	Evaluation on the Agnostic Learning vs. Prior Knowledge Challenge
	The Agnostic Learning vs. Prior Knowledge Challenge
	Building Classifiers from Data Grid Models
	Data Grid
	Data Grid Ensemble
	Coclustering

	Evaluation of Supervised Data Grids
	Classification Results
	Understandability

	Evaluation of Coclustering Data Grids
	Dimensionality Reduction
	Classification Results
	Understandability

	Conclusion

	6. Virtual High-Throughput Screening with Two-Dimensional Kernels
	Introduction: The Virtual High-Throughput Screening Problem
	Molecular Data Representation
	Molecular Graphs
	Extended-Connectivity Molecular Features
	Molecular Fingerprints

	Support Vector Machines for virtual HTS
	Kernels For Molecules
	Implementation
	Performance Measures

	Results
	Discussion

	Robust Parameter Estimation
	7. Unified Framework for SVM Model Selection
	Introduction
	New Formulation
	Properties of the New Formulation
	Hyperplane equation using the New Formulation
	Properties of tilde k
	Kernels definition using the New Formulation

	Advantages of the Unified Framework for Model Selection
	Application of the Unified Framework for Model Selection
	The empirical error criterion
	The radius-margin criterion

	Experiments and Results
	Datasets and Experimental Setup
	Results and Discussion

	Conclusion

	8. Liknon feature selection: Behind the scenes
	Introduction
	Liknon and Svmpath based feature and classification model selection when classes separate nonlinearly: case study on artificial Banana dataset
	Computational procedure for Liknon-based feature selection
	Identification of useful features

	Liknon formulation
	The primal minimization problem
	Duality of linear programming
	The dual maximization problem
	Optimality conditions

	Transvariation intensity and margin
	Univariate class separation measure, based on transvariation intensity
	Size of margin errors
	Transvariation intensity function
	Ordering the classes on the discriminant
	Regularization parameter C

	Liknon feature selection
	The standard discriminant, given by the solution of the Liknon dual
	Given vs. desired: margin control
	Selection of C
	Algorithm for computing C

	Liknon feature and classification model selection on the benchmark datasets
	Liknon feature selection applied to the NIPS 2003 FS benchmark datasets
	Liknon versus Svmpath on the NIPS2003 feature selection benchmark datasets
	Numerical experiments on the datasets of Agnostic Learning vs. Prior Knowledge competition

	Discussion and Conclusions

	9. Model Selection in Kernel Based Regression using the Influence Function
	Introduction
	The Influence Function
	Definition
	Asymptotic Variance and Stability
	A Strategy for Fast Approximation of the Leave-one-out Error

	Kernel Based Regression
	Definition
	Influence Function
	Higher Order Influence Functions

	Finite Sample Expressions
	Least Squares Loss
	Huber Loss
	Reweighted KBR

	Model Selection
	Definition
	Optimizing b
	Generalized Cross Validation

	Empirical Results
	Toy Example
	Other Examples

	Conclusion
	Appendix

	Ensemble Methods
	10. An Improved Random Forests Approach
	Introduction
	Algorithm
	Classification and Regression Trees – CART
	Random Forests
	Adaptation of Random Forests

	Results
	Conclusions

	11. Feature Selection with Ensembles
	Introduction
	Feature Selection
	Subset Feature Selection
	Contributions of this Paper

	Background
	Markov Boundaries
	Existing Approaches in Feature Selection
	Towards Efficient and Approximately Optimal Feature Selection

	Tree Ensembles for Feature Selection
	Relative Variable Importance Metrics
	Removing Irrelevant Features by Artificial Contrasts
	Masking Measures

	Algorithm: Ensemble-Based Feature Selection with Artificial Variables and Redundancy Elimination
	Algorithm Details
	Comparison to Previous Work

	Experiments
	Generated Data with Linear Relationships
	Generated Nonlinear Data
	IJCNN 2007 Agnostic Learning vs. Prior Knowledge Challenge
	TIED Data Set
	Manufacturing Data
	Hepatitis Data

	Conclusions

	12. Classification with Random Sets
	Introduction
	Main Models
	On the relation between BER and AUC
	QM Model with Regularization
	Relevance Vector Machine
	Feature Selection using Random Sets
	Naïve Bayes Classifier
	On the Difference Between Random Forests (RF) and Random Sets (RS)
	Loglikelihood based Feature Selection Method

	Decision Trees
	Cross-Validation

	Boosting Algorithms
	An Exponential Criterion
	AdaBoost Algorithm
	LogitBoost Algorithm
	LogitBoost2 Algorithm
	Experience-Innovation Approach
	Synthetic Set

	Distance-based Clustering
	Generalized Linear Mixture Model (GLiMix)

	Experiments
	Small and Low-Dimensional Datasets

	Concluding Remarks

	Multi-level Inference
	13. Preventing Over-Fitting during Model Selection
	Introduction
	Least Squares Support Vector Machine
	A Dual Training Algorithm
	Efficient Implementation Via Cholesky Decomposition

	Leave-One-Out Cross-Validation
	Virtual Leave-One-Out Cross-Validation
	Efficient Implementation via Cholesky Factorisation

	Model Selection
	Partial Derivatives of the PRESS Model Selection Criterion
	Automatic Relevance Determination

	Bayesian Regularisation in Model Selection
	Elimination of Second Level Regularisation Parameters xi and zeta
	Relationship with the Evidence Framework

	Results
	Performance of Models Based on the Spherical RBF Kernel
	Performance of Models Based on the Elliptical RBF Kernel

	Discussion
	Relationship to Existing Work
	Directions for Further Research

	Conclusion

	14. Particle Swarm Model Selection
	Introduction
	Particle swarm optimization (PSO)
	PSO Parameters

	Particle swarm model selection
	The challenge learning object package
	Representation
	Fitness function
	Computational complexity

	Experimental results
	A comparison of PSO and PS
	Parameter selection for PSMS
	Results on the model selection challenge

	Discussion
	Robust and computationally tractable intensive search
	Intensive search without overfitting
	Comparison with related work
	A practical guide to PSMS

	Conclusions

	15. Bilevel Cross Validation
	Introduction
	Challenges in Model Selection
	A New Methodology

	Model Selection as a Bilevel Program
	Bilevel Cross Validation for Support Vector Regression
	Bilevel Problems as MPECs
	Kernel Bilevel Cross Validation

	Alternative Bilevel Optimization Methods
	A Relaxed NLP Reformulation
	Penalty Reformulation
	Successive Linearization Algorithm for Model Selection
	Early Stopping
	Grid Search

	Experimental Design
	Synthetic Data
	Real-world QSAR Data
	Post-processing

	Computational Results
	Synthetic Results
	Computational Results: QSAR Data

	Discussion

	Dataset Description
	A1. Datasets for the Agnostic Learning vs. Prior Knowledge Competition
	Method
	Data formats
	Model formats
	Result rating
	Dataset A: SYLVA
	Topic
	Sources
	Original owners
	Donor of database
	Date received
	Date prepared for the challenges

	Past usage
	Experimental design
	Variable Information
	Code Designations
	Class Distribution

	Number of examples and class distribution
	Type of input variables and variable statistics
	Baseline results

	Dataset B: GINA
	Topic
	Sources
	Original owners
	Donor of database
	Date prepared for the challenges

	Past usage
	Reference:

	Experimental design
	Number of examples and class distribution
	Type of input variables and variable statistics
	Baseline results

	Dataset C: NOVA
	Topic
	Sources
	Original owners
	Donor of database
	Date prepared for the challenges

	Past usage
	Experimental design
	Number of examples and class distribution
	Type of input variables and variable statistics (agnostic data only)
	Baseline results

	Dataset D: HIVA
	Topic
	Sources
	Original owners
	Donor of database
	Date prepared for the challenges

	Past usage
	Experimental design
	Data format, number of examples and class distribution
	Type of input variables and variable statistics (agnostic data only)
	Baseline results

	Dataset E: ADA
	Topic
	Sources
	Original owners
	Donor of database
	Date prepared for the challenges

	Past usage
	Experimental design
	Data format, number of examples and class distribution
	Type of input variables and variable statistics
	Baseline results

	Fact Sheets
	Performance Prediction Challenge
	LogitBoost with trees
	Weighted LS-SVM + Leave-One-Out Cross-Validation + Repeated Hold-Out
	Bayesian Neural Networks for the Performance Prediction Challenge
	Random Forests
	Kernel Classifier
	Random Linear Matching Pursuit
	Regularized and Averaged Selective Naïve Bayes Classifier
	Artificial Contrasts with Ensembles and Regularized Least Squares Classifiers
	SVM-LOO
	Model Selection in an Ensemble Framework
	Advanced Analytical Methods, INTEL
	Learning with Mean-Variance Filtering, SVM and Gradient-based Optimization
	Large margin linear classifiers with bias adjustment for skewed two-class distributions.
	A Study of Supervised Learning with Multivariate Analysis on Unbalanced Datasets
	Cross-indexing

	AL vs PK Challenge
	LogitBoost with trees
	Feature selection with redundancy elimination + gradient boosted trees.
	Cross-indexing
	Classification with Random Sets, Boosting and Distance-based Clustering
	PSMS for Neural Networks
	Hybrid approach for learning
	Linear Programming SVM (Liknon)
	Agnostic Learning with Ensembles of Classifiers
	Modified multi-class SVM formulation; Efficient LOO computation
	Report on Preliminary Experiments with Data Grid Models in the Agnostic Learning vs. Prior Knowledge Challenge
	Dimensionality Reduction Techniques
	DoubleBoost
	Boosting with SVM
	High-Throughput Screening with Two-Dimensional Kernels

	CLOP: The challenge learning object package
	C1. Quick Start Guide for CLOP
	Introduction
	What is CLOP?
	How to install CLOP?
	What I need to run CLOP?
	How to run CLOP?
	Compilation of SVC
	More Details on Objects and Classes

	Sample Program
	What is inside the main.m program?

	Data Structure
	Defining Models
	How to combine different models?
	Preprocessing Methods
	standardize
	normalize
	shift_n_scale
	pc_extract
	subsample

	Feature Selection Methods
	s2n
	relief
	gs
	rffs
	svcrfe

	Classification Methods
	kridge
	svc
	naive
	neural
	rf
	gentleboost

	Postprocessing Methods
	bias

	Model Selection Methods
	How to use model_examples.m?

	Training and Testing
	Results
	Credits

